

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Informatics and Communication Technology (IJ-ICT)

Vol.2, No.1, January 2013, pp. 9~16

ISSN: 2252-8776 9

Journal homepage: http://iaesjournal.com/online/index.php/IJICT

Optimal Solution Of Minmax 0/1 Knapsack Problem

Using Dynamic Programming

Ani Dijah Rahajoe*, Edi Winarko**
* Departement of Informatics Engineering, Bhayangkara Surabaya University

** Faculty Of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta

Article Info ABSTRACT

Article history:

Received Aug 16
th

, 2012

Revised Sept 30
th

, 2012

Accepted Oct 15
th

, 2012

Knapsack problem is a problem that occurs when looking for

optimal selection of objects that will be put into a container with limited

space and capacity. On the issue of loading goods into the container, optimal

selection of objects or items to be sent must fulfilled to minimize the total

weight of the capacity or volume limits without exceeding the maximum

capacity of containers that have been determined. The types of knapsack that

has been discussed so far is only to maximize the use not to exceed the limits

specified capacity so it cannot be applied to the problem. This study aims to

develop a dynamic programming algorithm to solve the MinMax 0/1

knapsack, which is an extension of the 0/1 knapsack with minimal and

maximal constraints. The result of study showed that the solution of the

MinMax 0/1 knapsack problem using dynamic programming can be used to

generate the optimal solution to the problem of loading goods into the

container such that the minimum and maximum capacity constraints are met.

Keyword:

Integer knapsack

Minmax

Dynamic programming

Copyright © 2013 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Edi Winarko,

Faculty Of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta,

Bulaksumur, Yogyakarta 55281, Indonesia.

Email: ewinarko@ugm.ac.id

1. INTRODUCTION

Optimization is one of the mathematical disciplines that aim to find the maximum or minimum

value of a function with certain limitations (constraints). One example is optimization knapsack problem that

defined as follows: If there’s several item, each with their own weight and value, the knapsack problem is to

determine the item that will be incorporated into the knapsack such that the total weight is less than or equal

to the limit and have maximum total value. There are two categories known in knapsack problem, the

fractional knapsack and integer knapsack. In the fractional knapsack objects can be inserted into the container

in fraction, while the integer knapsack items should be included as a whole. One form of the integer knapsack

that is often discussed is the 0/1 knapsack [1], which is mathematically formulated in equation (1).

Maximize pj xj (1)

Requirement wj xj ≤ M

 xj ∊ {0,1}, j=1,..,n.

In this paper, we propose an extension of the 0/1 knapsack problem, called MinMax 0/1 knapsack

problem, which is formulated in equation (2).

 Minimize pj xj (2)

 Requirement M1 ≤ wj xj ≤ M2

 xj ∊ {0,1}, j=1,..,n

where M1 is the minimum limit of the knapsack and M2 is the maximum limit.

 ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 9 – 16

10

One example of the MinMax 0/1 knapsack problem is the loading of goods into a container which

aims to minimize the use of container space available on the delivery of goods between islands or countries.

In this problem the items are inserted into the container must meet the minimum limit and not exceed the

maximum capacity.

2. RELATED WORKS

The general knapsack problem is a problem of selecting objects or items (each of which has a

weight and value or profit) to be put in a knapsack so that the total profit is maximum but the total weight

does not exceed the maximum capacity of knapsack. There several types of knapsack problems, such as

bounded knapsack, unbounded knapsack, and integer knapsack problem, and fractional knapsack problem

[2]. Integer knapsack has several types including multidimensional knapsack problems, two-dimensional

knapsack problem, precedence constraint knapsack problem [3], disjunctively constraint knapsack problem

[4], multiple choice knapsack problem, the knapsack sharing problem [5], the quadratic knapsack problem

[6], and Max-min knapsack problem [7] [8].
The 0/1 knapsack problem is a special case of integer knapsack problem, in which items should be

put in the knapsack as a whole. Research on the 0/1 knapsack problem solving has been widely applied, such

as by using brute force algorithms, greedy, branch and bound, and dynamic programming [9] [10]. Dynamic

programming has been used widely to solve extensions of 0/1 knapsack problem. As examples, a dynamic

programming algorithm is used to solve a bilevel knapsack problem, in which the leader determines the

knapsack's capacity in order to maximize his profit, while the follower faces a 0/1 knapsack problem

involving the capacity set by the leader [11]. The dynamic programming is also used to solve the knapsack

sharing problem [12]. Recently, dynamic programming based algorithms is proposed for solving the

discounted 0/1 knapsack problem [13]. The discounted 0/1 knapsack problem (DKP) is an extension of the

classical 0/1 knapsack problem that consists of selecting a set of item groups where each group includes

three items and at most one of the three items can be selected.

3. PROPOSED METHOD

 This section describes our proposed method of solving MinMax 0/1 knapsack problem using

dynamic programming. To describe the workings of the dynamic programming in finding the optimal

solution of MinMax 0/1 knapsack, we use Example 1 below.

Example 1. Consider 4 items (x1, x2, x3, x4), each of which has a weight and value (w1, w2, w3, w4) =

(3,4,2,2), (p1, p2, p3, p4) = (12, 14, 7, 6). If minimum capacity M1 = 5 and the maximum capacity M2 = 6,

then some alternative solutions to these problems is shown in Table 1. In the table it can be seen that under

the MinMax 0/1 knapsack problem it is alternative number 5, 6, 7, and 8 that meet the total weight of 5. Of

the four alternatives, the optimal solution is simply an alternative number 6 with a total value of the item for

18 (minimum).

Table 1. Items that can be put into knapsack

Finding optimal solution using Dynamic Programming contains several steps, namely [14]:

1. Determine the optimal solution’s structure.

2. Recursively define the optimal solution.
3. Determine the optimal solution in forward or reverse.

4. Construct optimal solution.

Alternatives Items that are taken Total weight of items taken Total value of items taken

1 x1 3 12

2 x2 4 14

3 x3 2 7

4 x4 2 6

5 x1, x3 3+2 = 5 12 + 7 = 19

6 x1, x4 3+2= 5 12+6 = 18

7 x2, x3 4 + 2 = 6 14 + 7 = 21

8 x2, x4 4 + 2 = 6 14 + 6 = 20

9 x3, x4 2 + 2 = 4 7 + 6 = 13

IJ-ICT ISSN: 2252-8776

Optimal Solution Of Minmax 0/1 Knapsack Problem Using Dynamic Programming (Ani Dijah Rahajoe)

11

Optimal solution of MinMax 0/1knapsack problem can be determined by forward or backward

approach. In this paper we use the backward approach. Our backward approach is based on the

backward approach used to solve 0/1 knapsack problem, which has the recurrent equation below [15]:

fj(y) = max{ fj-1(y), fj-1(y-wj) + pj} (3)

In this paper, U represents the total weight and U [j, y] represents the total weight of the j stage at a

capacity of y. L represents an optimum total value of items and L [j, y] represents the optimum total

value of items that are included in the knapsack at the j stage at a capacity of y.

Step 1: Determine Structure of the Optimal Solution

Integer knapsack with MinMax constraint using dynamic programming can be divided into two

conditions:

1. Conditions at wj> y.

The condition was stated that when item j has the weight greater than the capacity of y then the item is

not included in the knapsack.

2. Condition at wj ≤ y .

The condition that stated that when the weight item wj is less than or equal to the weight of the capacity

of y the item could be included in the knapsack.

At the time the item is selected, the total weight of the total weight of the optimum value of the previous

stage at the y-wj added with the weight of wj or U[i-1, y-wj] + wj.

The value of U[i-1, y-wj]+wj an also be called the stage at the time of j. The total value of at least the

items will follow the results of the total weight of the optimal value of the minimum total value of the

item is L[i-1, y-wj] + pj.

The optimum value of the total weight will be determined by four conditions, namely:

1) If the total weight less than the optimum value of the total weight of the previous stage then the item is

not included in the knapsack.

The optimum value of the total weight of stage j is taken from the optimum value of the total weight

of the previous stage or U[j-1,y] so that the minimum total value of item j phase is also taken from a

minimum total value of the item earlier stage or L[j-1,y].

2) If the total weight greater than the optimum value of the total weight of the previous stage of the items

can be inserted into the knapsack so that the optimum value of the total weight of a U[j-1, y-wj] + wj.

Similarly, a minimum total value of the item will be L[j-1, y-wi] + pj.

3) If the total weight equal to the optimum value of the total weight of the previous stage then applied the

principle of minimal value.

a. If the total value of at least the previous phase or L[j-1,w] is smaller than the total value of

at least stage j or L[j-1, y-wj] + pi then the item is not included in the knapsack. Minimum

total value is the total value of the previous stage or L[j-1,w].

b. If not then the item is placed in the knapsack so that the minimum total value of the item

will be L[i-1, y-wj] + pj.

4) Conditions at the U[j,y] ≥ MinCapacity.

If U[j,y-1]≥MinCapacity or U[j-1,y]≥MinCapacity the principle of minimal value for the total value

of the item applied. Value of L[j,y] as compared to the value of L[j,y-1] and selected the smallest total

value, this is due to minimizing the total value of the item at the minimum limit has been met.

Furthermore L[j,y] dan L[j-1,y] re compared to select the smallest value. If the value of L[j,y]=L[j,y-

1] atau L[j,y]=L[j-1,y] then will be selected value of the largest total weight of the item. It is tailored

to the application of the loading of goods into the container in order to minimize the remaining

container space.

Step 2: Determine Recursive Equations for MinMax 0/1 Integer Knapsack

Based on previous analysis the recursive equation can be formulated as follows:

If wj > y (4)

 ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 9 – 16

12

 If wj ≤ y then

 If U[j-1,y]≠U[j-1,y-wj]+wj then

 U[j,y] = Max { U[j-1,y], U[j-1,y-wj] + wj}

 If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity then

 L[j,y] = Min { L[j,y-1], L[j,y] }

 If U[j,y] ≥ MinCapacity and U[j-1,y] ≥MinCapacity then

 L[j,y] = Min { L[j-1,y], L[j,y] }

 The base of the recursive equation (4) is when wj=0 or y=0 and the values of U[j,y]= 0 and L[j,y]= 0.

.

Step 3: Determine Optimal Solutions

In Table 2 the initial stage is the stage where the item has not been chosen so that U[0,y]=0 and

L[0,y]=0 for all values of y. When y=1 and y=2, the value of wj>y so that the value of U[j,y] = U[j-1,y]

or optimum value is the total weight of the optimum value of the total weight of the previous stage.

Similarly, the minimum total value of items with a minimum total value of items the previous stage or

L[j,y] = L[j-1,y]. Item x1 contained in y=3, y=4, y=5 and the previous phase is 0 so the solution is still

optimal for a minimum total value of items is 12 and the total weight of the optimal solution for a

maximum of 3.

At y=4, item x2 can be incorporated into the knapsack item with value of 14. At these conditions, the

total weight of the previous stage is not equal to the total weight of the stage 2 or U[j-1,y] ≠ U[j-1,y-wj]

+ wj thus selected that the maximum between the two. Value of U[j-1,y-wj] + wj is greater than the

value of U[j-1,y] thus that value becomes the optimum solution when y=4 and has not met the

requirements of U[j,y]≥MinCapacity.

At y=5 and y=6 satisfy the condition U[j,y]≥MinCapacity but the U[j,y-1] and U[j-1,y] do not meet the

requirements of greater than MinCapacity. Minimum total value of items adapted to the results that

have been selected by the U[2,4] (the total weight at the time of y = 4).

At this stage the value used is U[j-1,y-wj] + wj (at step 2) thus the value of L[j,y] = L[j-1,y-wj] + pj .

At y=5 with j=3 or item 3, the value of U[j-1,y-wj] + wj = 5 is greater than the value of U[j-1,y] = 4 so

the value of U[j-1,y-wj] + wj will be the optimal solution when y=5. The value of U[j,y-1] and U[j-1,y]

do not meet the requirements of greater than MinCapacity so L[j,y] will be taken at y=5 or L[j-1,y-wj]+

pj. At y=6, the value of U[j-1,y-wj]+wj is greater than the value of U[j,y-1] thus the value of L[j,y] =

L[j-1,y-wj]+pj. The value of U[j,y-1] satisfy the requirements of KapasitasMin than the total value of

the determination of minimal solutions of recursive equation L[j,y]=Min{ L[j,y-1], L[j,y]} do value

U[j,y] at U=5 and L=19.

The final stage when y=6 and item 4 is the minimum total value of the solution. Recursive equation

L[j,y]=Min{L[j,y-1],L[j,y] } produces a value of 18. Value of U[j,y] to adjust the value of the ratio

between L[j-1,y] and L[j,y]. Furthermore the condition U[j-1,y]≥MinCapacity met so enacted

L[j,y]=Min{L[j,y],L[j-1,y] }. Minimum total value is taken at y=6 fixed L[j,y] at 18 so total value of

the maximum weight is also fixed to a value of 5. Optimal solution of Example 1 on the reverse

approach is fn(M) [7] or at the time L[n,c] and U[n,c] and demonstrate the value of L[n,c] is 18 and the

value of U[n,c] is 5.

Procedure CalculationofOptimalSolution(MinCapacity,MaxCapacity,n,W,P,U,L)

/ / Input MinCapacity and MaxCapacity are minimal and maximal limits total

/ / weight of item knapsack. N is the number of items that is, W is the array of data

 / / weight of each item, P is the array of data item values, U is the optimal solution the data array

/ / total weight of item j at the stage to a capacity of y and L is the array of data solutions

/ / optimal total value of item j at the current stage of capacity y.

For y←0 to MaxCapacity do

 L[0,y]←0; U[0,y]←0;

For j←1 to MaxCapacity do

 L[j,0]←0;U[j,0]←0;

IJ-ICT ISSN: 2252-8776

Optimal Solution Of Minmax 0/1 Knapsack Problem Using Dynamic Programming (Ani Dijah Rahajoe)

13

 For y←1 to MaxCapacity do

Begin
 If W[j] <=y then

 If W[j] + U[j-1, y-W[j]]≠U[j-1,y] then

 U[j,y]←Max{ W[j] + U[j-1, y-W[j]],U[j-1,y]};

 Else L[j,y]←Min {P[j]+L[j-1,y-W[j], L[j-1,y] };

 Else U[j,y]

 L[j,y];

 If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity

 L[j,y] ← Min { L[j,y-1], L[j,y] };

 If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity

 L[j,y] ← Min { L[j,y], L[j,y-1] };

 End

Table 2 Calculation of optimal solution of MinMax 0/1 knapsack

j/y 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 U=0

L=0

(0,0,0,0)

U=0

L=0

(0,0,0,0)

U=3

L=12

(1,0,0,0)

U=3

L=12

(1,0,0,0)

U=3

L=12

(1,0,0,0)

U=3

L=12

(1,0,0,0)

2 0 U=0

L=0

(0,0,0,0)

U=0

L=0

(0,0,0,0)

U=3

L=12

(1,0,0,0)

U=4

L=14

(0,1,0,0)

U=4

L=14

(0,1,0,0)

U=4

L=14

(0,1,0,0)

3 0 U=0

L=0

(0,0,0,0)

U=2

L=7

(0,0,1,0)

U=3

L=12

(1,0,0,0)

U=4

L=14

(0,1,0,0)

U=5

L=19

(1,0,1,0)

U=5

L=19

(1,0,1,0)

4 0 U=0

L=0

(0,0,0,0)

U=2

L=6

(0,0,0,1)

U=3

L=12

(1,0,0,0)

U=4

L=13

(0,0,1,1)

U=5

L=18

(1,0,0,1)

U=5

L=18

(1,0,0,1)

Step 4: Construct the Optimal Solution of MinMax 0/1 Knapsack

Recursive equation (3) showed only minimal items and the total value of the total weight of the item,

but did not show any items selected for inclusion into the knapsack according to the total value of at

least 18. Final stages of completion with the construction of dynamic programming is the optimal

solution in which it traces the stages of the sequence of items selected from the phase of U [n, c] to the

first stage or U[0,0].

These measures include selected search fields:

1. Search of the U[j,y] to U[j,y-1] until there is a change in value between two or L[j,y] with

L[j,y-1] (horizontally), then the item if there is a change in j as y phase included into the

knapsack and the second step search is then performed.

2. Search of the U[j,y] the results of the first step compared to the previous stage U[j-1,y] or

L[j,y] with L[j-1,y] (vertically), in case of change in value then the item is an item selected and

continued with the remaining capacity of the selected item or y-wj. Then searched for back to

step 1 to y = 1 or j = 0.

Based on Table 2, the construction steps of the optimal solution of Example 1can be described as

follows:

1. Optimal solution value at y = 6 and j = 4 is the optimal value for all stages j = 4, a search using

a step change in value when y = 5.

2. The next step to be checked with the previous phase 2 is U[j-1,y]. Changes occur in the value

of L[3,5]=19 is not equal to L[4,5]=18 so item 4 included into the knapsack.

3. Residual capacity become 3 so the search starts at U[3,3].

Step 1 produces j = 3 and y = 3 and then proceed step 2. Search ends at j = 1 and y = 3 so first

item included into the knapsack. Residual capacity to 0 then the optimal solution construction

ends.

 ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 9 – 16

14

Procedure OptimalSolutionConstruction (MaxCapacity,n,U,L,W)

/ / Input MaxCapacity is the maximum total weight limit knapsack item. N is the number of items

available, W is the array of data

/ / weight of each item, U is a data array

/ / optimal solution to the total weight of item j at the current stage of capacity y and L is the array of

data total value of items the optimal solution stage of j at a capacity of y.

x←0; j←n; y←MaxCapacity;

while (j>0) and (y>0) do

 If U[j,y] = U[j,y-1] then

 y←y-1;

 Else

 j←j-1;

 if U[j,y] <> U[j-1,y] or L[j,y] <> L[j-1,y] then

 Begin

 Display item of j;

 y←y-W[j];

 End;

end while

end;

4. EXPERIMENTAL RESULTS

In this section we apply the solution of MinMax 0/1 knapsack problem using dynamic

programming to the problem of loading goods into the container to optimize the available container space.

Minimum and maximum data capacity or volume of available container space is shown in Table 3.

The data used in this experiment is received from PT DFI whose business is shipping containers to

Singapore. Each container sent has a minimum volume limit. If the total volume of the container is less than

the minimum limit, the company will be fined per cubic meter. Data items in the PT DFI is an item of data

collected on March 5, 2010 and March 15, 2010, the data item is delivered in stages.The data is entered into

by the company's container measuring 20 'and 40' respectively and as many as two containers are shown in

Table 4. Application of the integer knapsack with minmax constraint is done by filling the first container size

of 20 'where the calculated optimal solution with minimal restrictions produce 30 m3 capacity of 30 589 m3

optimal solution with minimal total weight of 4905.30 kg and are shown in Table 5. These results do not

exceed the actual maximum capacity of 31 152 m3 and a maximum weight of 20 ton containers.

The second container using a size 20 ', this is because the item was left sufficient for the container

size of 20' and the data items used are the remaining items of data from the first kotainer. Items selected were

all the rest of the stuff from the first container. The results of the second container loading for the rest there

are a lot more space so if there is an additional delivery of goods can be done to maximize the container

space and shown in Table 5.

If data on March 5, 2010 using a container size of 40 ' then it will fill the space of 49.931 m3 of

container and the minimum total weight of selected items of 14838.30 kg and all the selected items are

shown in Table 6. Furthermore, the data item to the date of March 15, 2010 will be the first time using a 20

'container with the results shown in Table 7. The second container for goods dated March 15, 2010

performed by using the container size of 40 'will be but there is one item that still remains. If all the data on 5

and March 15, 2010 were collected then generates an optimal solution that uses only 3 containers and are

shown in Table 8 so it is more efficient than delivery by PT DFI which uses four containers.

Table 3 Container data

No Container Length Volume Maximal weight Minimal

volume

1 20 feet 31.152 m
3

20 ton 20 m
3

2 40 feet 62.683 m
3

30 ton 40 m
3

IJ-ICT ISSN: 2252-8776

Optimal Solution Of Minmax 0/1 Knapsack Problem Using Dynamic Programming (Ani Dijah Rahajoe)

15

Table 4 Data of PT DFI

No Container Date Capacity Total weight

1 20 March 5, 2010 23.661 m
3

8,222.50 kg

2 20 March 5, 2010 26.270 m
3

6.615,80 kg

3 40 March 15, 2010 45.999 m
3

13,987.40 kg

4 40 March 15, 2010 47.469 m
3

7,832.20 kg

Table 5 Data of 5
th

 March 2010 using MinMax 0/1 knapsack

No Container Date Capacity Total Weight

1 20 March 5, 2010 30.589 m
3

 4905.80 kg

2 20 March 5, 2010 19.342 m
3

9932.50 kg

Table 6 Data of 5
th

 March 2010 using MinMax 0/1 knapsack

No Container Date Capacity Total Weight

1 40 March 5, 2010 49.931 m
3

14838.30 kg

Table 7 Data of 15
th

 March 2010 using MinMax 0/1 knapsack

No Container Tanggal Capacity Total Weight

1 20 March 15, 2010 30.535 m
3

 4744 kg

2 40 March 15, 2010 61.933 m
3

16875.60 kg

Table 8 Data of 5
th

 March 2010 (use all data) using MinMax 0/1 knapsack

No Container Tanggal Capacity Total Weight

1 40 March 5 & 15, 2010 62.117 m
3

19244.30 kg

2 40 March 5 & 15, 2010 60.691 m
3

 9858 kg

3 20 March 5 & 15, 2010 21.215 m
3

 7555.60 kg

5. CONCLUSIONS

Based on the discussion in previous chapters, we conclude that:

1. MinMax 0/1 knapsack can be solved using dynamic programming so that the total value of items is

optimal (in this case minimal) while a minimum limit requirement is met without exceeding the

maximum capacity limit.

2. MinMax 0/1 knapsack problem can be applied to the problem of loading of goods into the container

so that the total weight is minimum and at the same time the minimum capacity requirement of

container is met without exceeding the maximum capacity of the containers.

REFERENCES

[1] Bassard, G. and Bratley, P.;,“Fundamentals of Algorithmic”, Prentice Hall Inc,1996

[2] Pisinger, D.;,“Algorithms for Knapsack Problems”, Ph.D. Thesis, DIKU Unversity of Copenhagen, 1995

[3] Wilbout, C., Hanafi, S. and Salhi, S.;, “A Survey of Effective Heuristic and Their Application to a Variety of

Knapsack Problems”, IMA Journal of Management Mathematics,pp.227 – 244, 2008

 ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 9 – 16

16

[4] Yamada, T. and Kataoka, S.;, “Heuristic and Exact Algorithms for the Disjunctively Constraint Knapsack

Problem”, Transactions of Information Processing Society of Japan,vol.43, no. 9, pp. 2864-2870, 2002

[5] Yamada, T. and Futukawa, M.;, “Heuristic and Reduction Algorithms for the Knapsack Sharing Problem”,

Computer Operation Research, vol. 24, pp.961-967, 1997

[6] Gallo, G., Hammer, P.L. and Simeone, B;, “Quadratic Knapsack Problems”, MathematicalPrograming Studies, vol.

12, pp.132-149, 1980

[7] Yu, G.;, “On the max-min 0-1 Knapsack Problem with Robust Optimization Application”,Operation Research,44,

pp. 407-415, 1996

[8] Iida, H.;, “On Solving the Max-Min 0-1 knapsack Problem”, Research Report Journal, vol. IS-RR-97-0025F, pp.1-

23, 1997

[9] Lagoudakis, M. G.;, “The 0-1 Knapsack Problem: An Introductory Survey”, Technical Report, The Center for

Advanced Computer Studies,University of Southwestern Louisiana, pp.8-9, 1996

[10] Rolfe, J. T.;, “An Alternative Dynamic Programming Solution for the 0/1 Knapsack”, ACM SIGCSE bulletin, vol.

39, pp.54-56, 2007

[11] Brotcorne, L., Hanafi, S. and Mansi R.;,"A dynamic programming algorithm for the bilevel knapsack

problem", Operations Research Letters, vol. 37, no. 3, pp. 215–8, 2009

[12] Boyer, V., El Baz, D. and Elkihel, M.;, “A dynamic programming method with lists for the knapsack

sharing problem”. Computers & Industrial Engineering, vol. 61, no 2, pp. 274–8, 2011

[13] Rong, A., Figueira J.R. and Klamroth, K.;, “Dynamic programming based algorithms for the discounted

{0–1} knapsack problem”, Applied Mathematics and Computation , vol. 218, no. 12, pp. 6921–33, 2012

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.;,“Introduction to Algorithms”, Massachusetts Institute of

Technology Press, 2nd Edition, 2001

[15] Horowitz, E. and Sahni, S.;,“Fundamentals of Computer Algorithms”, Computer Science Press Maryland, 1988

BIOGRAPHY OF AUTHORS

First author’s

Photo (3x4cm)

Ani Dijah Rahajoe received her bachelor degree in Information Engineering from Surabaya

University, Indonesia, M.Cs in Computer Sciences from Universitas Gadjah Mada, Indonesia.

She currently works as lecturer at Department of Engineering, Faculty of Information

Engineering, Bhayangkara University, Indonesia. Her research interests are optimalization

algorithm, data warehousing and data mining.

Edi Winarko received his bachelor degree in Statistics from Universitas Gadjah Mada,

Indonesia, M.Sc in Computer Sciences from Queen University, Canada, and Ph.D in Computer

Sciences from Flinders University, Australia. He currently works as lecturer at Department of

Computer Sciences and Electronics, Faculty of Mathematics and Natural Sciences, Universitas

Gadjah Mada. His research interests are data warehousing, data mining, and information

retrieval. He is a member of ACM and IEEE.

