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 Biometrics associated with automated methods of identifying a person or 

verifying the identity of a person based on physiological or behavioral 

characteristics. Commonly used biometric features are facial features, 

fingerprints, voice, facial thermo grams, iris, posture/gait, palm print, hand 

geometry etc. Compared with other biometric characteristics iris is the most 

stable and hence the most reliable biometric characteristic over the period of 

a lifetime. This proposed work provides comparative study of various filters 

of Wavelet Transforms in terms of size and PSNR of images 
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1. INTRODUCTION  

  Biometrics recognizes individuals based on the features derived from their Physiological and 

behavioral characteristics. Biometric systems provide reliable way of recognition to confirm the individual 

identity. A higher degree of confidence can be achieved by using unique physical or behavioral 

characteristics to identify a person [1]. 

 

 
 
 

 

 

 

 

 

 

 

  

 

Figure. 1 Human eye 
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Due to the vibrant color and texture of the iris it is typically the most visible and distin-guishable 

part of the human eye.Human eye shows (1) is sclera, (2) iris, (3) pupil, (5, 6) eyelashes and (4, 7) eyelids. 

Still there are certain issues particularly the security issues of both biometric system and biometric 

data. As biometric template are stored in the centralized database, due to security threats biometric template 

may be modified by attacker [6]. If biometric template is altered or modifies authorized user will not be 

allowed to access the resource. Because of these causes researches have been made to protect the biometric 

data and template in the system by using cryptography, stenography and watermarking. 

So to implement security for iris images its embedded in cover image/images .for this reason size of 

iris image should be 40% of cover image .This is achieved by decomposing Iris image by wavelet transform 

and then embedded into cover image. Discrete Wavelet transform have various filers associated with it such 

as HAAR filter, Biorthogonal filter, Coif lets, Daubechies filter. In the proposed comparison of performance 

of these filters with respect to Iris image has been carried out for obtaining best filter can be used to embed in 

cover image. 

The paper is organized as follows: Section 2 discusses the Wavelet Transforms .Section 3 explains 

what are different types of filters associated with DWT(Discrete Wavelet Transform). Section 4 explains the 

proposed method. The experiments conducted and simulation results are presented in section 5. Finally, 

conclusions are given in section 6. 

 

 

2. WAVELET TRANSFORM  

There are many different types of wavelets transform. Most of data analysis applications are using  
Continuous-time wavelet transforms (CWT). However, the most popular type which affected the properties 
of many real signals is discrete wavelet transform (DWT) [13]. The wavelet transform is similar to the 
Fourier transform with a completely different merit function. The main difference in both is Fourier 
transform decomposes the signal into sines and cosines, i.e. the functions localized in Fourier space; in 
contrast with that wavelet transform uses functions that are localized in both the real and Fourier space. 
Generally, the wavelet transform can be expressed by the following equation: 
 

 

 

 

 

 
Where the * is the complex conjugate symbol and function ψ is some function. This function can be chosen 
arbitrarily provided that obeys certain rules. 

 
The Wavelet transform is in fact an infinite set of various transforms, depending on the merit function used 
for its computation. The division based on the wavelet orthogonality is to use orthogonal wavelets for 
discrete wavelet transform development and non-orthogonal wavelets for continuous wavelet transform 
development. These two transforms have the following properties: 
1. The discrete wavelet transform returns a data vector of the same length as the input is. Usually, even in 

this vector many data are almost zero. This corresponds to the fact that it decomposes into a set of 
wavelets (functions) that are orthogonal to its translations and scaling. Therefore we decompose such a 
signal to a same or lower number of the wavelet coefficient spectrum as is the number of signal data 
points. Such a wavelet spectrum is very good for signal processing and compression, for example, as we 
get no redundant information here.  

2. The continuous wavelet transform in contrary returns an array one dimension larger that the input data. 
For a 1D data we obtain an image of the time-frequency plane. We can easily see the signal frequencies 
evolution during the duration of the signal and compare the spectrum with other signals spectra. As here 
is used the non-orthogonal set of wavelets, data are correlated highly, so big redundancy is seen here. 
This helps to see the results in a more humane form.  

2.1. Continuous Wavelet Transform  

Continuous wavelet transform (CWT) is an implementation of the wavelet transform using arbitrary 

scales and almost arbitrary wavelets. The wavelets used are not orthogonal and the data obtained by this 

transform are highly correlated. For the discrete time series we can use this transform as well, with the 

limitation that the smallest wavelet translations must be equal to the data sampling. This is sometimes called 

Discrete Time Continuous Wavelet Transform (DT-CWT) and it is the most used way of computing CWT in 

real applications 
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A continuous wavelet  transform (CWT)  is  used to  divide  a  continuous-time function  into 
wavelets. Unlike Fourier transform, the continuous wavelet transform possesses the ability to construct a 
time-frequency representation of a signal that offers very good time and frequency localization. In 
mathematics, the continuous wavelet transform of a continuous, square-integrable function   at a scale  

  and translational value   is 
expressed by the following integral. 

 

 

 

 
 
 

Where Ψ (t) is a continuous function in both the time domain and the frequency domain called the 
mother wavelet and  represents operation of complex conjugate 

In principle the continuous wavelet transform works by using directly the definition of the wavelet 
transform, i.e. we are computing a convolution of the signal with the scaled wavelet. For each scale we obtain 
by this way an array of the same length N as the signal has. By using M arbitrarily chosen scales we obtain a 
field N×M that represents the time-frequency plane directly. The algorithm used for this computation can be 
based on a direct convolution or on a convolution by means of multiplication in Fourier space (this is 
sometimes called Fast Wavelet Transform). 

The choice of the wavelet that is used for time-frequency decomposition is the most important 
thing. By this choice we can influence the time and frequency resolution of the result. We cannot change the 
main features of WT by this way (low frequencies have good frequency and bad time resolution; high 
frequencies have good time and bad frequency resolution), but we can somehow increase the total frequency 
of total time resolution. This is directly proportional to the width of the used wavelet in real and Fourier 
space. If we use the Morlet wavelet for example (real part – damped cosine function) we can expect high 
frequency resolution as such a wavelet is very well localized in frequencies. In contrary, using Derivative of 
Gaussian (DOG) wavelet will result in good time localization, but poor one in frequencies. 

 
2.2. Discrete Wavelet Transform 

In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet 
transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage 
it has over Fourier transforms is temporal resolution: it captures both frequency and location information 
(location in time). 

The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a discrete 
set of the wavelet scales and translations which follows some defined rules. This transform decomposes the 
signal into mutually orthogonal set of wavelets, which is the main difference from the continuous wavelet 
transform (CWT), or its implementation for the discrete time series sometimes called discrete-time 
continuous wavelet transform (DT-CWT).The wavelet can be constructed from a scaling function which 
describes its scaling properties. The restriction that the scaling functions must be orthogonal to its discrete 

translations implies some mathematical conditions on 
them which are mentioned everywhere, e.g. the dilation 
equation 
 

 

 

 

 
 
where S is a scaling factor (usually chosen as 2).The 
area between the function must be normalized and 
scaling function must be orthogonal to its integer 
translations, i.e. 
 

 

 

 

 
 
After introducing some more conditions (as the restrictions above does not produce unique solution) 

results can be obtained of all these equations, i.e. the finite set of coefficients ak that define the scaling 
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function and also the wavelet. The wavelet is obtained from the scaling function as N where N is an even 
integer. The set of wavelets then forms an orthonormal basis which we use to decompose the signal. Note 
that usually only few of the coefficients  are nonzero, which simplifies the calculations. 

 
3. FILTERS OF DISCRETE WAVELET TRANSFORM  

There are various filters associated with Discrete Wavelet Transform. We outline the basic 
development of discrete wavelet transformations as follows. 
 
3.1. HAAR Transform 

Any discussion of wavelets begins with Haar wavelet, the first and simplest. Haar wavelet is 
discontinuous, and resembles a step function. We motivate this transformation as follows: 
 
Suppose we wish to transmit a list (vector) of N numbers, N even, to a friend via the Internet. To reduce 
transfer time, we decide to send only a length N/2 approximation of the data. One way to form the 
approximation is to send pair wise averages of the numbers. For example, the vector 

[6,12,15,15,14,12,120,116] T can be approximated by the vector [9,15,13,118] 
T
. Of course, it is impossible 

to determine the original N numbers from this approximation, but if, in addition, we transmit the N/2 
averaged directed distances, then our friend could completely recover the original data. For our example, the 

averaged directed distances are [3,0,−1,−2] 
T
.We define the one–dimensional discrete Haar wavelet 

transformation as the linear transformation. 
 
x →[a/d] 

 

ak = (x2k−1+x2k)/2,  

 

dk =(−x2k−1+x2k)/2, 
 

Following figure gives behavior of wavelet function [11]  

 

 

 

 

 

 
 

 

 

 

Figure 2.  Wavelet Function 

 

3.2. Daubechies Orthogonal Filter 
The most commonly used set of discrete wavelet transforms was formulated by the Belgian 

mathematician Ingrid Daubechies in 1988. This formulation is based on the use of recurrence relations to 

generate progressively finer discrete samplings of an implicit mother wavelet function; each resolution is 

twice that of the previous scale. In her seminal paper, Daubechies derives a family of wavelets, the first of 

which is the Haar wavelet. Interest in this field has exploded since then, and many variations of Daubechies' 

original wavelets were developed [3]. 
Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented what are 

called compactly supported orthonormal wavelets — thus making discrete wavelet analysis practicable. The 

names of the Daubechies family wavelets are written dbN, where N is the order, and db the "surname" of the 

wavelet. The db1 wavelet, as mentioned above, is the same as Haar wavelet. 

 

3.3. Biorthogonal Filter 
This family of wavelets exhibits the property of linear phase, which is needed for signal 

and image reconstruction. By using two wavelets, one for decomposition (on the left side) and the 

other for reconstruction (on the right side) instead of the same single one, interesting properties are derived. 

 

In the Biorthogonal case [5], there are two scaling functions , which may generate different multiresolution 

analyses, and accordingly two different wavelet functions  . So the numbers M and N of coefficients in 
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scaling sequences  may differ. The scaling sequences the 

must satisfy the following Biorthogonality condition. 

 

 

 

 

 

 

Then the wavelet sequences can be 

determined as 

 
 

 

 

 

 

4. PROPOSED WORK   
In the Proposed work suggested by this paper, Iris image which is to be embed in cover image for 

security will be decomposed by wavelet transform using various filters like Daubechies Orthogonal filter, 

HAAR filter and Biorthogonal filter using DWT .For performance evaluation Comparison of Gray scale Iris 

image with wavelet decomposed Iris is performed. 
 
This comparison will be carried out on basis of two parameters 
1. Number of pixels  

2. PSNR (peak signal to noise ratio) 

 

 

5. RESULT  

The results obtained by using Phoenix database[9] and Kekare’s database[10] are as follows. 

 

 

Table 1. Comparison table for filters. 

 

Original Gray 

scale Iris 

image (No. of 

pixels) 

      
 

Number 

Haar Filter Biorthogonal Filter 
Daubechies 

 

Filter  

    
 

      
 

       

No. of 
PSNR 

No. of 
PSNR 

No. of 
PSNR 

 

  
Pixels Pixels Pixels 

 

     
 

1 Left Iris(phoenix) 
288*384 

32.8163 
295*391 

34.4071 
290*386 

33.1804 
 

(110592) (115345) (111940) 
 

     
 

2 
Right 288*384 

34.5965 
295*391 

36.3271 
290*386 

34.9104 
 

Iris(phoenix) (110592) (115345) (111940) 
 

    
 

 Iris from 
379*288 

 
388*295 

 
381*290 

 
 

3 kenkare’s 37.5912 39.0144 37.9130 
 

(109152) (114460) (110490) 
 

 
database 

   
 

       
 

 

 

6. CONCLUSION   
From the work that has been accomplished above results are obtained and it can be concluded that 

using various filters for wavelet transforms, images of different size could be obtained. So we get images in 
reduced number of pixels as compared to original iris image, while maintaining quality of image using 
HAAR transform. HAAR transform gives average value of PSNR along with less number of pixels. Because 
of this reason in following future scope of project HAAR transform will be used to reduce Iris size then it 
will get embedded in cover image.  
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