

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Informatics and Communication Technology (IJ-ICT)

Vol.2, No.1, January 2013, pp. 25~30

ISSN: 2252-8776  25

Journal homepage: http://iaesjournal.com/online/index.php/IJICT

Query Dependent Ranking for Information Retrieval Based on

Query Clustering

Pwint Hay Mar Lwin
University of Computer Studies, Yangon, Myanmar

Article Info ABSTRACT

Article history:

Received Sep 30
th

, 2012

Revised Nov 15
th

, 2012

Accepted Nov 25
th

, 2012

 Ranking is the central problem for information retrieval (IR), and employing

machine learning techniques to learn the ranking function is viewed as a

promising approach to IR. In information retrieval, the users’ queries often

vary a lot from one to another. In this paper we take into account the

diversity of query type by clustering the queries. Instead of deriving a single

function, this system attempt to develop several ranking functions based on

the resulting query clusters in the sense that different queries of the same

cluster should have similar characteristics in terms of ranking. Before the

queries are clustered, query features are generated based on the average

scores of its associated retrieved documents. So, for each query cluster, there

will be its associated ranking model. To rank the documents for a new query,

the system first find the most suitable cluster for that query and produce the

scoring results depend on that cluster. The effectiveness of the system will be

tested on LETOR, publicly available benchmark dataset.

Keyword:

Information Retrieval

LETOR

Query clustering

Ranking function

Copyright © 2013 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Third Author,

Pwint Hay Mar Lwin

University of Computer Studies, Yangon, Myanmar

Email: pwinthaymarlwin.phml@gmail.com

1. INTRODUCTION

 Many applications have ranking as the central issue, such as information retrieval, collaborative

filtering, expert finding, data mining, and anti-web spam. Recently, “learning to rank” has been one of the

most popular research topics in the areas of information retrieval and search engines. When applied to

document retrieval, the task of learning to rank is to construct a ranking function for a search engine. An

effective ranking framework is the core component of any information retrieval system and several ranking

functions emerged including the Boolean model, the vector space model[7] and BM25. They have the

advantage of being fast and produce reasonably good results. When more features become available,

however, incorporating them into these models is usually difficult since it requires a significant change in the

underlying model. Recently machine learning techniques have also been applied to ranking model

construction and supervised learning to rank algorithms can help overcome that limitation. Several methods

for learning to rank have been developed. Typical methods include RankSVM[9], RankBoost[5][6],

RankNet[1], and some improved methods such as MHR[4], AdaRank10], and ListNet[4].

 Using a single ranking model may not be appropriate, particularly for web search, since queries vary

largely in multiple facets, for example, queries can be navigational, informational, or transactional. These

various types of query difference make it difficult to build a single general ranking function for all kinds of

queries. This is because the diverse feature impacts on ranking relevance with respect to difference queries.

In this paper we will consider the query diversity in ranking by clustering the queries and derive separate

model for each cluster.

  ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 25 – 30

26

 The rest of this paper is organized as follows. Related work is presented in Section 2. Section 3

presents the system framework. In section 4, the dataset and evaluation methods that will be used to

determine the performance of the system are described. Finally, section 5 presents conclusion of the paper.

2. Related Work

 Jiang Bian et.al[2] proposed the divide and conquer approach for ranking specialization. They

divided the problem of learning one single ranking model for all training queries into a set of sub-problems

for learning multiple models. They also proposed global loss function to learn multiple ranking models

simultaneously. For a new query, the ranking result is produced by combining the corresponding ranking

results of the models whose corresponding query topic hold the H highest correlation values with that new

query. Somnath Banejee et.al[3] proposed a local learning algorithm based on new similarity measure

between queries. Firstly, they defined the principal components for each query. After that, they used an

offline method to cluster queries base on their proposed similarity measure and train a model for each cluster.

When a test query is entered, they used the model from the most similar cluster.

 Weijian Ni et.al[13] developed a query dependent ranking approach. In their approach, the ranking

model of each query consists of a generalizable model and a specific model. During the learning stage, the

generalizable and specific models are learned through using structural risk minimization (SRM) inductive

principle. At the inference stage, for each new query, several of the most favorable specific models learned

from training queries are used to generate its adaptable ranking model. Lian-Wang Lee et.al[11], also

proposed a new framework for query-dependent ranking. They generated individual ranking models from

each training queries. When a new query is asked, the retrieved documents of the new query are ranking

according to their scores given by a ranking model which is a weighted combination of the models of similar

training queries. Xiubo Geng et.al[8] developed query-dependent ranking by using K-Nearest Neighbor

(KNN) method. They create a ranking model for a given query by using the labeled neighbors of the query in

the query feature space and then rank the documents with respect to the query using that model.

3. Proposed System

 Figure 1, shows the architecture of the proposed system.

Figure 1. System Architecture

3.1 Preprocessing Phase

 In order to achieve high accuracy, query features used in the method are important. A query is

associated with a list of retrieved documents, each of which can be taken as an observation about the query.

Selected

cluster

Training

queries

Testing

queries

Query

clusters

Testing phase

Training Phase

Preprocessing

Module

Clustering Module Training Module

Cluster Selection

Module

Ranking Score

Computation

Module

M1

M2

M3

Mn

Ranking

Results

IJ-ICT ISSN: 2252-8776 

Query Dependent Ranking for Information Retrieval Based on Query Clustering (Pwint Hay Mar Lwin)

27

In this system, ranking features of the retrieved documents are used for each query. To extract the query

features for each query, the system use the top T documents which have the highest average scores of its

documents features. The system use the average scores of all features so that the system can consider all

ranking features equally without biasing to only one feature. For each query q∈Q in the training data, the

system find top T documents Dq= {d
1
, d

2
, d

3
… d

T
} for q. We use the ranking features of these documents to

extract the features of the query. Each document d
i∈Dq is represented with n ranking features d

i
x= { d

i
x1,

d
i
x2…, d

i
xn}. To represent q in a feature space we aggregate the ranking features of all documents in Dq. We

use variance of ranking features values as follow:

For each q∈Q,

 (1)

where d
i
xj means the j

th
 feature value of i

th
 document for query q.

For each q∈Q,

 (2)

So we can define the query q in terms of aggregated variance values of each feature over q’s top T retrieved

documents.

3.2 Training Phase

3.2 .1 Clustering Module

 After the query features are generated, bisecting k-means clustering algorithm is applied to identify

the query clusters.

 The bisecting k-means algorithm is a straight forward extension of the basic k-means algorithm that

is based on a simple data: to obtain k clusters, split the set of all points into two clusters, select one of these

clusters to split, and so on, until k clusters have been produced.

Figure 2. Bisecting k-means Clustering Algorithm

3.2.2 Training Module

The system create separate model for each query cluster. To construct a ranking model for each

cluster the system adopts RankSVM [2][9]. Ranking SVM is a generalization of classical SVM formulation

that learns over pairwise preferences, rather than binary labeled data. Instead pairwise preferences can

implicitly encode the structure of ranking problems, and therefore learning an SVM over such pairwise

preferences is typically more effective when used for ranking since its objective function tends to more in

line with standard information retrieval metrics, such as precision, mean average precision and F1 score,

which is the harmonic mean of precision and recall.

 Formally, the ranking SVM is formulated as a quadratic programming problem that has the

following form:

 ∈

 ∈ (3)

1: Initialize the list of clusters to contain the cluster consisting of all points.

2: repeat

3: Remove a cluster from the list of clusters.

4: {Perform several “trial” bisections of the chosen cluster.}

5: for i=1 to number of trials do

6: Bisect the selected cluster using basic k- means.

7: end for

8: Select the two clusters from the bisection with the lowest total SSE.

9: Add these two clusters to the list of clusters.

10: until the list of clusters contains k clusters.

  ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 25 – 30

28

 Where w is the weight vector being fit, is the set of pair-wise preferences used for training, and C

is a tunable parameter that penalizes misclassified input pairs. Once a weight vector w is learned, we can

score the documents for unseen queries. These scores can then be used to rank documents.

3.3 Testing Phase

In the testing process, the most suitable cluster for the test query is identified by finding the closest

centric c. To find the closest centroid for the test query the system use the Euclidian distance.

 (4)

where x
-i
 is the centroid of ith cluster and i=1,2,…k.

 (5)

After the closest cluster is found, the system retrieves the model with respect to that cluster and

produces the ranking results for the test query by using the retrieved model. Figure 3 describe the algorithm

of the system.

Figure 3. Algorithm of the System

4. DATASET AND PERFORMANCE METRIC

The system will be evaluated on the LETOR benchmark dataset. The evaluation tools provided by

LETOR are utilized to evaluate the effectiveness of the proposed system.

4.1. Dataset

 The system will be evaluated on TREC 2003, TREC 2004 and OHSUMED, which are included in

LETOR 3.0 dataset [12]. The statistics of the datasets from the LETOR 3.0 is described in table 1.

Training algorithm

Input: a set of training query Qtrain={q1,q2,…qt} together with associated documents DQtrain={
 ,

 ,…
 }

with relevant judgments Yqi={
 ,

 ,…
 }, number of clusters k.

Output: k ranking models associated with k clusters.

1.Qfeature generate-query-feature (Qtrain , DQtrain) //Qfeature={q1,q2,…qt}.

(i) for each query qi∈Qtrain, find the variance values of the ranking features values of the documents associated with

the query qi.

(ii) represent query qi with generated feature vector.

2. C bisecting k-means-clustering (k,Qfeature)

3.M develop-model(C,Ctrain)// M=(M1,M2,…Mk)

(i)for each query cluster ci∈C, develop ranking models using the training data associated with the cluster ci∈C.

Testing algorithm

Input: qtest, one of the query-document pairs in the testing set, k clusters, k ranking models associated with k

cluster.

Output: ranked list of documents for the test query.

1.qtfeature generate-query-feature (qtest,Dqtest)

(i) find the variance values of the ranking features values of the documents associated with the query qtest.

(ii) represent query qtest with generated feature vector.

2. c* find cluster(C,qtfeature)

(i) for each cluster ci∈C, find the centroid and choose the cluster whose centroid is closest to qtfeature.

(3) ranklist (Dqtest, Mc*)

(i)produce ranking results using the model Mc*.

IJ-ICT ISSN: 2252-8776 

Query Dependent Ranking for Information Retrieval Based on Query Clustering (Pwint Hay Mar Lwin)

29

Table 1. Statistics of the Dataset from LETOR

Symbol Queries Relevance Levels

Features

TREC 2003 350 2 64

TREC 2004 225 2 64

OHSUMED 106 3 45

Figure 4 shows the sample data from LETOR.

Figure 4. Sample Data from LETOR

4.2 Evaluation Measure

 The system will be evaluated on TREC 2003, TREC 2004 and OHSUMED, which are included in

LETOR 3.0 dataset [12]. The statistics of the datasets from the LETOR 3.0 is described in table 1.

The system will be evaluated using three common IR evaluation measures supported by LETOR.

1) Precision

For a given query, its precision of the top n results of the ranking lists is defined as:

 (6)

2) Mean Average Precision (MAP)

Given a query, its average precision can be computed as follows:

 (7)

where N is the number of retrieved documents and rel (n) is either 1 or 0, indicating that n
th

 document is

relevant or not to the query. MAP for a set of queries is the mean of the average precision scores for each

query.

 (8)

where Q is the number of queries.

3) Normalized Discounted Cumulative Gain (NDCG)

For a query, the NDCG of its ranking list at position n is calculated as follows:

 (9)

where r (j) is the rating of the j
th

 document in the ranking list, and the normalization constant Zn is chosen so

that the perfect list gets a NDCG score of 1.

  ISSN: 2252-8776

IJ-ICT Vol. 2, No. 1, January 2013 : 25 – 30

30

5. CONCLUSION

 This paper uses a framework for query-dependent ranking model. In this system, instead of

learning a single model for all training queries, individual model is developed for each query group that

consists of the subset of training queries which have the similar features for ranking. Since the diverse feature

impacts on ranking relevance with respect to different queries, the result produces by a single ranking

function, while indicating good ranking relevance for a certain type of queries may not be able to achieve

similar performance for other type of queries. By using separate model for each query cluster we can use

separate features and training data for learning the ranking model for each query cluster. Therefore, we can

apply useful information of the similar queries and avoiding negative effect of dissimilar ones. So we can

achieve better ranking performance than a single model approach for each query cluster without hurting

others. On the other hand, it may use only a small part of training data for learning each model; it may cause

declining accuracy due to the lack of enough training examples. The evaluation will be done on LETOR

bench mark data set.

REFERENCES

[1] B. Chris, S.Tal, R.Erin, L.Ari, D.Matt, H.Nicole, H. Greg, “Learning to rank using Gradient Descent”, Proceeding of

the 22nd International Conference on Machine Learning, Bonn, Germany, 2005. W.-K. Chen, Linear Networks and

Systems (Book style).Belmont, CA: Wadsworth, 1993, pp. 123–135.

[2] B.Jiang, L. Xin, L. Fan, Z.Hongyun, “Ranking Specialization for web search: A Divide and Conquer Approach by

Using Topical RankSVM” WWW 2010, Raleigh, North Carolina, USA , April 26-30.

[3] B.Somnath, D.Avinava , M. Jinesh, C.Soumen, “Efficient and accurate local learning for ranking”, copyright 2009

ACM.

[4] C. Zhe, Q. Tao , L. Tie-Yan, T. Ming-Feng, L. Hang, “Learning to Rank: From Pairwise Approach to Listwise

Approach”, Proceedings of 24th International Conference on Machine Learning , Corvallis, 2007.

[5] D. Kevin , K. Katrin, “Learning to rank with partially-label data”, SIGIR’08, Sigapore, July 20-24, 2008.C. J.

Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.

[6] F. Yoav, I. Raj, E. S. Robert, “an efficient boosting algorithm for combining preferences”, Journal of machine

learning research 4 (2003) 933-969.

[7] G.Salton, M.J.McGill, “Introduction to Modern Information Retrieval”

[8] G. Xiubo, L. Tie-Yan, Q .Tao, “Query Dependent Ranking Using K-Nearest Neighbor”, SIGR’08, Singapore, July

20-24, 2008

[9] H. Ralf, G. Thore, O. Klaus, “Large Margin Rank Boundaries for Ordinal Regression”

[10] Jun Xu, Hang Li, “AdaRank: A Boosting Algorithm for Information L.Tie-Yan, X.Jun, Q.Tao, X.Wening, L.Hang ,

“LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval”.

[11] L. Lian-Wang, J. Jung-Yi, W. ChunDer, L. Shie-Jue, “A Query-Dependent Ranking approach for search

engines”,2009 Second international workshop on Computer Science and Engineering.

[12] L.Tie-Yan, X.Jun, Q.Tao, X.Wening, L.Hang , “LETOR: Benchmark Dataset for Research on Learning to Rank for

Information Retrieval”.

[13] N. Weijian, H. Yalou, X. Maoqiang, “A Query Dependent Approach to Learning to Rank for Information

Retrieval”, The Ninth International Conference on Web-Age Information Management, copyright 2008 IEEE.

[14] Q. Tao, L. Tie-Yan, L. Wei, Z. Xu-Dong, W. De-Sheng, L. Hang, “Ranking with multiple hyperplanes” SIGR’07,

The Netherlands,July 23-27, 2007.

BIBLIOGRAPHY OF AUTHORS

I received B.C.Sc, B.C.Sc(Hons:) and M.C.Sc degrees in Computer Science

from University of Computer Studies, Yangon(UCSY) in 2005,2006 and

2009 respectively. During 2007-2009, I served as a tutor in Computer

Application Department of University of Computer Studies,Mawlamyine.

From 2009 to 2010, I attened PH.D coursework in UCSY. Now, I’m doing

my research which is related with information retrieval.

