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1. INTRODUCTION  

Shortest Path Planning (SPP) or Coverage Path Planning (CPP) is a task used in a large number of 

robotic applications, such as demining robots [1], painter robots [2], cleaning robots [3], etc. Several 

researches concerning SPP and CPP are presented in [4-6], SPP or CPP algorithms are classified in two 

categories: off-line algorithms, generally used in acknowledged environment and on-line algorithms, used in 

unrecognized environment. In on-line algorithms the policy is generally updated according to new 

environment observation. The CPP problem remains subject of research optimization, especially in an 

unknown environment.  

In Robotic landmines detection, the agent must detect and find location of all possible mines, avoid 
all obstacles and follow the shortest path in an unknown environment without overlapping paths. Satisfying 

such requirements is not always easy and possible. In fact, the whole structure of the environment is not 

known a priori and the on-line algorithm must be able to seek the optimal strategy according to the 

knowledge acquired after each observation. E.Galseran [6] presented a survey on CPP in Robotic, several 

methods were proposed. 

In this paper, we present a Discounted Markov Decision Model for robotics navigation in grid 

environment with a theoretical study which permit to propose a new approach for area coverage called Goals 

to Goals Area Coverage on-line Algorithm based on a decomposition of the state space into smaller regions 

whose all states are considered as goals and assigned with the same reward value. The reward value can be 

decreased from one region to another according to the desired search mode such as a line-sweep [13] or 

spatial cell diffusion [14] approaches. 
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2. MARKOV DECISION PROCESS 
Markov Decision Processes are defined as controlled stochastic processes satisfying the Markov 

property and assigning reward values to state transitions [7, 8]. Formally, they are defined by the five-tuple 

(S, A, T, P, R), where S is the state space in which the process’s evolution takes place; A is the set of all 

possible actions which control the state dynamics; T is the set of time steps where decisions need to be made; 

P denotes the state transition probability function where P(St+1=j|St=i, At=a)=Piaj is the probability of 

transitioning to a state j when an action a is executed in a state i, St (At) is a variable indicating the state 
(action) at time t; R provides the reward function defined on state transitions where Ria denotes the reward 

obtained if the action a is applied in state i. 

 

2.1. Discounted Reward Markov Decision Process 

Let 𝑃𝜋(𝑆𝑡 = 𝑗, 𝐴𝑡 = 𝑎|𝑆0 = 𝑖) be the conditional probability that at time t the system is in state j and 

the action taken is a, given that the initial state is i and the decision maker is a strategy π; if 𝑅𝑡 denotes the 

reward at time t, then for any strategy 𝜋 and initial state i, the expectation of 𝑅𝑡 is given by: 

 

𝔼π(Rt, i) = ∑ Pπ(St=j,At=a|S0=i)Rjaj∈S

a∈A(j)

      (1) 

 

In discounted reward MDP, the value function, which is the expected reward when the process starts 

with state i and using the policy 𝜋 is defined by: 

 

Vπ
α(i) = 𝔼[∑ αt𝔼π(Rt , i)

∞
t=0 ], i ∈ S       (2) 

 

where  ∈ ]0, 1[ is the discount factor.  
 

The objective is to determine 𝑉∗, the maximum expected total discounted reward vector over an 

infinite horizon. It is well known [7, 8] that 𝑉∗ satisfies the Bellman equation:  

 

𝑉(𝑖) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

{𝑅𝑖𝑎 + 𝛼 ∑ 𝑃𝑖𝑎𝑗𝑉(𝑗)𝑗∈𝑆 } , 𝑖 ∈ 𝑆     (3) 

 

Moreover, the actions attaining the maximum in (3) give rise to an optimal pure policy π^* given by:  

 

𝜋∗(𝑖) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

{𝑅𝑖𝑎 + 𝛼 ∑ 𝑃𝑖𝑎𝑗  𝑉∗(𝑗)𝑗∈𝑆 }, 𝑖 ∈ 𝑆     (4) 

 

2.2. Gauss-Seidel Value Iteration Algorithm 

Gauss-Seidel Value Iteration (GSVI) Algorithm is one of the most iterative algorithms used for 

finding optimal or approximately optimal policies under Discounted MDP [8-10]. In this paragraph, we 

presente the following optimized pseudo-code ofGSVI Algorithm (Algorithm 1). 

 

Algorithm 1. GSVI Algorithm. 

GSVI (In: S, P, A, R, 𝛤𝑎
+, 𝛼, 𝜀; Out: 𝑉∗, ∗) 

1. For all 𝑖 ∈ S Do 𝑉∗(i)←0; //Initialization 

2. Bellman_err ← 2𝜀; //For stopping criterion 

3. While (Bellman_err ≥ 𝜀) Do 

        For all i ∈  S  Do //Value improvement 

𝑉𝑡𝑚𝑝 ← 𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

{𝑅𝑖𝑎 + 𝛼 ∑ 𝑃𝑖𝑎𝑗𝑉∗(𝑗)

𝑗∈𝛤𝑎
+(𝑖)

} 

Bellman_err ← Max( |V*(i) - 𝑉𝑡𝑚𝑝 |, Bellman_err) 

𝑉∗(𝑖) ←  𝑉𝑡𝑚𝑝 

4. For all 𝑖 ∈  𝑆  Do //Policy calculation 

∗(𝑖) ← 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

{𝑅𝑖𝑎 + 𝛼 ∑ 𝑃𝑖𝑎𝑗 𝑉∗(𝑗)

𝑗∈𝛤𝑎
+(𝑖)

} 

5.   Return  𝑉∗, 𝜋∗ 
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We denote by 𝛤𝑎
+(𝑖) = { 𝑗 ∈ 𝑆 : 𝑃𝑖𝑎𝑗 > 0} the successors list of pair (i, a),𝑖 ∈  𝑆, 𝑎 ∈ 𝐴(𝑖). 

The algorithm 1 is based on a successors list of pair state-action, which permits to accelerate 

iteration compared to the classical GSVI Algorithm especially when the number of actions and successors 

per state is very less than the number of states. Indeed, the complexity of the proposed version is reduced to 

𝒪(|𝛤𝑎
+||S|) per iteration where |𝛤𝑎

+| is the average number of state-action successors. 

 

 

3. MARKOV DECISION MODEL FOR ROBOTIC NAVIGATION 

To model the Robotic Navigation in general or Demining Robot problem in particular case using a 

MDP, the five-tuple (S, A, T, P, R) must be defined and the environment representation must be choosen. 

a. Grid’s Environment: The Grid Based method -ideal for landmines detection- is used to 

model the environment which is entirely discretized according to a regular grid. The grid 

size can be chosen according to the robot structure and the field covered by the robot 

sensor. 

b. States Space: Using the Grid method, the state space is therefore a set of grids, each grid 
cell has an associated value stating, obstacle, mine, free or goal state. 

c. Actions Space: The robot can be controlled through nine actions: the eight compass 

directions and the action designed by θ that keeps the process in the state where it is; 

actions that move the robot to an obstacle or a mine state are eliminated; in a goal state the 

possible action is θ. Figure 1 shows the possible actions in an environment example, the 

black grid is an obstacle state and the green grid is a goal state. 

 

 

 
 

Figure 1. Environment example and possible robot actions in each state 

 

 
Reward Function: A transition to a free or goal state is characterized by a cost of energy 

proportional to the distance travelled, it is equal to a predefined constant x if the action is diagonal, and 
𝑥

√2
 if 

the action is horizontal or vertical, the reward value is therefore equal to -x or 
−𝑥

√2
; the reward assigned to the 

action 𝜃 in a free state is equal to zero and for a goal state it is equal to a predefined constant Rb. 

Transition Function: The transition function defines the uncertainty due to the effects of actions; it 

is a data of problem and can be determined by reinforcement learning. 

Robot Sensor: Several landmines detection methods can be used such as Metal Detector 

Technologies, Electromagnetic Methods [11], etc. In this work, we suppose that the robot can detect the 

buried mines existing in near states (Figure 2) by using his owner sensing system, an arm movement or 

multi-sensors technologie would cover these states. 
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Figure 2. States covered by the robot sensor 

 

 

Robot Structure: several robot mechanical structures can be used in demining robot such as 

Omnidirectional or Multi Directional Conductive control [12], etc.  

Remark 1. Using the proposed model, the time complexity of algorithm 1 is 𝒪(|𝛤𝑎
+||S’|) per 

iteration, where |S’| is the number of free states; for a goal state the expected reward is a constant value equal 

to 
𝑅𝑏

1−𝛼
 (given by (3)) since the only possible action that can be taken in a goal state is 𝜃; |𝛤𝑎

+| is very less than 

|S’| and can be considered us constant; so the Algorithm 1 is linear per iteration. 

 

 

4. THEORETICAL MODEL STUDY 

In this section, we present a theoretical study for the considered model, which is the basis of our 

approach. 

Proposition 1. If the state space do not contains any goal state then for any free state 𝑠0, 𝜋∗(𝑠0) =
𝜃, 𝜋∗ is an optimal strategy. 

Proof. Suppose ∃ an optimal pure strategy 𝜋∗ and ∃ 𝑠0 ∈  𝑆 such that: 𝜋∗(𝑠0) ≠ 𝜃; the expected reward when 

the system start at state 𝑠0 is: 

 

𝑉𝜋∗
𝛼 (𝑠0) = 𝑉∗(𝑠0) = 𝔼𝜋∗(𝑅0 , 𝑠0) + 𝔼[∑ 𝛼𝑡𝔼𝜋∗(𝑅𝑡 , 𝑠0)∞

𝑡=1 ]    (5) 

 

The expectation of 𝑅𝑡 time t=0 and using strategy 𝜋∗ is given by: 
 

𝔼𝜋∗(𝑅0 , 𝑠0) = ∑ 𝑃𝜋∗(𝑆0 = 𝑠0, 𝐴0 = 𝑎|𝑆0 = 𝑠0)𝑅𝑠0𝑎𝑗∈𝑆
𝑎∈𝐴(𝑗)

= 𝑅𝑠0𝑎   (6) 

 

We have: 𝑅𝑠0𝑎 ≤
−𝑥

√2
 then Vπ∗

α (s0) ≤
−x

√2
< 0 and the fact that 𝑉𝜋∗

𝛼 (𝑠0) < 0 implies that 𝜋∗(𝑠0) cannot 

be an optimal action since there exists a strategy 𝜋′: 𝜋′(𝑠0) = 𝜃 and 𝑉𝜋′
𝛼 (𝑠0) = 0, which contradicts the 

supposition.  

Figure 3 (left) shows a simulation result in an environment example where no goal state is defined; 

as we can see, ∀ 𝑠0 ∈  𝑆, 𝜋∗(𝑠0) = 𝜃. 

 

Proposition 2. Let 𝑠0 be a free initial state, if there is no path leading from s0 to the goal state G 

then 𝜋∗(𝑠0) = 𝜃. 

 

Proof. The proof is similar to the proof of Proposition 1, indeed, for any strategy 𝜋 such that 𝜋(𝑠0) ≠ 𝜃, 

𝑉𝜋
𝛼(𝑠0) < 0. 

 

Figure 3(right) shows an example of simulation result, as we can see for all 𝑠0 ∈  𝑆 where there is no 

path to the goal state G, 𝜋∗(𝑠0) = 𝜃. 
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Figure 3. Optimal strategies examples (no goal state (left) and no path to the goal state for some states (right)) 

 

 

Proposition 3. Let G be a goal state with reward value Rb=0, then for any initial free state 𝑠0, 𝜋∗(𝑠0) = 𝜃. 

Proof. It is clear since for any strategy 𝜋 such that 𝜋(𝑠0) ≠ 𝜃, 𝑉𝜋
𝛼(𝑠0) < 0.  

Figure 4 shows a simulation example in an environment where there exist four goals states with 

reward value Rb=0, as it can be seenπ∗(s0) = θ for all free initial state. 

 

 

 
 

Figure 4. Optimal strategy in an environment example with four goals states within reward value Rb=0 

 

 

Proposition 4. Let 𝑠0 be a free initial state, suppose that there exist a path of length l, from 𝑠0 to the gaol 

state G and let 𝑅𝑏 be the reward value obtained when the action 𝜃 is applied in a goal state G. 

 

𝐼𝑓 𝑅𝑏 > (
𝑥

𝛼𝑙 − 𝑥)  𝑡ℎ𝑒𝑛 𝜋∗(𝑠0)  ≠  𝜃      (7) 

 

Proof. Let 𝑉∗(𝑠0) be the expected reward when the process start at state 𝑠0. 

 

𝑉∗(𝑠0)  =  ∑ 𝛼𝑡𝑅𝑡
∞
𝑡=0 = ∑ 𝛼𝑡𝑅𝑓

𝑡𝑙−1
𝑡=0 + ∑ 𝛼𝑡𝑅𝑏

∞
𝑡=𝑙      (8) 

 

where: 𝑅𝑓
𝑡 = 𝐸𝜋∗(𝑅𝑡 , 𝑠0) = ∑ 𝑃𝜋∗(𝑆𝑡 = 𝑗, 𝐴𝑡 = 𝑎|𝑆0 = 𝑠0)𝑅𝑗𝑎𝑗∈𝑆

𝑎∈𝐴(𝑗)

 is the expectation of the reward value 

obtained when some compass action is taken in the state St at time At. 

The equation (8) can be modified as follow: 

 

𝑉∗(𝑠0) =  ∑ 𝛼𝑡𝑅𝑓
𝑡𝑙−1

𝑡=0 + 𝛼𝑙 ∑ 𝛼𝑡𝑅𝑏
∞
𝑡=0       (9) 

 

Let V∗(sg) be the expected reward when the process starts at goal state G, by using (3), we have: 

 

𝑉∗(𝑠𝑔) = ∑ 𝛼𝑡𝑅𝑏
∞
𝑡=0 =

𝑅𝑏

1−𝛼
       (10) 

 

Using (10), the equality (9) can be reformed as follow: 

 

𝑉∗(𝑠0)  = ∑ 𝛼𝑡𝑅𝑓
𝑡𝑙−1

𝑡=0 +
𝑅𝑏×𝛼𝑙

1−𝛼
       (11) 

The fact that: 𝑅𝑗𝑎 ≥ −𝑥 implies that 𝑅𝑓
𝑡 ≥ −𝑥, then: 
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∑ 𝛼𝑡𝑅𝑓
𝑡𝑙−1

𝑡=0  ≥  −𝑥 ∑ 𝛼𝑡𝑙−1
𝑡=0         (12) 

 

By applying (12) in (11), we have the resulting equation: 

 

𝑉∗(𝑠0)  ≥  
𝑅𝑏×𝛼𝑙

1−𝛼
− 𝑥(∑ 𝛼𝑡𝑙−1

𝑡=0 )       (13) 

 

The fact that ∑ 𝛼𝑡𝑙−1
𝑡=0 =

1−𝛼𝑙

1−𝛼
 , equation (13) becomes: 

 

𝑉∗(𝑠0)  ≥  
𝑅𝑏×𝛼𝑙−𝑥+𝑥×𝛼𝑙

1−𝛼
        (14) 

 

The fact that Rb > (
x

α𝐥 − x) implies that Rb × αl − x + x × αl  >  0. 

Equations (14) imply that V∗(s0) is great than zero. 

 

𝑉∗(𝑠0)  ≥  
𝑅𝑏×𝛼𝑙−𝑥+𝑥×𝛼𝑙

1−𝛼
> 0       (15) 

 

The fact that 𝑉∗(𝑠0)  >  0 implies that 𝜋∗(𝑠0)  ≠  𝜃.   

 

Figure 5 shows a strategy example generated using algorithm 1 with parameters: Rb=200, =0.2 

and 𝑥 = 1; for a path length l=3, 𝒍3 =
1

𝛼3 − 1 = 125 < 𝑅𝑏 = 200; and for l=4, 𝒍4 =
1

𝛼4 − 1 = 624 > 𝑅𝑏 =

200, we can conclude from the values of 𝒍3 and 𝒍4 that: If l < 4 then 𝜋∗(𝑠0)  ≠  𝜃. 

 

 

 
 

Figure 5. An optimal strategy example using parameters: α=0.2, x=1 and Rb=200 

 
 

Proposition 5. Let G be a goal state with reward value 𝑅𝑏 =
𝑥

𝛼|𝑆|. For any initial free state 𝑠0, if there exists a 

path to the goal state G then 𝜋∗(𝑠0) ≠ 𝜃. 

 

Proof. Let l be the path length to the goal state G; using proposition 4, if 𝑅𝑏 > (
𝑥

𝛼𝒍 − 𝑥) then 𝜋∗(𝑠0) ≠ 𝜃. 

Let show that 
𝑥

𝛼|𝑆| > (
𝑥

𝛼𝒍 − 𝑥), we have |S| > 𝑙 then 𝛼|𝑆| < 𝛼𝑙 and 
𝑥

𝛼|𝑆| >
𝑥

𝛼𝒍 >
𝑥

𝛼𝑙 − 𝑥, since 𝑥 > 0.  

 

Figure 6 shows a path strategy example with parameters: α=0.2, x=α|S| and Rb=1 (note that if (x=α|S|) then 

Rb=1); as it can be seen, 𝜋∗(𝑠0) ≠ 𝜃 for all free initial state 𝑠0. 
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Figure 6. An optimal strategy example using parameters: α=0.2, x=α|S| and Rb=1 

 

 

Proposition 6. Let G1 (G2) be a goal state such that 𝑅𝑏
1 = 1 (Rb

2 = 1 +
1

α|S|). Suppose ∃ a path of length 𝑙1 

(𝑙2) from initial state 𝑠0 to the goal state G1 (G2), then the optimal strategy navigates robot to the goal state G2 

for all 𝑙1 ≥ 1. 

 

Proof. Suppose ∃ an optimal strategy 𝜋1
∗ that moves the robot to the goal state G1. Equation (11) implies that: 

 

𝑉𝜋1
∗

𝛼 (𝑠0) <
𝛼𝑅𝑏

1

1−𝛼
=

𝛼

1−𝛼
<

1

1−𝛼
       (16) 

 

Let 𝜋2 be a strategy that moves robot to the goal state G2, equation (15) and the fact that 𝑙2 < |𝑆| imply that: 

 

𝑉𝜋2
𝛼 (𝑠0) ≥

𝑅𝑏
2×𝛼𝑙−𝑥+𝑥𝛼𝑙

1−𝛼
>

𝑅𝑏
2×𝛼|𝑆|−𝑥+𝑥𝛼|𝑆|

1−𝛼
      (17) 

 

By using the fact that 𝑅𝑏
2 = 1 +

1

𝛼|𝑆| and 𝑥 = 𝛼|𝑆|, inequation (17) can be rewritten as: 

 

Vπ2
α (s0) >  

(1+
1

α|S|
)α|S|−x+xα|S|

1−α
=

1+α2|S|

1−α
>

1

1−α
     (18) 

 

Inequalities (16) and (18) imply that: 
 

𝑉𝜋2
𝛼 (𝑠0)  >  

1+𝛼2|𝑆|

1−𝛼
 >  

1

1−𝛼
 > 𝑉𝜋1

∗
𝛼 (𝑠0)      (19) 

 

The fact that 𝑉𝜋2
𝛼 (𝑠0)  > 𝑉𝜋1

∗
𝛼 (𝑠0) implies that π1

∗  cannot be an optimal strategy.  

 

 

5. GOALS TO GOALS AREA COVERAGE ALGORITHMS 
In this section, we present the proposed on-line algorithm for area coverage in autonomous 

demining robot based on the model defined in section 3, and the theoretical studies presented in the previous 

section. 

We begin by the first version (Algorithm 2) called Goals to Goals Randomize Area Coverage, in 

which we suppose that all states are goals with the same reward value, except then initial state. Beginning by 
the initial position, the robot detect the near states, update detected states, calculate path strategy using 

algorithm 1 and move according to an optimal action; these steps are repeated until the optimal action is 

equal to θ. 
 

Algorithm 2. Goals to Goals Randomize Area Coverage. 

Data: S, P, A, R, 𝛤𝑎
+, 𝛼, 𝜀; 𝑥 = 𝛼|𝑆|, s0: initial state 

1. Set all states as goals (except initial state) with the same reward: 𝑅𝑏 = 1. 

2. Repeat 

2.1. Observe near states with sensor 
2.2. Update observed states 

2.3. Calculate strategy using algorithm 1 

2.4. Move robot using an optimal action 

    Until (the optimal action is equal to 𝜃) 



                ISSN: 2252-8776 

IJ-ICT  Vol. 6, No. 2,  August 2017:  105 – 116 

112 

Theorem. The algorithm 2 works correctly and terminates after covering the entire area except the non- 

reachable regions from the start state s0. 

Proof. The proof follows from the propositions 1, 2, 4 and 5. In fact, propositions 1 and 2 imply that 

if there is at least one state not explored and reachable from the current robot position, the optimal action is 

different to 𝜃. Moreover, after each observation, the status of near states (supposed goals) is updated; the 

navigation to the nearest goal is assured by propositions 3 and 4 and the robot stops after exploring the entire 
environment except the unreachable states from the start state s0 (proposition 2).  

Figure 7 shows a path generated using algorithm 2 in an obstacle free environment (ten randomized 

mines positions), as we can see, the entire area is covered, but the search path is pseudo-random and the robot 

overlaps some regions previously detected. 

 

 

 
 

Figure 7. Environment example and path generated using algorithm 2 

 

 

To minimize the overlapping paths, the authors propose a second version (algorithm 3) based on 

decreasing the rewards values according some Search Mode such as a line-sweep (Figure 8) based approach 

described in [13] or spatial cell diffusion approach presented in [14]. 

In each smaller region (for example in figure 8, a smaller region contain nine states) all states are 

considered as goals with the same fixed reward value and the search mode is assured by the proposition 6. 

 

 

 
 

Figure 8. Example of rewards values decremented according the line-sweep search mode 

 

 

 

 
 

 

 

 

 



IJ-ICT  ISSN: 2252-8776  

 

A Markov Decision Model for Area Coverage in Autonomous Demining Robot (Abdelhadi Larach) 

113 

Algorithm 3. Goals to Goals Search mode Area Coverage 

Data: S, P, A, R, 𝛤𝑎
+, 𝛼, 𝜀; 𝑥 = 𝛼|𝑆|, s0: initial state 

1. Decompose the state space into the p smaller regions. 
2. Define the decreasing reward values according to the desired search mode. 

3. For each smaller region i = p,….,1 Do    Set all states in region i as goals with 𝑹𝒊 = 𝟏 +
𝒊

𝛼|𝑆|. 

4. Repeat 

4.1. Observe near states 

4.2. Update observed states  

4.3. Calculate strategy using algorithm 1 

4.4. Move robot using an optimal action 

    Until (the optimal action is equal to 𝜃) 

 

 

6. SIMULATION RESULTS 

The proposed algorithms are simulated using JAVA language implementation; figures 9, 10 and 11 

show the simulation results for several search modes, in an obstacle free environment example, with ten 

randomized buried mines. It can be seen from figures 9, 10 and 11 that the Algorithm 3 works correctly with 

low repetition rate compared to Algorithm 2. 

In some case, it is optimal and beneficial that the robot finishes the area coverage near its initial 

position; the variant of Line Sweep search mode (Figure 11) can be used. 

To evaluate these search modes, we can use the following valuation function: 

 

𝐸 = ∑
𝑅𝑠𝑡

𝑥

𝑇
𝑖=0 = ∑ 𝐶𝑠𝑡

𝑇
𝑖=0         (20) 

 

where 𝐶𝑠𝑡
= 1

√2
 𝑜𝑟 1 and T is the number of decisions to complete the area coverage; this valuation function is 

proportional to the time required for the entire exploration; the number of rotation can be added to this 
valuation function. 

 

 

Table 1. Valuation Functions: Comparison of Several Search Modes 
Search mode Ē 

Randomize 100 

Spatial Cell Diffusion 83 

Line Sweep 80 

Variant of Line Sweep 82 

 

 

Table 1 presents the average value of E for each search mode and for several irregular buried mines 

locations generated randomly in the same environment example, us it can be seen, these search modes in free 

obstacle environment achieves the area coverage with low cost of energy, especially the Line Sweep search 

mode which is beneficial in the decomposition method for real environment with obstacles. 
 

 

 
 

Figure 9. Online strategy generated using algorithm 3 for spatial cell diffusion search mode 

 



                ISSN: 2252-8776 

IJ-ICT  Vol. 6, No. 2,  August 2017:  105 – 116 

114 

 
 

Figure 10. Online strategy generated using algorithm 3 for Line-Sweep search mode 

 

 

 
 

Figure 11. Online strategy generated using algorithm 3 for a variant of Line-Sweep search mode 

 

 

Remark 2. Area coverage without overlapping path is not always easy and possible especialy in an unknown 

environment. Figure 12 shows a strategy example with some overlapping paths. 

 

 

 
 

Figure 12. Online strategy example with some overlapping paths 
 

 

Remark 3. For a large state space and real environment with obstacles, line sweep decomposition into 

monotone subregions can be used [13]; in each subregion, an adequate line-sweep search mode is used to 

ensure optimal area coverage. The robot explores subregions one by one; each subregion covered can be 

changed as goals states with reward 𝑅𝑏 = 0 , so that there will be no return to the explored region 

(Proposition 3) and so, the decision time of Algorithm 1 can be reduced to real time since it is proportional to 

the number of free states (Remark 1).  
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Figure 13 shows an environment example with obstacles divided into two subregions, after 

exploring the left first region, the states are transformed to goals with reward value equal to zero; the path 

generated is shown in Figure 14. 

 

 

 
 

Figure 13. Environment example with obstacle (blue region) divided into two subregions 

 
 

 
 

Figure 14. Online strategy generated for the environment example in figure 13 

 

 

Remark 4. For minimizing the memory consumption in large state space, each subregion can be aggregated 

to one state after and before exploration, only the active subregion is disaggregated. 

 

 

7. CONCLUSIONS 
In this work, we have presented a Discounted Markov Decision Model for robotic navigation in 

grid’s environment by adding a fictitious action in each state witch is a key of the simplest proposed 

algorithms, the use of this model is certainly not limited to autonomous robot landmines detection but it can 

be used in several robotics applications. We have also presented a theoretical study of Discounted MDP in 

the proposed model to ensure an optimal path strategy. This theoretical study permit us to prove the 

correctness of the proposed new approach to find a best on-line path strategy for detecting buried mines in a 

free obstacle environment where hidden mines are randomly distributed in different positions.  

The simulation results show that our approach is encouraging and promising for an extension, in 

future work, to different types of environment and to the Partially Observable MDP where the robot position 

is stochastic. 

 

 



                ISSN: 2252-8776 

IJ-ICT  Vol. 6, No. 2,  August 2017:  105 – 116 

116 

REFERENCES  
[1] H. Najjaran and N. Kircanski, “Path Planning for a Terrain Scanner Robot”, in Proc. 31st Int. Symp. Robotics, 

Montereal, QC, Canada 2000, pp. 132-137. 
[2] P. Atkar et al, “Uniform coverage of automotive surface patches”, The International Journal of Robotics Research, 

24(11), pp.883-898, 2005. 

[3] J. S. Oh et al, “Complete Coverage Navigation of Cleaning Robots using Triangular-Cell-Based Map”, IEEE 
Transactions on Industrial Electronics, vol. 51, no. 3, pp. 718-726, 2004. 

[4] P. Tokekar; N. Karnad; V. Isler, “Energy-Optimal Trajectory Planning for Car-Like Robots,” Autonomous Robots, 
vol. 37, no.3, pp.279-300, 2014. 

[5] J. W. Kang; S. J. Kim; M. J. Chung, “Path Planning for Complete and Efficient Coverage Operation of Mobile 
Robots”, IEEE International Conference on Mechatronics and Automation, pp. 2126-2131, 2007. 

[6] E. Galceran; M. Carreras, “A Survey on Coverage Path Planning for Robotics”, Robotics and Autonomous Systems, 
61, pp. 1258-1276, 2013. 

[7] R. E. Bellman. “Dynamic Programming. Princeton University Press”, Princeton, NJ, 1957. 
[8] M. Puterman, “Markov Decision Processes: Discrete Stochastic Dynamic Programming”, John Wiley & Sons, Inc., 

New York, USA, 1994. 
[9] D. J. White, “Markov Decision Processes” John Wiley & Sons, Inc, New York, 1994. 
[10] D. P. Bertsekas, “Dynamic Programming and Optimal Control,” Belmont: Athena Scientific, 2001. 
[11] C. P. Goonerante; S. C. Mukhopahyay;  G. Sen Gupta, “A Review of Sensing Technologies for Landmine 

Detection: Unmanned Vehicle Based Approach”, in: Proc. 2nd International Conference on Autonomous Robots and 
Agents December 13-15 2004 Palmerston North, New Zealand. 

[12] K. Suresh; K. Vidyasagar; A. F. Basha, “Multi Directional Conductive Metal Detection Robot Control”, 
International Journal of Computer Applications, volume 109 no.4, 2015. 

[13] W. H. Huang, “Optimal Line-Sweep-Based Decompositions for Coverage Algorithms”, in Robotics and 
Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, vol. 1. IEEE, 2001, pp. 27–32. 

[14] S. W. Ryu et al, “A Search and Coverage Algorithm for Mobile Robot”, in Ubiquitous Robots and Ambient 
Intelligence (URAI), 2011 8th International Conference on. IEEE, pp. 815–821, 2011. 

 
 


