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Knapsack problem is a problem that occurs when looking for 

optimal selection of objects that will be put into a container with limited 

space and capacity. On the issue of loading goods into the container, optimal 

selection of objects or items to be sent must fulfilled to minimize the total 

weight of the capacity or volume limits without exceeding the maximum 

capacity of containers that have been determined. The types of knapsack that 

has been discussed so far is only to maximize the use not to exceed the limits 

specified capacity so it cannot be applied to the problem. This study aims to 

develop a dynamic programming algorithm to solve the MinMax 0/1 

knapsack, which is an extension of the 0/1 knapsack with minimal and 

maximal constraints.  The result of study showed that the solution of the 

MinMax 0/1 knapsack problem using dynamic programming can be used to 

generate the optimal solution to the problem of loading goods into the 

container  such that the minimum and maximum capacity constraints are met.  
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1. INTRODUCTION  

Optimization is one of the mathematical disciplines that aim to find the maximum or minimum 

value of a function with certain limitations (constraints). One example is optimization knapsack problem that 

defined as follows: If there’s several item, each with their own weight and value, the knapsack problem is to 

determine the item that will be incorporated into the knapsack such that the total weight is less than or equal 

to the limit and have maximum total value. There are two categories known in knapsack problem, the 

fractional knapsack and integer knapsack. In the fractional knapsack objects can be inserted into the container 

in fraction, while the integer knapsack items should be included as a whole. One form of the integer knapsack 

that is often discussed is the 0/1 knapsack [1], which is mathematically formulated in equation (1). 

Maximize    pj  xj        (1) 

Requirement    wj  xj  ≤  M 

  xj ∊ {0,1},  j=1,..,n. 

 

In this paper,  we propose an extension of the 0/1 knapsack problem, called MinMax 0/1 knapsack 

problem, which is formulated in equation (2). 

 Minimize              pj  xj       (2) 

        Requirement           M1 ≤ wj  xj  ≤  M2 

            xj ∊ {0,1}, j=1,..,n  

 

where M1 is the minimum limit of the knapsack and M2 is the maximum limit. 
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One example of the MinMax 0/1 knapsack problem is the loading of goods into a container which 

aims to minimize the use of container space available on the delivery of goods between islands or countries. 

In this problem the items are inserted into the container must meet the minimum limit and not exceed the 

maximum capacity. 

 

2. RELATED WORKS 

The general knapsack problem is a problem of selecting objects or items (each of which has a 

weight and value or profit) to be put in a knapsack so that the total profit is maximum but the total weight 

does not exceed the maximum capacity of knapsack. There several types of knapsack problems, such as 

bounded knapsack, unbounded knapsack, and integer knapsack problem, and fractional knapsack problem 

[2]. Integer knapsack has several types including multidimensional knapsack problems, two-dimensional 

knapsack problem, precedence constraint knapsack problem [3], disjunctively constraint knapsack problem 

[4], multiple choice knapsack problem, the knapsack sharing problem [5], the quadratic knapsack problem  

[6], and Max-min knapsack problem  [7] [8]. 
The 0/1 knapsack problem is a special case of integer knapsack problem, in which items should be 

put in the knapsack as a whole. Research on the 0/1 knapsack problem solving has been widely applied, such 

as by using brute force algorithms, greedy, branch and bound, and dynamic programming [9] [10]. Dynamic 

programming has been used widely to solve extensions of 0/1 knapsack problem. As examples, a dynamic 

programming algorithm is used to solve a bilevel knapsack problem, in which the leader determines the 

knapsack's capacity in order to maximize his profit, while the follower faces a 0/1 knapsack problem 

involving the capacity set by the leader [11]. The dynamic programming is also used to solve the knapsack 

sharing problem [12]. Recently, dynamic programming based algorithms is proposed for solving the 

discounted 0/1 knapsack problem [13]. The discounted 0/1 knapsack problem (DKP) is an extension of the 

classical 0/1 knapsack problem  that consists of selecting a set of item groups where each group includes 

three items and at most one of the three items can be selected.    

 

3. PROPOSED METHOD  

 This section describes our proposed method of solving MinMax 0/1 knapsack problem using 

dynamic programming. To describe the workings of the dynamic programming in finding the optimal 

solution of MinMax 0/1 knapsack, we use Example 1 below. 

 

Example 1. Consider 4 items (x1, x2, x3, x4), each of which has a weight and value (w1, w2, w3, w4) = 

(3,4,2,2), (p1, p2, p3, p4) = (12, 14, 7, 6). If minimum capacity M1 = 5 and the maximum capacity M2 = 6, 

then some alternative solutions to these problems is shown in Table 1. In the table it can be seen that under 

the MinMax 0/1 knapsack problem it is alternative number 5, 6, 7, and 8 that meet the total weight of 5. Of 

the four alternatives, the optimal solution is simply an alternative number 6 with a total value of the item for 

18 (minimum). 

 

Table 1. Items that can be put into knapsack 

 

Finding optimal solution using Dynamic Programming contains several steps, namely [14]: 

1. Determine the optimal solution’s structure. 

2. Recursively define the optimal solution. 
3. Determine the optimal solution in forward or reverse. 

4. Construct optimal solution. 

 

Alternatives Items that are taken Total weight of items taken Total value of items taken 

1 x1 3 12 

2 x2 4 14 

3 x3 2 7 

4 x4 2 6 

5 x1, x3 3+2 = 5 12 + 7 = 19 

6 x1, x4 3+2= 5 12+6 = 18 

7 x2, x3 4 + 2 = 6  14 + 7 = 21 

8 x2, x4 4 + 2 = 6 14 + 6 = 20 

9 x3, x4 2 + 2 = 4 7  + 6 = 13 
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Optimal solution of MinMax 0/1knapsack problem can be determined by forward or backward 

approach. In this paper we use the backward approach. Our backward approach is based on the 

backward approach used to solve 0/1 knapsack problem, which has the recurrent equation below [15]: 

fj(y) = max{ fj-1(y), fj-1(y-wj) + pj}           (3)  

 

In this paper, U represents the total weight and U [j, y] represents the total weight of the j stage at a 

capacity of y. L represents an optimum total value of items and L [j, y] represents the optimum total 

value of items that are included in the knapsack at the j stage at a capacity of y. 

 

Step 1: Determine Structure of the Optimal Solution 

Integer knapsack with MinMax constraint using dynamic programming can be divided into two 

conditions: 

1. Conditions at wj> y. 

The condition was  stated that when item j has the weight greater than the capacity of y then the item is 

not included in the knapsack. 

2. Condition at wj ≤ y . 

The condition that stated that when the weight item wj is less than or equal to the weight of the capacity 

of y the item could be included in the knapsack.  

At the time the item is selected, the total weight of the total weight of the optimum value of the previous 

stage at the y-wj added with the weight of wj or U[i-1, y-wj] + wj.  

The value of U[i-1, y-wj]+wj  an also be called the stage at the time of j. The total value of at least the 

items will follow the results of the total weight of the optimal value of the minimum total value of the 

item is L[i-1, y-wj] + pj. 

 

The optimum value of the total weight will be determined by four conditions, namely: 

1) If the total weight less than the optimum value of the total weight of the previous stage then the item is 

not included in the knapsack. 

The optimum value of the total weight of stage j is taken from the optimum value of the total weight 

of the previous stage or U[j-1,y] so that the minimum total value of item j phase is also taken from a 

minimum total value of the item earlier stage or L[j-1,y]. 

2) If the total weight greater than the optimum value of the total weight of the previous stage of the items 

can be inserted into the knapsack so that the optimum value of the total weight of a U[j-1, y-wj] + wj.  

Similarly, a minimum total value of the item will be L[j-1, y-wi] + pj. 

3) If the total weight equal to the optimum value of the total weight of the previous stage then applied the 

principle of minimal value. 

a. If the total value of at least the previous phase or L[j-1,w] is smaller than the total value of 

at least stage j or L[j-1, y-wj] + pi  then the item is not included in the knapsack. Minimum 

total value is the total value of the previous stage or L[j-1,w]. 

b. If not then the item is placed in the knapsack so that the minimum total value of the item 

will be L[i-1, y-wj] + pj. 

4) Conditions at the U[j,y] ≥ MinCapacity. 

If U[j,y-1]≥MinCapacity or U[j-1,y]≥MinCapacity the principle of minimal value for the total value 

of the item applied. Value of L[j,y] as compared to the value of L[j,y-1] and selected the smallest total 

value, this is due to minimizing the total value of the item at the minimum limit has been met. 

Furthermore L[j,y]  dan L[j-1,y] re compared to select the smallest value. If the value of L[j,y]=L[j,y-

1] atau L[j,y]=L[j-1,y]  then will be selected value of the largest total weight of the item. It is tailored 

to the application of the loading of goods into the container in order to minimize the remaining 

container space. 

 

Step 2: Determine Recursive Equations for MinMax 0/1 Integer Knapsack  

Based on previous analysis the recursive equation can be formulated as follows: 

 

If wj > y         (4) 
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 If wj ≤ y  then 

   If U[j-1,y]≠U[j-1,y-wj]+wj then 

    U[j,y] = Max { U[j-1,y], U[j-1,y-wj] + wj} 

   If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity then 

    L[j,y] = Min { L[j,y-1], L[j,y] } 

   If U[j,y] ≥ MinCapacity and U[j-1,y] ≥MinCapacity then   

    L[j,y] = Min { L[j-1,y], L[j,y] } 

 

 The base of the recursive equation (4) is when wj=0 or  y=0 and the values of U[j,y]= 0 and L[j,y]= 0. 

. 

 

Step 3: Determine Optimal Solutions 

In Table 2 the initial stage is the stage where the item has not been chosen so that U[0,y]=0  and 

L[0,y]=0  for all values of y. When y=1 and y=2, the value of wj>y so that the value of U[j,y] = U[j-1,y] 

or optimum value is the total weight of the optimum value of the total weight of the previous stage. 

Similarly, the minimum total value of items with a minimum total value of items the previous stage or 

L[j,y] = L[j-1,y]. Item x1 contained in y=3, y=4, y=5 and the previous phase is 0 so the solution is still 

optimal for a minimum total value of items is 12 and the total weight of the optimal solution for a 

maximum of 3. 

 

At y=4, item x2 can be incorporated into the knapsack item with value of 14. At these conditions, the 

total weight of the previous stage is not equal to the total weight of the stage 2 or  U[j-1,y] ≠ U[j-1,y-wj] 

+ wj thus selected that the maximum between the two. Value of U[j-1,y-wj] + wj is greater than the 

value of U[j-1,y]  thus that value becomes the optimum solution when y=4 and has not met the 

requirements of U[j,y]≥MinCapacity. 

 

At y=5 and y=6 satisfy the condition U[j,y]≥MinCapacity but the U[j,y-1] and U[j-1,y] do not meet the 

requirements of greater than MinCapacity. Minimum total value of items adapted to the results that 

have been selected by the U[2,4] (the total weight at the time of y = 4). 

At this stage the value used is U[j-1,y-wj] + wj (at step 2) thus the value of  L[j,y] = L[j-1,y-wj] + pj . 

At y=5 with j=3 or item 3, the value of U[j-1,y-wj] + wj = 5 is greater than the value of U[j-1,y] = 4 so 

the value of U[j-1,y-wj] + wj will be the optimal solution when y=5. The value of U[j,y-1] and U[j-1,y] 

do not meet the requirements of greater than MinCapacity so L[j,y] will be taken at y=5 or L[j-1,y-wj]+ 

pj. At y=6, the value of U[j-1,y-wj]+wj is greater than the value of U[j,y-1] thus the value of L[j,y] = 

L[j-1,y-wj]+pj. The value of U[j,y-1] satisfy the requirements  of KapasitasMin than the total value of 

the determination of minimal solutions of recursive equation L[j,y]=Min{ L[j,y-1], L[j,y]} do value 

U[j,y]  at U=5 and L=19. 

 

The final stage when y=6 and item 4 is the minimum total value of the solution. Recursive equation 

L[j,y]=Min{L[j,y-1],L[j,y] } produces a value of 18. Value of U[j,y] to adjust the value of the ratio 

between L[j-1,y] and L[j,y]. Furthermore the condition U[j-1,y]≥MinCapacity met so enacted 

L[j,y]=Min{L[j,y],L[j-1,y] }. Minimum total value is taken at y=6 fixed L[j,y ] at 18 so total value of 

the maximum weight is also fixed to a value of 5. Optimal solution of Example 1 on the reverse 

approach is fn(M) [7] or at the time L[n,c] and U[n,c] and demonstrate the value of L[n,c] is 18 and the 

value of U[n,c]  is 5. 

 

Procedure CalculationofOptimalSolution(MinCapacity,MaxCapacity,n,W,P,U,L)  

 

/ / Input MinCapacity and MaxCapacity are minimal and maximal limits total  

/ / weight of item knapsack. N is the number of items that is, W is the array of data 

 / / weight of each item, P is the array of data item values, U is the optimal solution the data array  

/ / total weight of item  j at the stage to a capacity of  y and L is the array of data solutions  

/ / optimal total value of item j at the current stage of capacity y.  

 

For y←0 to MaxCapacity do 

  L[0,y]←0; U[0,y]←0; 

 

For j←1 to MaxCapacity do 

  L[j,0]←0;U[j,0]←0; 
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 For y←1 to MaxCapacity do 

Begin 
  If W[j] <=y then  

   If W[j] + U[j-1, y-W[j]]≠U[j-1,y] then 

    U[j,y]←Max{ W[j] + U[j-1, y-W[j]],U[j-1,y]}; 

   Else   L[j,y]←Min {P[j]+L[j-1,y-W[j], L[j-1,y] }; 

  Else U[j,y] 

          L[j,y]; 

  If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity 

   L[j,y] ← Min { L[j,y-1], L[j,y] }; 

  If U[j,y] ≥ MinCapacity and U[j,y-1] ≥ MinCapacity  

   L[j,y] ← Min { L[j,y], L[j,y-1] }; 

 End 

 

Table 2 Calculation of optimal solution of MinMax 0/1 knapsack  

 

j/y 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 U=0 

L=0 

(0,0,0,0) 

U=0 

L=0 

(0,0,0,0) 

U=3 

L=12 

(1,0,0,0) 

U=3 

L=12 

(1,0,0,0) 

U=3 

L=12 

(1,0,0,0) 

U=3 

L=12 

(1,0,0,0) 

2 0 U=0 

L=0 

(0,0,0,0) 

U=0 

L=0 

(0,0,0,0) 

U=3 

L=12 

(1,0,0,0) 

U=4 

L=14 

(0,1,0,0) 

U=4 

L=14  

(0,1,0,0) 

U=4 

L=14  

(0,1,0,0) 

3 0 U=0 

L=0 

(0,0,0,0) 

U=2 

L=7 

(0,0,1,0) 

U=3 

L=12 

(1,0,0,0) 

U=4 

L=14 

(0,1,0,0) 

U=5 

L=19  

(1,0,1,0) 

U=5 

L=19  

(1,0,1,0) 

4 0 U=0 

L=0 

(0,0,0,0) 

U=2 

L=6 

(0,0,0,1) 

U=3 

L=12 

(1,0,0,0) 

U=4 

L=13 

(0,0,1,1) 

U=5 

L=18  

(1,0,0,1) 

U=5 

L=18  

(1,0,0,1) 

 

Step 4: Construct the Optimal Solution of MinMax 0/1 Knapsack 

Recursive equation (3) showed only minimal items and the total value of the total weight of the item, 

but did not show any items selected for inclusion into the knapsack according to the total value of at 

least 18. Final stages of completion with the construction of dynamic programming is the optimal 

solution in which it traces the stages of the sequence of items selected from the phase of U [n, c] to the 

first stage or U[0,0]. 

 

These measures include selected search fields: 

1. Search of the U[j,y] to U[j,y-1] until there is a change in value between two or L[j,y]  with 

L[j,y-1] (horizontally), then the item if there is a change in j as y phase included into the 

knapsack and the second step search is then performed. 

2. Search of the U[j,y] the results of the first step compared to the previous stage U[j-1,y] or 

L[j,y] with L[j-1,y] (vertically), in case of change in value then the item is an item selected and 

continued with the remaining capacity of the selected item or y-wj. Then searched for back to 

step 1 to y = 1 or j = 0. 

 

Based on Table 2, the construction steps of the optimal solution of Example 1can be described as 

follows: 

1. Optimal solution value at y = 6 and j = 4 is the optimal value for all stages j = 4, a search using 

a step change in value when y = 5.  

2. The next step to be checked with the previous phase 2 is U[j-1,y]. Changes occur in the value 

of L[3,5]=19 is not equal to L[4,5]=18 so item 4 included into the knapsack. 

3. Residual capacity become 3 so the search starts at U[3,3].  

Step 1 produces j = 3 and y = 3 and then proceed step 2. Search ends at j = 1 and y = 3 so first 

item included into the knapsack. Residual capacity to 0 then the optimal solution construction 

ends. 
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Procedure OptimalSolutionConstruction (MaxCapacity,n,U,L,W) 

 

/ / Input MaxCapacity is the maximum total weight limit knapsack item. N is the number of items 

available, W is the array of data  

/ / weight of each item, U is a data array  

/ / optimal solution to the total weight of item j at the current stage of capacity y and L is the array of 

data total value of items the optimal solution stage of j at a capacity of  y. 

 

x←0; j←n; y←MaxCapacity; 

while (j>0) and (y>0) do 

 If U[j,y] = U[j,y-1] then 

  y←y-1;  

 Else  

  j←j-1; 

  if U[j,y] <> U[j-1,y] or L[j,y] <> L[j-1,y] then  

  Begin 

   Display item of  j; 

   y←y-W[j]; 

  End; 

end while 

end; 

 

 

4. EXPERIMENTAL RESULTS 

In this section we apply the solution of MinMax 0/1 knapsack problem using dynamic 

programming to the problem of loading goods into the container to optimize the available container space. 

Minimum and maximum data capacity or volume of available container space is shown in Table 3. 

The data used in this experiment is received from PT DFI whose business is shipping containers to 

Singapore. Each container sent has a minimum volume limit. If the total volume of the container is less than 

the minimum limit, the company will be fined per cubic meter. Data items in the PT DFI is an item of data 

collected on March 5, 2010 and March 15, 2010, the data item is delivered in stages.The data is entered into 

by the company's container measuring 20 'and 40' respectively and as many as two containers are shown in 

Table 4. Application of the integer knapsack with minmax constraint is done by filling the first container size 

of 20 'where the calculated optimal solution with minimal restrictions produce 30 m3 capacity of 30 589 m3 

optimal solution with minimal total weight of 4905.30 kg and are shown in Table 5. These results do not 

exceed the actual maximum capacity of 31 152 m3 and a maximum weight of 20 ton containers.  

The second container using a size 20 ', this is because the item was left sufficient for the container 

size of 20' and the data items used are the remaining items of data from the first kotainer. Items selected were 

all the rest of the stuff from the first container. The results of the second container loading for the rest there 

are a lot more space so if there is an additional delivery of goods can be done to maximize the container 

space and shown in Table 5.  

If data on March 5, 2010 using a container size of 40 ' then it will fill the space of 49.931 m3 of 

container and the minimum total weight of selected items of 14838.30 kg and all the selected items are 

shown in Table 6. Furthermore, the data item to the date of March 15, 2010 will be the first time using a 20 

'container with the results shown in Table 7. The second container for goods dated March 15, 2010 

performed by using the container size of 40 'will be but there is one item that still remains. If all the data on 5 

and March 15, 2010 were collected then generates an optimal solution that uses only 3 containers and are 

shown in Table 8 so it is more efficient than delivery by PT DFI which uses four containers. 

 

Table 3 Container data  

 

No Container Length Volume Maximal weight Minimal 

volume  

1 20 feet 31.152 m
3 

20 ton 20 m
3 

2 40 feet 62.683 m
3 

30 ton 40 m
3 
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Table 4 Data of PT DFI 

 

No  Container  Date Capacity  Total weight  

1  20  March 5, 2010  23.661 m
3 

8,222.50 kg  

2  20  March 5, 2010  26.270 m
3 

6.615,80 kg  

3  40  March 15, 2010  45.999 m
3 

13,987.40 kg  

4  40  March 15, 2010  47.469 m
3 

7,832.20 kg  

 

   

Table 5 Data of 5
th

 March 2010 using MinMax 0/1 knapsack 

 

No  Container Date Capacity  Total Weight  

1  20  March 5, 2010   30.589 m
3 

 4905.80 kg  

2  20  March 5, 2010   19.342 m
3 

9932.50 kg  

 

 

Table 6 Data of  5
th

 March 2010 using MinMax 0/1 knapsack 

 

No  Container Date Capacity  Total Weight 

1  40  March 5, 2010   49.931 m
3 

14838.30 kg  

 

 

Table 7 Data of 15
th

 March 2010 using MinMax 0/1 knapsack 

 

No  Container Tanggal  Capacity  Total Weight  

1  20  March 15, 2010   30.535 m
3 

 4744 kg  

2  40  March 15, 2010   61.933 m
3 

16875.60 kg  

 

 

Table 8 Data of 5
th

 March 2010 (use all data) using MinMax 0/1 knapsack 

 

No  Container Tanggal  Capacity  Total Weight  

1  40  March 5 & 15,  2010   62.117 m
3 

19244.30 kg  

2  40  March 5 & 15, 2010   60.691 m
3 

 9858 kg  

3  20  March 5 & 15, 2010   21.215 m
3 

 7555.60 kg  

 

 

5. CONCLUSIONS 

Based on the discussion in previous chapters, we conclude that: 

1. MinMax 0/1 knapsack can be solved using dynamic programming so that the total value of items is 

optimal (in this case minimal) while a minimum limit requirement is met without exceeding the 

maximum capacity limit. 

2. MinMax 0/1 knapsack problem can be applied to the problem of loading of goods into the container 

so that the total weight is minimum and at the same time the minimum capacity requirement of 

container is met without exceeding the maximum capacity of the containers. 
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