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 Ranking is the central problem for information retrieval (IR), and employing 

machine learning techniques to learn the ranking function is viewed as a 

promising approach to IR. In information retrieval, the users’ queries often 

vary a lot from one to another. In this paper we take into account the 

diversity of query type by clustering the queries. Instead of deriving a single 

function, this system attempt to develop several ranking functions based on 

the resulting query clusters in the sense that different queries of the same 

cluster should have similar characteristics in terms of ranking. Before the 

queries are clustered, query features are generated based on the average 

scores of its associated retrieved documents.  So, for each query cluster, there 

will be its associated ranking model. To rank the documents for a new query, 

the system first find the most suitable cluster for that query and produce the 

scoring results depend on that cluster. The effectiveness of the system will be 

tested on LETOR, publicly available benchmark dataset. 
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1. INTRODUCTION  

  Many applications have ranking as the central issue, such as information retrieval, collaborative 

filtering, expert finding, data mining, and anti-web spam. Recently, “learning to rank” has been one of the 

most popular research topics in the areas of information retrieval and search engines. When applied to 

document retrieval, the task of learning to rank is to construct a ranking function for a search engine. An 

effective ranking framework is the core component of any information retrieval system and several ranking 

functions emerged including the Boolean model, the vector space model[7] and BM25. They have the 

advantage of being fast and produce reasonably good results. When more features become available, 

however, incorporating them into these models is usually difficult since it requires a significant change in the 

underlying model. Recently machine learning techniques have also been applied to ranking model 

construction and supervised learning to rank algorithms can help overcome that limitation. Several methods 

for learning to rank have been developed. Typical methods include RankSVM[9], RankBoost[5][6], 

RankNet[1], and some improved methods such as MHR[4], AdaRank10], and ListNet[4].  

  Using a single ranking model may not be appropriate, particularly for web search, since queries vary 

largely in multiple facets, for example, queries can be navigational, informational, or transactional. These 

various types of query difference make it difficult to build a single general ranking function for all kinds of 

queries. This is because the diverse feature impacts on ranking relevance with respect to difference queries. 

In this paper we will consider the query diversity in ranking by clustering the queries and derive separate 

model for each cluster. 
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  The rest of this paper is organized as follows. Related work is presented in Section 2. Section 3 

presents the system framework. In section 4, the dataset and evaluation methods that will be used to 

determine the performance of the system are described. Finally, section 5 presents conclusion of the paper. 

 
 

2. Related Work 

 

  Jiang Bian et.al[2] proposed the divide and conquer approach for ranking specialization. They 

divided the problem of learning one single ranking model for all training queries into a set of sub-problems 

for learning multiple models. They also proposed global loss function to learn multiple ranking models 

simultaneously. For a new query, the ranking result is produced by combining the corresponding ranking 

results of the models whose corresponding query topic hold the H highest correlation values with that new 

query. Somnath Banejee et.al[3] proposed a local learning algorithm based on new similarity measure 

between queries. Firstly, they defined the principal components for each query. After that, they used an 

offline method to cluster queries base on their proposed similarity measure and train a model for each cluster. 

When a test query is entered, they used the model from the most similar cluster. 

  Weijian Ni et.al[13] developed a query dependent ranking approach. In their approach, the ranking 

model of each query consists of a generalizable model and a specific model. During the learning stage, the 

generalizable and specific models are learned through using structural risk minimization (SRM) inductive 

principle. At the inference stage, for each new query, several of the most favorable specific models learned 

from training queries are used to generate its adaptable ranking model. Lian-Wang Lee et.al[11], also 

proposed a new framework for query-dependent ranking. They generated individual ranking models from 

each training queries. When a new query is asked, the retrieved documents of the new query are ranking 

according to their scores given by a ranking model which is a weighted combination of the models of similar 

training queries. Xiubo Geng et.al[8] developed query-dependent ranking by using K-Nearest Neighbor 

(KNN) method. They create a ranking model for a given query by using the labeled neighbors of the query in 

the query feature space and then rank the documents with respect to the query using that model. 

              
 

3. Proposed System 

 Figure 1, shows the architecture of the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.   System Architecture 

 

 

3.1    Preprocessing Phase  

             In order to achieve high accuracy, query features used in the method are important. A query is 

associated with a list of retrieved documents, each of which can be taken as an observation about the query. 
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In this system, ranking features of the retrieved documents are used for each query. To extract the query 

features for each query, the system use the top T documents which have the highest average scores of its 

documents features. The system use the average scores of all features so that the system can consider all 

ranking features equally without biasing to only one feature. For each query q∈Q in the training data,  the 

system find top T documents Dq= {d
1
, d

2
, d

3
… d

T
} for q. We use the ranking features of these documents to 

extract the features of the query. Each document d
i∈Dq is represented with n ranking features d

i
x= { d

i
x1, 

d
i
x2…, d

i
xn}. To represent q in a feature space we aggregate the ranking features of all documents in Dq. We 

use variance of ranking features values as follow: 

 

For each q∈Q, 

       
    

  
   

 
                   (1) 

 

 

where d
i
xj means the j

th
 feature value of i

th
 document for query q. 

For each q∈Q, 

   
    

    
      

    

 

 

 
                                                             (2)                                    

 

So we can define the query q in terms of aggregated variance values of each feature over q’s top T retrieved 

documents. 
 

 

3.2      Training Phase 

3.2 .1     Clustering Module  

  After the query features are generated, bisecting k-means clustering algorithm is applied to identify 

the query clusters. 

 The bisecting k-means algorithm is a straight forward extension of the basic k-means algorithm that 

is based on a simple data: to obtain k clusters, split the set of all points into two clusters, select one of these 

clusters to split, and so on, until k clusters have been produced. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bisecting k-means Clustering Algorithm 

 

 

3.2.2      Training Module  

The system create separate model for each query cluster. To construct a ranking model for each 

cluster the system adopts RankSVM [2][9]. Ranking SVM is a generalization of classical SVM formulation 

that learns over pairwise preferences, rather than binary labeled data. Instead pairwise preferences can 

implicitly encode the structure of ranking problems, and therefore learning an SVM over such pairwise 

preferences is typically more effective when used for ranking since its objective function tends to more in 

line with standard information retrieval metrics, such as precision, mean average precision and F1 score, 

which is the harmonic mean of precision and recall. 

 Formally, the ranking SVM is formulated as a quadratic programming problem that has the 

following form: 

   
 

 
            

   

 

                                       ∈   

                                                                 ∈                                     (3) 

1: Initialize the list of clusters to contain the cluster consisting of all points. 

2: repeat 

3: Remove a cluster from the list of clusters. 

4: {Perform several “trial” bisections of the chosen cluster.} 

5: for i=1 to number of trials do 

6: Bisect the selected cluster using basic k- means. 

7: end for 

8: Select the two clusters from the bisection with the lowest total SSE. 

9: Add these two clusters to the list of clusters. 

10: until the list of clusters contains k clusters. 
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  Where w is the weight vector being fit,   is the set of pair-wise preferences used for training, and C 

is a tunable parameter that penalizes misclassified input pairs. Once a weight vector w is learned, we can 

score the documents for unseen queries.  These scores can then be used to rank documents.   
 

3.3      Testing Phase  

In the testing process, the most suitable cluster for the test query is identified by finding the closest 

centric c. To find the closest centroid for the test query the system use the Euclidian distance. 
 

                                                                       (4) 

 

where x
-i
 is the centroid of ith cluster and i=1,2,…k. 

 

                
      

     
      

       
      

                           (5) 

 

After the closest cluster is found, the system retrieves the model with respect to that cluster and 

produces the ranking results for the test query by using the retrieved model. Figure 3 describe the algorithm 

of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Algorithm of the System 

 

 

4.     DATASET AND PERFORMANCE METRIC 

The system will be evaluated on the LETOR benchmark dataset. The evaluation tools provided by 

LETOR are utilized to evaluate the effectiveness of the proposed system. 

 

4.1.   Dataset  

  The system will be evaluated on TREC 2003, TREC 2004 and OHSUMED, which are included in 

LETOR 3.0 dataset [12]. The statistics of the datasets from the LETOR 3.0 is described in table 1. 
 

 

 

 

 

 

 

 

Training algorithm 

Input: a set of training query Qtrain={q1,q2,…qt} together with associated documents DQtrain={  
    ,   

    ,…   
    } 

with relevant judgments Yqi={  
    ,   

    ,…   
    }, number of clusters k. 

Output: k ranking models associated with k clusters. 

1.Qfeature            generate-query-feature (Qtrain , DQtrain) //Qfeature={q1,q2,…qt}. 

(i) for each query qi∈Qtrain, find the variance values of the ranking features values of the documents associated with 

the query qi. 

(ii) represent query qi with generated feature vector. 

2. C          bisecting k-means-clustering (k,Qfeature) 

3.M             develop-model(C,Ctrain)// M=(M1,M2,…Mk) 

(i)for each query cluster ci∈C, develop ranking models using the training data associated with the cluster ci∈C. 

Testing algorithm 

Input:  qtest, one of the query-document pairs in the testing set, k clusters, k ranking models associated with k 

cluster. 

Output: ranked list of documents for the test query. 

1.qtfeature         generate-query-feature (qtest,Dqtest) 

(i) find the variance values of the ranking features values of the documents associated with the query qtest. 

(ii) represent query qtest with generated feature vector. 

2. c*          find cluster(C,qtfeature) 

(i) for each cluster ci∈C, find the centroid and choose the cluster whose centroid is closest to qtfeature. 

(3) ranklist             (Dqtest, Mc*) 

(i)produce ranking results using the model Mc*. 
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Table 1. Statistics of the Dataset from LETOR 

 

Symbol Queries  Relevance Levels  

 

Features 

TREC 2003 350 2 64 

TREC 2004 225 2 64 

OHSUMED 106 3 45 

    

 

 

Figure 4 shows the sample data from LETOR. 

 
Figure 4.   Sample Data from LETOR 

 

4.2   Evaluation Measure 

  The system will be evaluated on TREC 2003, TREC 2004 and OHSUMED, which are included in 

LETOR 3.0 dataset [12]. The statistics of the datasets from the LETOR 3.0 is described in table 1. 

The system will be evaluated using three common IR evaluation measures supported by LETOR. 
 

1) Precision  

For a given query, its precision of the top n results of the ranking lists is defined as: 

 

     
                                  

 
                                               (6)                           

 

2) Mean Average Precision (MAP) 

Given a query, its average precision can be computed as follows: 

       
            
   

                                     
                         (7) 

where N is the number of retrieved documents and rel (n) is either 1 or 0, indicating that n
th

 document is 

relevant or not to the query. MAP for a set of queries is the mean of the average precision scores for each 

query. 

    
      
 
   

 
                                                                     (8) 

where Q is the number of queries. 

 

3) Normalized Discounted Cumulative Gain   (NDCG) 

For a query, the NDCG of its ranking list at position n is calculated as follows: 

           
       

          

 
                                                  (9) 

where r (j) is the rating of the j
th

 document in the ranking list, and the normalization constant Zn is chosen so 

that the perfect list gets a NDCG score of 1. 
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5. CONCLUSION  

               This paper uses a framework for query-dependent ranking model. In this system, instead of 

learning a single model for all training queries, individual model is developed for each query group that 

consists of the subset of training queries which have the similar features for ranking. Since the diverse feature 

impacts on ranking relevance with respect to different queries, the result produces by a single ranking 

function, while indicating good ranking relevance for a certain type of queries may not be able to achieve 

similar performance for other type of queries. By using separate model for each query cluster we can use 

separate features and training data for learning the ranking model for each query cluster. Therefore, we can 

apply useful information of the similar queries and avoiding negative effect of dissimilar ones. So we can 

achieve better ranking performance than a single model approach for each query cluster without hurting 

others. On the other hand, it may use only a small part of training data for learning each model; it may cause 

declining accuracy due to the lack of enough training examples. The evaluation will be done on LETOR 

bench mark data set. 
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