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 This paper presents a necessary and sufficient condition on the number of 

parity check digits required for the existence of codes correcting periodic 

errors of different orders in different blocks of a code. An example of such a 

code has also been provided.  
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1. INTRODUCTION  

Investigations in coding theory have been made in several directions but one of the most important 

directions has been the detection and correction of errors. It began with Hamming [3] codes for single errors. 

Then Golay codes ([4], [5]) for double and triple random errors and thereafter BCH codes were studied for 

multiple error correction. There is a long history towards the growth of the subject and many of the codes 

developed have found applications in numerous areas of practical interest. One of the areas of practical 

importance in which growth of the subject took place is that of burst error detecting and correcting codes. It 

has also been observed that in many communication channels, burst errors occur more frequently than 

random errors. A burst of length b may be defined as follows: 

 

Definition 1: A burst of length b is a vector whose only non-zero components are among some b consecutive 

components, the first and the last of which is non-zero. 

 

It is clear that the nature of errors differ from channel to channel depending upon the behaviour of 

channels or the kind of errors which occur during the process of transmission. Many types of error patterns 

have been dealt with and codes have been constructed to combat such error patterns. Although the errors are 

classified mainly in two categories - random errors and burst errors, it has been observed that beyond these 

two categories also, errors may occur and follow certain patterns. These patterns are such that error repeats 

after some fixed interval. In certain communication channel like Astrophotography [9] where small 

mechanical error occurs periodically in the accuracy of the tracking in a motorized mount that results small 

movements of the target that can spoil long-exposure images, even if the mount is perfectly polar-aligned and 

appears to be tracking perfectly in short tests. It repeats at a regular interval - the interval being the amount of 

time it takes the mount's drive gear to complete one revolution. This type of errors is termed as periodic or 
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alternate errors. Therefore, a code used for random or burst error correction is ineffective when used solely 

for the purpose of periodic error detection or correction, and so new codes must be developed. It was in this 

spirit that the codes detecting and correcting such errors were developed by Tyagi and Das ([1], [6]). A 

periodic error may be defined as follows: 

 

Definition 2: A periodic error of order s is an n- tuple whose non zero components are located at a gap of s 

positions and the number of its starting positions is among the first s+1 components, where s = 1,2,3,...,(n-1). 

 

For s =1, the periodic error of order 1 are the vectors where error may occur in 1st, 3rd, 5th,...... positions or 

2nd, 4th, 6th,...... positions. For example, in a vector of length 8, periodic error vectors of order 1 are of the 

type 10101000, 00101000, 0010101, 10101010, 10001010, 01010101, 01000101, 00000101, 00000001 etc. 

 

For s =2, the periodic error vectors of order 2 are those where error may occur in 1st, 4th, 7th,...... positions 

or 2nd, 5th, 8th,......positions or 3rd, 6th, 9th,.......positions. The periodic error vectors of order 2 may look 

like 10010010, 10000010, 00010010, 01001001, 01000001, 01000000, 00001001, etc in a vector of length 8. 

 

For s =3, in a code length 8, the periodic error vectors of order 3 are 10001000, 01000100, 00100010, 

00010001, 10000000, 01000000 etc. 

 

The error correcting codes have been found to be powerful tools for checking the errors. The errors 

are usually detected and corrected in a block. When it is known that a particular type of error may occur 

within a specified number of digits, then if one desires to increase the block length, it is natural to expect 

some more errors among the additional digits. However, the errors, occurring in the additional digits, need 

not necessarily be of the type of errors as its earlier block. In view of this, the author has studied codes that 

can correct errors which are in the form of periodic errors having different orders in different blocks of a 

code word. The results have been derived in the case of two blocks. However, these can be extended to any 

finite number of blocks. Dass and Tyagi [2] studied linear codes that are capable of correcting block wise 

burst error. In this correspondence, this paper presents a parallel study in terms of periodic errors and obtains 

two results. This correspondence is organized as follows: 

 

In section 2, the first result gives a necessary condition on the number of check digits required for 

the existence of a linear code over GF(q) that corrects all periodic errors of order s1 in the first block of 

length n1 and all periodic errors of order s2 in the second block of length n2. Section 3 gives the second result 

as sufficient condition on the number of check digits which ensures the existence of such a code. In section 4, 

an illustration of such a code is given along with a remark. 

 

In what follows, the code length is taken to be n over GF(q), consisting of two blocks of lengths n1 

and n2 such that n1 + n2 = n. The distance between two vectors shall be considered in the Hamming sense.  

 

 

2. A NECESSARY CONDITION 

The following theorem gives a bound on the necessary number of parity check digits required for a 

code that corrects all periodic errors of order s1 in the first block of length n1 and all periodic errors of order 

s2 in the second block of length n2. The bound is based on the fact that the number of cosets is at least as 

large as the number of error patterns to be corrected (refer theorem 4.16 Peterson and Weldon [7]). 

 

Theorem 1 The number of parity check digits for an (n1 + n2 = n,  k) linear code over GF(q) that corrects all 

periodic errors of order s1 in the first block of length n1  and all periodic errors of order s2 in the second 

block of length n2 is at least 









 


)1()1(1
2 21

1

00

s

j

k
s

i

k

q
ji qqloq  

  

where 













11

11

s

in
ki

 and  













12

22

s

jn
k j

.   

 

Proof.  This proof is based on counting the number of errors of above specific type and comparing with the 

available cosets in the (n1 + n2 = n,  k) linear code over GF(q). 
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Since the code is capable of correcting all errors which are all periodic errors of order s1 in the first 

block of length n1, all such periodic errors should be in different cosets; their number (refer theorem 1, Tyagi 

and Das[6] ) is 
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Similarly, as the code is capable of correcting all errors which are all periodic errors of order s2 in the second 

block of length n2, all such error patterns will be also in different cosets and their number is given by 
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3. A SUFFICIENT CONDITION 

The paper now obtains an upper bound over the number of parity check digits sufficient for the 

existence of codes studied in Theorem 1. The proof is based on the technique used to establish Varshomov-

Gilbert Sacks bound by constructing a parity check matrix for such a code (refer Sacks [8], also Theorem 

4.17, Peterson and Weldon [7]). A method for constructing the parity check matrix for periodic error 

correcting codes in the case of only one block was given by Tyagi and Das [6]. 

 

Theorem 2  Given positive integers s1 and s2 , there exist an (n1 + n2 = n,  k) linear code over GF(q) that 

corrects all periodic errors of order s1 in the first block of length n1 and all periodic errors of order s2 in the 

second block of length n2 satisfying the inequality 
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Proof.  The existence of such a code will be shown by constructing an appropriate (n-k)×n parity-check 

matrix H as follows: 

 

After adding the first n1 columns appropriately corresponding to the first block, the (n1 +1)
th

, 

(n1+2)
th

, … columns are added to H so that the code corrects all periodic errors of order s1 in the first block 

of length n1 and all periodic errors of order s2 in the second block of length n2 . For this, the two requirements 

are needed to be satisfied: 

(a) The syndrome resulting from the occurrence of any periodic error of order s2 within the second sub block 

of length n2 must be distinct from the syndrome resulting likewise from any other periodic error of order s2 

within same block. 

(b) The syndrome resulting from the occurrence of any periodic error of order s2 within the second block of 

length n2 must be distinct from the syndrome resulting likewise from any periodic error of order s1 within the 

first block of length n1. 

 

As the first requirement (a), the general (n1 + t) th column (t > s2+1) can be added to H such that it is 

not a linear combination of previous s2-periodic columns )1( 21  stnh , )1(2 21  stnh , . . . , )1( 221  sptnh  
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This constraint assures that the code which is the null space of the finally constructed matrix H will be 

capable of correcting all periodic errors of order s2 in the second block of length n2. 

 

The number of possible linear combination of the R.H.S. of (5), including all zero vector, is given by (refer 

Tyagi and Das[6], theorem 2) 

 












)1( 2

1

2
2

2 sqq
s

i

kp i      (6) 

where 1
12

2 











s

t
p  and 














12

2

s

it
ki

. 

 

 

By the second requirement (b), the (n1 + t) th column (t > s2+1) cannot be a linear combination of 
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This constraint assures that the code which is the null space of the finally constructed matrix H will also be 

capable of correcting all periodic errors of order s1 in the first block of length n1. 

 

The number of ways in which the coefficients ui 's can be selected is 2p
q . 

And to enumerate the coefficients vi 's is equivalent to enumerate the number of periodic errors of order s1 in 

a vector of length n1. This number of errors is given by (1). 

 

Therefore all possible linear combination of R.H.S. of (7) is 
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So the total number of columns to which tnh 1
, cannot be equal is the sum of (6) and (8) i.e., 
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At worst, all the linear combinations considered in (9) may be distinct. 

 

Thus, while choosing the 
tnh 1

 th column, we must have
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For completing the second block of length n2, replacing t by n2 gives the result as stated in (4).  ■ 

 

The paper is concluded with an example and a remark. 

 
Example :  Consider a  (6+4, 5) binary code with parity check matrix  

H=
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This matrix has been constructed by the synthesis procedure outlined in the proof of Theorem 2, taking q=2, 

s1=2, s2=1, n1=6 and n2=4. The code which is the null space of the matrix given above corrects all periodic 

errors of order 2 in the first block of length 6 and all periodic errors of order 1 in the second block of length 

4. It follows from the table 1 that all the error vectors and their corresponding syndromes which can be seen 

to be all distinct and non zero.  

 

         Table 1. Sub block error pattern 

 

        Error patterns                 Syndromes        Error patterns                 Syndromes 

1st sub-block 

100000  0000      10001 

000100  0000      01001 

100100  0000     11000 

010000  0000     11101 

            000010  0000              01111 

010010  0000      10010 

001000  0000      10101 

000001  0000      01011 

001001  0000      11110 

 

2nd sub-block 

000000  1000       00101 

000000  0010       00011 

000000  1010       00110 

000000  0100       01101 

000000  0001       11011 

000000  0101       10110 

 

 

  

Remark  It has been observed that deleting of the last row from the above parity check matrix gives rise to a  

(6+4, 6) binary code which satisfy the bound obtained in theorem 1 and it has been found the  (6+4, 6) binary 

code is an optimal code in the sense that corrects all periodic errors of order 2 in the first block of length 6 

and all periodic errors of order 1 in the second block of length 4 and no other error pattern. 
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