International Journal of Informatics and Communication Technology (1J-ICT)

Vol. 11, No. 1, April 2022, pp. 32~44

ISSN: 2252-8776, DOI: 10.11591/ijict.v11il.pp32-44 a 32

About decentralized swarms of asynchronous distributed
cellular automata using inter-planetary file system’s
publish-subscribe experimental implementation

Vincent Manuceau

Department of Computer Science Research and Development, Makis Research, Remalard, Orne, France

Article Info

ABSTRACT

Article history:
Received Sep 6, 2021

This research describes the simple implementation of asynchronous distributed
cellular automata and decentralized swarms of asynchronous distributed cellu-

lar automata built on top of inter-planetary file system’s publish-subscribe (IPFS
PubSub) experimentation. Various publish-subscribe(PubSub) models are de-
scribed. As an illustration, two distributed versions and a decentralized swarm
version of a 2D elementary cellular automaton are thoroughly detailed to high-
light the simplicity of implementation with IPFS and the inner workings of
these kinds of cellular automata (CA). Both algorithms were implemented, and
experiments were conducted throughout five datacenters of Grid’5000 testbed
in France to obtain preliminary performance results in terms of network band-
width usage. This work is prior to implementing a large-scale decentralized epi-
demic propagation modeling and prediction system based upon asynchronous
distributed cellular automata with application to the current pandemic of SARS-
CoV-2 coronavirus disease 2019 (COVID-19).

Revised Dec 24, 2021
Accepted Jan 4, 2022

Keywords:

Cellular automata
Distributed cellular automata
Grid’5000

Inter-planetary file system
Publish-subscribe

This is an open access article under the CC BY-SA license.

[@Nolel
Vincent Manuceau

Department of Computer Science Research and Development, Makis Research c/o Creole Shop
7 Les Docks Saint-Marc, ZA Saint-Marc Sud, 61110 Remalard-en-Perche, France
Email: vincent@manuceau.net

Corresponding Author:

1. INTRODUCTION

Decentralization and distribution of computing and communication systems represent an ever increas-
ing topic of interest, with a wide array of problems to solve and an even wider array of applications from
free-speech protection [[1] to climate change modeling [2]. This article described a simple implementation of
an asynchronous distributed cellular automata and a decentralized swarm of asynchronous distributed cellular
automata built on top of inter-planetary file system’s (IPFS) [3] publish-subscribe (PubSub) experimentation.
After briefly describing notions of cellular automata (CA), IPFS, and PubSub protocols, two distributed ver-
sions and a decentralized swarm version of a simple 2D cellular automaton are detailed in order to highlight the
simplicity of implementation with IPFS and the inner workings of these kinds of CA. The algorithms described
in this paper are intentionally straightforward to focus on the simplicity of such asynchronous and decen-
tralized PubSub systems. Implementation and preliminary results were obtained with experiments conducted
across five datacenters throughout France with Grid’5000 testbed. This paper is motivated as preliminary work
to build a very large scale distributed computing application that models population dynamics and predicts de-
mography at city/region/country level, with multi-level and inter-level interactions, in the scope of the current
SARS-CoV-2 coronavirus disease 2019 (COVID-19) pandemic.

Journal homepage: http://ijict.iaescore.com

Int J Inf & Commun Technol ISSN: 2252-8776 O 33

2. DEFINITIONS
2.1. Cellular automata

A cellular automaton is a dynamical system composed of a finite lattice of cells with local and straight-
forward communication capabilities. Each cell has a finite number of states evolving in discrete steps through
time, and each cell state depends on the state of its neighbourhood. A transition function processes state
changes. Originating from Ulam’s works on dynamical systems [4], CA directly contributed to Von Neu-
mann’s theory of self-replicating automata [3]. CA and distributed cellular automata (DCA) represent an
extensive field of study and notably interesting modelling and simulation tools for contemporary topics ranging
from submicroscopic physics [6]] to large scale macroscopic phenomena [7]] such as climate change [2]. This
paper will implement asynchronous distributed and decentralized swarms of cellular automata through IPFS
PubSub capabilities.

2.2. Inter-planetary file system

Inter-planetary file system (IPFS) is a multipurpose, distributed, peer-to-peer, version-controlled file
system with no single point of failure [3]. IPFS engenders a global Merkle directed acyclic graph data struc-
ture (Merkle DAG) [8]], with a content-addressing storage block architecture driven by distributed hash tables
(DHT), a block exchange system and a self-certifying namespace [3]. Stored content inside IPFS is accessible
via content identifiers (CID) hyperlinks. Currently, IPES is used for a wide variety of applications, such as
distributed web applications and serverless applications [9]], telecommunication, cloud data storage networks
[LO], content delivery networks (CDN), and blockchains [8]], and even a crypto-currency based large scale de-
centralized file storage network called Filecoin [11]], [12]. Its trustless and decentralized structure may lead to
the development of a censorship-resistant and permanent web [[1]].

2.3. PubSub: IPFS and Libp2p implementations
2.3.1. About PubSub

Publish-subscribe models (PubSub) consists of asynchronous distributed and independent nodes,
where each node can publish events or subscribe to related topics or contents through an overlay communi-
cation infrastructure [13]]. Focusing on topic-based PubSub systems, when a node publishes an event to a
related topic, all nodes that subscribed to this topic receive it asynchronously. Publishers and subscribers pre-
serve their anonymity, as they do not interact directly and do not have to know each other to communicate.
Specifically, the section below describes three topic-based PubSub implementations: IPFS FloodSub, Libp2p
GossipSub, and Libp2p EpiSub.

2.3.2. IPFS FloodSub

FloodSub, also known as DumbSub or PubSub-Flood, is the first and the most simple PubSub im-
plementation experiment in IPFS/Libp2p. FloodSub is based upon message routing by network flooding with
no CastTree forming [14], and ambient peer discovery by the use of external distributed hash tables (DHT)
[15]. Concerning message broadcasting on small networks, FloodSub has low latency and is ideal for instant
messaging applications. However, it cannot scale to more significant sized networks due to its high overhead
and bandwidth consumption.

2.3.3. Libp2p GossipSub

GossipSub is a gossip-based publication-subscribe protocol [16]] relying on a mesh construction and
a score function [17]]. The network structure uses two types of bidirectional peering: full-message peerings,
where peers send entire messages to sparsely connected peers called mesh members. The second type is
metadata-only peerings, where peers gossip about message availability and maintain full-message peerings
[L8]]. In a GossipSub network, any peer can change their peering type from full-message to metadata-only
(pruning) and conversely (grafting). Additionally, each node scores its peers based upon each peer behaviour,
and then this scoring limits message transmission only to peers reaching a certain score threshold [19]. Nodes
can also publish to unsubscribed topics via fan-out peering. In this unidirectional mechanism, they send their
message to 3 randomly picked peers that subscribed to the topic, called fan-out peers, and then redistribute the
message to the network [[18]]. Thus by design, GossipSub is highly scalable, reliable, fast and efficient, resilient
and attack-resistant [[17].

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

34 a ISSN: 2252-8776

2.3.4. Libp2p EpiSub

EpiSub is a proximity aware mono-source multicast optimized PubSub protocol [20] implementing
epidemic broadcast trees Plumtree protocol [21] (Gossip-based spanning tree construction, tree repair and op-
timization). HyParView membership protocol [22] manages EpiSub peers. Each node has two different views
in this protocol: a small active one that engenders a message-passing overlay. A larger passive one maintains
active view network resilience in case of node failure. EpiSub implements GoCast proximity-aware overlay
scheme [23]] which dynamically maintains near neighbourhood connectivity, i.e. low latency neighbours, by a
near degree node confinement method during add and drop connection phases. Libp2p EpiSub comprises two
main protocols: the broadcast protocol (publish) that uses lazy multicast tree construction through Plumtree’s
epidemic broadcast [21]]. The second protocol is membership management (subscribe), which maintains active
and passive peers lists for a related topic. Eager and lazy active peers are distinguished, eager ones actively
disseminating new messages at the edges of the multicast tree, and lazy ones only gossiping about message
summaries and maintaining the multicast tree [20]. Multicast tree and peer proximity optimization [23|] con-
stantly optimize transmission latency and propagation latency. An implementation of EpiSub is currently under
active development in the scope of this project.

3. PROPOSED ALGORITHMS
3.1. Simple distributed cellular automata
3.1.1. Used cellular automata and conventions

The CA uses Conway’s Game of Life: two states, grade IV [24], totalistic, Moore’s neighborhood
driven [25]], elementary cellular automaton. This CA will run on a 2-dimensional circular grid. Each cell ran
independently and asynchronously, as subscription events trigger its transition function: its own cell for the
neighbour publishing version and its eight neighbouring cells for the neighbour subscribing version. A generic
PubSub employed functions pubsub.pub as publish function and pubsub.sub as subscribe function. Publish
function takes for argument the name of the topic and the message to publish. Subscribe function takes for
argument the name of the topic to subscribe and a callback function that processes received messages. These
two generic functions can be adapted to match FloodSub, GossipSub, and EpiSub versions. Each published
message reflects the cell state or a start action request. Message can be 0 (dead cell), 1 (alive cell) or 2 (start
request). Any cell of the CA can receive a start request, then the triggered cell broadcasts its state to its
neighbours and effectively starts the CA. Let NV > 3, the CA will runon a N x N circular grid, and let C a cell
of coordinates (x,y) € N x N. Thus the pubsub topic of C will be ”cell-z-y”. For performance comparison
purposes, two DCA versions, a neighbour publishing version (NP) and a neighbour subscribing version (NS),
detailed below and then implemented.

3.1.2. Neighbour publishing version

In this version, on a N x N CA, N > 3, each cell has one topic subscription, thus N2 total sub-
scriptions, and at each round, a cell publishes to its eight neighbours as shown in Figure 1(a), thus 8 x N2
publications per round. Algorithm [I] shows a single cell class, instantiating a cell object member of the CA.
The initialization parameter coord is in the form (x,y) € N x N, the state parameter is either 0 or 1 and the
length parameter is N. The neighb variable is an array of the cell neighbour coordinates, thus an array of length
8 as Moore’s neighbourhood [25] is used. Variable alive_neighb is the number of alive neighbours for this cur-
rent round, and current_neighb is the number of messages received by its neighbourhood. Variable subscribe
keeps the pubsub mechanism, processes each event received by updating the cell and broadcasting each cell
state update to its neighbourhood.

3.1.3. Neighbour subscribing version

In this version, on a N x N CA, N > 3, each cell has 8 topics subscriptions as shown in Figure 1(b)
thus 8 x N2 total subscriptions, and at each round a cell publishes to its own topic, thus N2 publications per
round. Algorithm 2| shows a single cell class, instantiating a cell object member of the CA. The initialization
parameter coord is in the form (z,y) € N x N, the state parameter is either O or 1 and the length parameter
is N. Variable alive_neighb is the number of alive neighbours for this current round, and current_neighb is the
number of messages received by its neighbourhood. Variable subs keeps the pubsub mechanism as an array of
neighbourhood subscriptions that processes each event received, updates the cell and broadcasts the cell state
update to its current topic.

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

Int J Inf & Commun Technol ISSN: 2252-8776 O 35

A ey
/’ T 'r\\"""-'i /:' P s | N3) e
. P % \ J rON
(Ng) 7 (V2) (Ma) 7 (M)
\\q_/" 2 e \._.._,-’\/ / & i
Yoot TN isiie SRR S GOV o (e
(N .) '. C j JIL N 1 j. A :'_"i o]‘_": ;‘VL]
st \/\1_/"\5/ b x___’/‘ /T ___,/
—~ T ~" T =
[Ng) =~ | f\,;ﬁ\ <¢\-() :'\-ss
\\R j/.l f/ .'\‘T \'I LL\._ /) ﬂ____)__ I'r/-—r\.r:\ I__ _,)
R)
N Ny
(@) (b)

Figure 1. Cellular automata publishing/subscribing schemes for (a) Cell C publishing to neighbours N; and
(b) Cell C subscribing to neighbours N;

Algorithm 1 Cell object: Neighbour publishing version

class CELL_NP(COORD,STATE,LENGTH)

coord <+ coord

state < state

neighb < neigbh_list(coord, length)

alive_neighb < 0

current_neighb <+ 0

subscribe < cell_subscribe(this, neighb_publish)
end class

Algorithm 2 Cell object: Neighbour subscribing version

class CELL_NS(COORD,STATE,LENGTH)

coord < coord

state < state

alive_neighb < 0

current-neighb < 0

subs — neighb_subscribe(this, length, cell_publish)
end class

3.1.4. Publish-subscribe functions

PubSub functions of both CA versions used above can be described as: i) On a Neighbour publishing
scheme; ii) Each cell uses the publish function to send a message to its neighbours; and iii) The subscribe
function listens to its topic. In Algorithm [3] these are neighb_publish and cell_subscribe functions. On a
neighbour subscribing scheme, each cell uses the publish function to update its topic and the subscribe function
is used to listen to its neighbours’ topics. In Algorithm[3] these are cell_publish and neighb_subscribe functions.
It is essential to mention that the cell function parameter is just a reference to the cell object and not the cell
object itself.

3.1.5. Message processing function

The message processing function plays the role of an asynchronous CA transition function and is used
for both versions. As shown in Algorithm [4] this function takes for argument a cell reference and a pubsub
publication callback, and then returns a function that processes a message, starts or updates a cell given its
current neighbourhood state according to Conway’s game of life rules: any alive cell surrounded by two alive

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

36 a ISSN: 2252-8776

neighbours lives on the next state, any cell surrounded by three alive neighbours lives on the next state, and in
any other case, the cell dies on the next state. The publication callback is called either when a start request is
made (msg = 2), and in that case, it starts its neighbourhood by broadcasting its current state, or the cell has
reached a new round and has updated its state, and in that case, it publishes its new state.

Algorithm 3 Publish and subscribe functions

procedure CELL_PUBLISH(cell)
pubsub.pub(cell_name(cell.coord), cell.state)
end procedure
procedure NEIGHB_PUBLISH(cell)
for i € cell.neighb do
pubsub.pub(cell_.name(cell.neighbli)), cell.state)
end for
end procedure
function CELL_SUBSCRIBE(cell,publish)
sub < pubsub.sub(cell_-name(cell.coord))
sub.on(”message” , process(cell, publish))
return sub
end function
function NEIGHB_SUBSCRIBE(cell, length, publish)
neighb < neihb_list(cell.coord, length)
sub < Array(8)
for i € neighb do
name < cell_-name(neighb[i].coord)
cur_neighb + pubsub.sub(name)
cur_neighb.on(”message” , process(cell, publish))
subli] + cur_neighb
end for
return sub
end function

Algorithm 4 Message processing function

function PROCESS(cell,publish_callback)
return
function MESSAGE_PROCESSOR(msg)
if msg = 2 then > CA start request
return publish_callback(cell)
else
alive_neighb < alive_neighb + msg
current_-neighb < current_neighb + 1
if current_neighb = 8 then
if (alive_neighb = 2 and cell.state = 1) or alive_neighb = 3 then
cell.state < 1
else
cell.state < 0
end if
(alive_neighb, current_neighb) < (0,0)
return publish_callback(cell)
end if
end if
end function
end function

3.1.6. Miscellaneous functions

Two functions remain necessary to complete the CA, they are used in both versions and are described
in Algorithm |5} Function cell_name returns the topic name of a given cell, and neighb_list function returns an
array of neighbours coordinates for a given cell of coordinates coord and a given length=Nona Nx N, N > 3,
circular grid.

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

Int J Inf & Commun Technol ISSN: 2252-8776 O 37

Algorithm 5 Miscellaneous functions

function CELL_NAME(coord)
return " cell — 7 .coord[0].” — " .coord|[1]
end function
function NEIHB_LIST(coord, len)
neighb < Array(0)
(z,y) + coord
A« [-1,0,1]
for (o, B) € A x Ado
if Ala] # 0 or A[S] # 0 then
u < (len + z + Ala]) mod len
v+ (len +y + A[B]) mod len
neighb.push((u,v))
end if
end for
return neighb
end function

3.1.7. CA initialization and known limitations

The CA can be initialized by instantiating the NV x IV cells and then send a message msg=2 to any topic
’cell-z-y” where (z,y) € N x N. The triggered cell then propagates its current state and effectively starts the
whole CA in an asynchronous domino effect. This straightforward implementation has known limitations, as
a cell does not keep track of its current round and thus does not know if received messages are related to its
current or next round. The following CA implementation tackle this problem.

3.2. Decentralized swarms of distributed CA
3.2.1. Description and conventions

For large scale purposes, the asynchronous distributed CA divided into swarms of autonomous smaller
CA with inner-swarm and inter-swarm communication capabilities. Communication is necessary inside the
swarm and between the cells located at the edges of two distinct swarms. This will be achieved through local
cell-to-cell and global swarm-to-swarm communication channels as shown in Figure [2] Each cell has to keep
track of its current round, and process its neighbourhood messages according to its round number. At round
0, each cell is unaware of its neighbours’ swarm. Each cell identifies itself to its neighbourhood during this
discovery phase through direct messaging as in the NP DCA version previously described. From round 1
begins the processing phase, where each cell is aware of the corresponding swarms of its neighbourhood, and
communication is provided through inner-swarm and inter-swarm broadcast.

Figure 2. Swarms S; of distributed CA communicating

3.2.2. Cell and swarm objects

Algorithm [6] describes a single cell class, instantiating a cell object member of a swarm. The initial-
ization parameter coord is in the form (z,y) € N x N, state parameter is either O or 1, swarm parameter is
a reference to the related swarm of the cell and length parameter is N. Variable neighb is an array of 8 neigh-
bouring cells where each item has its swarm id, cell coordinates, and its two last state rounds stored. Variable

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

38 a ISSN: 2252-8776

subscribe keeps the pubsub mechanism at a local level, processing each event received, updating the cell and
broadcasting cell state updates to its neighbourhood. Algorithm[7]describes a single swarm class, instantiating
a swarm object member of the CA. The initialization parameter swarm_id represents the id of the swarm, and
cell_array parameter assigned to cells variable is the array of cell objects from the swarm. Variable subscribe
keeps the pubsub mechanism at both local and global levels, processing and dispatching each event received
depending on its origin and destination.

Algorithm 6 Cell object: Swarm version

class CELL(COORD,STATE,SWARM,LENGTH)
coord < coord
state < state
swarm-id < swarm.id
round < 0
neighb < neigbh_list(coord, length)
subscribe +— cell_subscribe(this, swarm)
end class

Algorithm 7 Swarm object

class SWARM(SWARM_ID,CELL_ARRAY)

id <— swarm-id

cells < cell_array

subscribe «— swarm_subscribe(this)
end class

3.2.3. Publish and subscribe functions

PubSub functions enable local and inter-swarm communication. On a local level, each cell uses the
publish function to send a message to its swarm, and the subscribe function listens and processes messages
from its topic. In Algorithm[§] these are the functions cell_publish and cell_subscribe. On a global level, each
swarm uses the publish function to dispatch a received message, either to its cells or to another swarm, and
the subscribe function listens and processes messages from its topic. In Algorithm [§] these are the functions
swarm_publish and swarm_subscribe. Functions pubsub.sub and pubsub.sub are generic enough to implement
either FloodSub, GossipSub or EpiSub PubSub models.

Algorithm 8 Publish and subscribe functions

function SWARM_SUBSCRIBE(swarm)
sub < pubsub.sub(swarm_-name(swarm.id))
sub.on(”message” , swarm_process(swarm))
return sub

end function

procedure SWARM_PUBLISH(swarm,msg)

if swarm.id = msg[0] then > process local message
(swarm_process(swarm))(msg)

else > dispatch to another swarm
pubsub.pub(swarm_-name(msg|[0]), msg)

end if

end procedure

function CELL_SUBSCRIBE(cell,swarm)
sub «— pubsub.sub(cell_.name(cell.coord))
sub.on(”message”, cell_process(cell, swarm))
return sub

end function

procedure CELL_PUBLISH(msg)
pubsub.pub(cell_-name(msg[1]), msg)

end procedure

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

Int J Inf & Commun Technol ISSN: 2252-8776 O 39

3.2.4. Cell message broadcast
The cell message broadcast procedure described in Algorithm [J]sends a message to all neighbours of
a given cell through swarm_publish procedure.

Algorithm 9 Cell message broadcast

procedure CELL_MSG_BROADCAST(cell,swarm)
for i € cell.neighb do
cur_nghb < cell.neighbi]
msg < (cur_nghb.swarm_id, cur_nghb.coord, cell.coord, cell.round, cell.state)
swarm_publish(swarm, msg)
end for
end procedure

3.2.5. Swarm processing function

The swarm processing function plays the role of an asynchronous message router. As shown in Al-
gorithm this function takes for argument the current swarm reference. It returns a function that processes
each message as follows: if the message is heading to an inner cell, the target cell processes it directly. If the
message is heading to a known swarm, the pubsub swarm_publish function will send it. In the initialization
phase, the swarm destination is unknown. Thus the message is directly dispatched to the corresponding cell via
pubsub cell_publish function.

Algorithm 10 Swarm processing function

function SWARM_PROCESS(swarm)
return
function MESSAGE_ROUTER(msg)
coord < msg[1]
cell_id < find_cell_id(swarm.cells, coord)

if cell_id > 0O then > Incoming message
return (cell_process(swarm.cells[cell_id], swarm)(msg)

else if msg[0] > O then > Known swarm publish
return swarm_publish(swarm, msg)

else > Unknown swarm publish
return cell_publish(msg)

end if

end function
end function

3.2.6. Cell processing function

The cell processing function plays the role of an asynchronous transition function. As shown in
Algorithm [TT] this function takes for argument a cell reference and a pubsub publication callback and returns
a function that processes a message, starts or updates a cell depending on the message received. If the received
swarm id is -1, the cell identifies itself on the network, broadcasting its swarm id, coordinates and current state
to its neighbourhood. In other cases, the received message is processed in the neighbour array. Suppose the
cell received enough neighbours for its round (processed via alive_n function). In that case, Conway’s game
of life rules are applied, the neighbour state array is reset for this round (via reset_neighb procedure), and the
cell message broadcast procedure sends the next state to its neighbours.

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

40 a ISSN: 2252-8776

Algorithm 11 Cell processing function

function CELL_PROCESS(cell,swarm)
return
function MESSAGE_PROCESSOR(msg)
(swarm_id, coord, target, round, state) <— msg
if swarm_id = —1 then > Start the CA
cell_-msg_broadcast(cell, swarm)
return true
end if
neighb_id < coord_to_id(cell.neighb, target)
cell.neighb[neighb_id].swarm_id < swarm_id
cell.neighb[neighb_id].s[round mod 2] < state
(alive, total) < alive_n(cell.neighb, cell.round)
if total = 8 then > All neighbours received
if (alive = 2 and cell.state = 1) or alive = 3 then
cell.state < 1
else
cell.state < 0
end if
cell.round < cell.round + 1
reset_neighb(cell)
cell_msg_broadcast(cell, swarm)
return true
end if
return false
end function
end function

4. PRELIMINARY RESULTS - PERFORMANCE COMPARISONS
4.1. Implementation and experimentation testbed

DCA and DSDCA algorithms were implemented in the NodeJS framework and interfaced with a
tweaked version of IPFS, compatible with Linux x64 and OS X platforms. Source code is freely available on
GitHub [26]. The following performance measures were carried out using Grid’5000 testbed [27], a large-scale
testbed for experiment-driven research supported by a scientific interest group (GIS) hosted by Inria, including
CNRS, RENATER, and several French Universities as well as other organizations. Only IPFS bandwidth was
measured during preliminary experiments, but inconsistencies between IPFS and network bandwidth, including
TCP/IP overhead, were observed. It was then decided that total network bandwidth usage, including TCP/IP
overhead, was the most relevant resource to monitor.

4.2. DCA NP/NS Grid’5000 experimentation protocol

Experimentations with DCA NP and NS versions were carried out on various clusters from 5 different
sites (Lyon, Lille, Nancy, Nantes, Grenoble). Each experiment was launched for 100 rounds on five machines
in parallel, and network bandwidth was measured with vnstat. Various settings were used, such as the number
of nodes (from 10 to 226), FloodSub and GossipSub router protocols, and NP / NS DCA versions. At the end
of each experiment, the total network bandwidth used for IPFS nodes bootstrapping and CA processing was
measured, and the average network bandwidth per node was processed. Each DCA ran on individual machines,
and network bandwidth was measured through vnstat software in interactive mode, monitoring each machine’s
loopback (lo).

4.3. Distributed cellular automata performance

DCA performance was measured during 250 experiments with several nodes ranging from 10 to 226.
The focus is kept on results for experiments with more than 50 nodes. As shown in Figures 3(a) and 3(b), there
is no meaningful difference in network bandwidth between both PubSub protocols when comparing NP or NS
implementations, 0.1% for NP version and 0.3% for NS version on average. Contrarily, it is much relevant to
compare NP and NS implementations running with the same PubSub protocol, as shown in Figure 4(a) and
4(b).

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

Int J Inf & Commun Technol ISSN: 2252-8776) 41

On average, there is a 24.7% bandwidth difference for Floodsub protocol and a 24.3% bandwidth
difference for GossipSub protocol. In any case, and contrarily to what was supposed theoretically, the NP
version seems to be the most bandwidth-efficient algorithm, even independently from FloodSub or GossipSub
protocol.

| NP Floodsub Network Bandwidth (kB/Node/Step) [] NS Floodsub Network Bandwidth (kB/Node/Step)
NP Gossipsub Network Bandwidth (kB/Node/Step) NS Gossipsub Network Bandwidth (kB/Node/Step)
70 80
60 = o e
- 60 M
50 . | e
M 50 ==
40

‘ 20

50 65 82 01 122 145 170 197 226 50 65 82 101 122 145 170

Number of Nodes Number of Nodes
(a) (b)

Figure 3. DCA: Floodsub vs Gossipsub network bandwidth for (a) NP version in kilobit per node per step and
(b) NS version in kilobit per node per step

[] NP Floodsub Network BW (kB / Node / Step) NP Gossipsub Network BW (kB / Node / Step)
[] NS Floodsub Network BW (kB / Node / Step) NS Gossipsub Network BW (kB / Node / Step)
80 80
70 — 1 70 — =
60 o [] 60 o
50 - - 50 =
20 | 40
30 30
0 20
10 10
0
50 65 82 101 122 145 170 50 65 82 101 122 145 170
Number of Nodes Number of Nodes
(a) (b)

Figure 4. DCA: Floodsub and Gossipsub network bandwidth for (a) NP Floodsub vs NS Floodsub in
kb/node/step and (b) NP Gossipsub vs NS Gossipsub in kb/node/step

4.4. DSDCA Grid’5000 experimentation protocol

Experimentations for Decentralized Swarms of DCA were carried out across five sites with machines
from various clusters with 10 GBps connectivity (Nova-Lyon, Chiclet-Lille, Gros-Nancy, Ecotype-Nantes,
Dahu-Grenoble). Each swarm was running on a specific site, and network bandwidth was measured with
vnstat software. Nova was used as the IPFS private network and swarm bootstrapping node, Chiclet, Gros,
Ecotype, and Dahu as Swarms of DCA nodes. Various settings were tried, such as the number of swarms (3
and 4), nodes (from 13 to 404), and FloodSub and GossipSub router protocols. Each experiment was run five
times for 1000 rounds. At the end of each experiment, the total network bandwidth used between sites was
measured, and the average network bandwidth per node was processed.

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

42 a ISSN: 2252-8776

4.5. Decentralized swarms of DCA performance

During 250 different experiments, DSDCA implementation performance was measured with several
nodes ranging from 13 to 404. Network bandwidth measures for the bootstrap phase (IPFS private network
and node bootstrapping) was dissociated from the DSDCA processing phase. Concerning the bootstrap phase
in three swarms and four swarms experiments, there is a substantial network bandwidth difference between
FloodSub and GossipSub versions, as shown in Figures 5(a) and 5(b). On average, there is a 31.3% band-
width difference for FloodSub vs GossipSub protocol on three swarms bootstrap phases, and 11.7% bandwidth
difference for FloodSub vs GossipSub protocol on four swarms bootstrap phases.

| FloodSub Bootstrap Bandwidth (in MB/Node) FloodSub Average Bootstrap BW (in MB/Node)
GossipSub Bootstrap Bandwidth (in MB/Node) GossipSub Average Bootstrap BW (in MB/Node)
6 6
4 4
| HH HH —‘ | |
0 ! 0
13 20 68 148 260 20 68 143 260 404
Number of Nodes Number of Nodes
() (b)
Figure 5. DSDCA: Floodsub vs Gossipsub bootstrap bandwidth for (a) 3 Swarms DSDCA in Mb/node and (b)
4 Swarms DSDCA in Mb/node

Regarding the DSDCA processing phase in three swarms and four swarms experiments, network
bandwidth variations between FloodSub and GossipSub versions are pretty significant and informative, as
shown in Figures 6(a) and 6(b). On average, there is a 55,45% bandwidth difference for FloodSub vs GossipSub
protocol on three swarms bootstrap phases, and 34.16% bandwidth difference for FloodSub vs GossipSub
protocol on four swarms bootstrap phases. In any case, as a preliminary result, and contrarily to what was
initially supposed, FloodSub is observed to be the most bandwidth-efficient protocol for the DSDCA algorithm,
independently from the number of nodes and of swarms.

FloodSub Processing Bandwi] FloodSub Processing Bandy

GossipSub Processing Ba GossipSub Processing B

=

13 20 68 143 260 20 68 148 260 404
Number of Nodes Number of Nodes

(a) (b)

Figure 6. DSDCA: Floodsub vs Gossipsub processing bandwidth for (a) 3 Swarms DSDCA in kb/node/step
and (b) 4 Swarms DSDCA in kb/node/step

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

Int J Inf & Commun Technol ISSN: 2252-8776) 43

4.6. A few statistics about Grid’5000 usage

This experiment used 4,701 CPU core hours on 47 machines across Lille, Grenoble, Lyon, Nancy, and
Nantes datacenters. The total network bandwidth used across Grid’5000 datacenters is estimated to be 137.475
TB for NP/NS DCA versions experiments and 148.396 TB for decentralized swarms of DCA experiments.
About 500 different experiments were run during two weeks, about 43,000 IPFS nodes were fired up, and
30,000,000 rounds of CA were computed.

5. CONCLUSION AND FURTHER WORKS

This article introduced an experimental implementation of simple asynchronous distributed cellular
automata and decentralized swarms of asynchronous distributed cellular automata driven by IPFS and Libp2p
PubSub. PubSub functions genericity provides the possibility to switch between FloodSub, GossipSub and
Episub protocols. Experiments were carried out on Grid’5000 testbed for either NP/NS DCA and 3/4 swarms
DSDCA. Preliminary results showed the sustainability of NP version over NS DCA and FloodSub protocol
over GossipSub for DCA and DSDCA algorithms.

Further experiments will be conducted with a larger number of Swarms and Nodes, and a comparison
of protocol performance will be made with the EpiSub protocol. EpiSub implementation over Libp2p/IPFS is
currently under active development, as an automated DSDCA experiment launcher and bandwidth monitoring
over Grid’5000, and a real-time asynchronous distributed cellular automata visualization system. This work is
prior to implementing a large-scale decentralized epidemic propagation modelling and prediction system based
upon asynchronous distributed cellular automata applied to the current SARS-CoV-2 (COVID-19) epidemic.
This system will use a hybrid adapted version of SIR models driven by DSDCA and fed by worldwide data,
estimating population dynamics on various factors such as mobility, infection rates, vaccine rates, recoveries
and deaths. In this DSDCA system, individual nodes will simulate population dynamics in cities, swarms
for regions and upper-level swarms for countries. Although cellular automata can be computed faster in a
centralized manner, decentralization will enable to free from memory and processing power limits induced by
centralization in the context of such a very large scale simulation application.

ACKNOWLEDGEMENT

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER, and several universities as well as
other organizations (see https://www.grid5000.fr). I want to express my gratitude and thanks to Pierre Neyron
from CNRS, which granted me Grid’5000 open access to run DCA and DSDCA experiments across 5 French
datacenters. I want to thank especially George Polyzos from AUEB, Nuno Santos from INESC-ID and Jorge
Soares from Protocol Labs, who reviewed this paper at a very early stage and whose feedbacks motivated me
to elaborate and dig further. I would also like to thank the French Government for awarding social grants,
providing me with the financial means to complete this self-funded, non-profit and independent research.

REFERENCES

[11 J. Santos, N. Santos, and D. Dias, ”Censorship-resistant web annotations based on ethereum and IPFS,” in Proceedings of the
35th Annual ACM Symposium on Applied Computing (SAC ’20). Association for Computing Machinery, 2020, pp. 2211-2213, doi:
10.1145/3341105.3374049.

[2] A. J. Collados-Lara, E. Pardo-Igizquiza, and D. Pulido-Velazquez, ”A distributed cellular automata model to simulate poten-
tial future impacts of climate change on snow cover area,” Advances in Water Resources, vol.124, pp. 106-119, 2019, doi:
10.1016/j.advwatres.2018.12.010.

[3] J. Benet, "IPFS - content addressed, versioned, P2P file system,” arXiv Networking and Internet Architecture, arXiv:1407.3561,
2014.

[4] S. Ulam, ”On some mathematical properties connected with patterns of growth of figures,” Proceedings of Symposia on Applied
Mathematics, vol.14, pp. 215-224, 1962.

[5] J. Von Neumann and A. W. Burks, Theory of self reproducing automata, 1st ed., Illinois, USA: University of Illinois Press, 1966.

[6] V. Christianto, V. Krasnoholovets, and F. Smarandache, Cellular automata representation of submicroscopic physics,” Prespacetime
Journal, vol. 10, no. 8, pp. 1024-1036, Dec. 2019.

[7] PM.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B. Overeinder, “"Distributed cellular automata: large scale simulation of natural
phenomena,” Computer Physics Communications, Jan. 2001.

[8] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, "When blockchain meets distributed file systems: an overview, challenges, and
open issues,” IEEE Access, vol. 8, pp. 50574-50586, 2020, doi: 10.1109/ACCESS.2020.2979881.

About decentralized swarms of asynchronous distributed cellular automata using ... (Vincent Manuceau)

44

| ISSN: 2252-8776

[9]

[10]
(1]
[12]
[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

D. Dias and J. Benet, "Distributed web applications with IPFS, tutorial,” in Web Engineering. ICWE 2016. Lecture Notes in Com-
puter Science, vol. 9671, A. Bozzon, P. Cudre-Maroux, and C. Pautasso, Eds., 2016, pp. 616-619.

S. S. Hasan, N. H. Sultan, and F. A. Barbhuiya, ”Cloud data provenance using IPFS and blockchain technology,” in Proceedings of
the Seventh International Workshop on Security in Cloud Computing (SCC ’19), 2019, pp. 5-12, doi: 10.1145/3327962.3331457.
Protocol Labs, “Filecoin: a decentralized storage network,” Protocol Labs Research, July 2017. Available:
https://research.protocol.ai/publications/filecoin-a-decentralized-storage-network (accessed Sep. 12, 2020).

S. He, Y. Lu, Q. Tang, G. Wang, and C. Qishi Wu, ’Peer-to-peer content delivery via blockchain,” arXiv Cryptography and Security,
arXiv:2102.04685, 2021.

J. P. de Araujo, ”A communication-efficient causal broadcast publish/subscribe system,” Ph.D. dissertation, Departement of Infor-
matique, Télécommunications et Electronique, Sorbonne Université, Paris, France, pp. 19-21, 2019.

V. Santos, "Js-libp2p-floodsub”, Libp2p, Dec. 2020. Available: https://github.com/libp2p/js-libp2p-floodsub (accessed Feb. 14,
2021).

D. Dias, ”PubSub at Scale,” Protocol/ResNetLab Labs, Sep. 2020. Available:
https://github.com/protocol/ResNetLab/blob/master/OPEN_PROBLEMS/PUBSUB_AT_SCALE.md (accessed Feb. 20, 2021).
R.Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-Piergiovanni, "TERA: topic-based event routing for peer-to-peer
architectures,” DEBS ’07 : Proceedings of the First ACM International Conference on Distributed Event-Based Systems, Jan. 2007,
pp. 2-13, doi:10.1145/1266894.1266898.

D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, "GossipSub: attack-resilient message propagation in the Filecoin
and ETH2.0 networks,” in Proceedings of Protocol Labs TechRep (PL-TechRep-2020-002), arXiv:2007.02754, 2020.

”Publish / Subscribe,” Libp2p. Available: https://docs.libp2p.io/concepts/publish-subscribe (accessed: Feb 19, 2021].

D. Vyzovitis, "Gossipsub v1.1: Security extensions to improve on attack resilience and bootstrapping,” Libp2Zp, Dec. 2020. Avail-
able: https://github.com/libp2p/specs/blob/master/pubsub/ gossipsub/gossipsub-v1.1.md (accessed Feb 2, 2021).

D. Vyzovitis, “Episub: Proximity Aware Epidemic PubSub for libp2p,” Libp2p, June 2019. Available:
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/episub.md (accessed Feb. 14, 2021).

J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” 2007 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), 2007, pp. 301-310, doi: 10.1109/SRDS.2007.27.

J. Leitao, J. Pereira, and L. Rodrigues, "HyParView: a membership protocol for reliable gossip-based broadcast,” 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07), 2007, pp. 419-429, doi:
10.1109/DSN.2007.56.

C. Tang, R. N. Chang, and C. Ward, "GoCast: gossip-enhanced overlay multicast for fast and dependable group communication,”
2005 International Conference on Dependable Systems and Networks (DSN’05), 2005, pp. 140-149, doi: 10.1109/DSN.2005.52.
S. Wolfram, A new kind of science, 1st ed., Champaign, IL, USA: Wolfram Media, 2002, pp. 231-249.

T. Toffoli and N. Margolus, Cellular automata machines: a new environment for modeling, Cambridge, MA, USA: The MIT Press,
1987, doi: 10.7551/mitpress/1763.001.0001.

V. Manuceau, ”About decentralized swarms of Aaynchronous distributed cellular automata using IPFS,” GitHub, July 2021. Avail-
able: https://github.com/vincent-manuceau/Decentralized_Cellular_Automata_over_IPFS (accessed Aug. 30, 2021).

F. Desprez and L. Nussbaum, "The data-centers facet of SILECS (A.K.A. Grid’5000)” SILECS/Datacenters - Grid’5000, April
2019. Available: https://www.grid5000.fr/mediawiki/images/Grid5000.pdf (accessed Aug. 30, 2021).

BIOGRAPHY OF AUTHOR

Vincent Manuceau (> £4Ed P is an independent researcher with main interests in cellular automata,
inter-planetary file system (IPFS) and recursive internetwork architecture (RINA). Currently Head of
Creole Shop company, the leading Caribbean food and beverages online grocery store with 24h/48h
shipping worldwide (https://www.creole-shop.fr/en), he develops innovative technologies with di-
rect applications to the company, such as full automation of the logistics chain. He does fundamental
research on his spare time, and writes computer science and mathematics courses, he also is re-
viewer for international journal of informatics and communication technology (IAES 1J-ICT) since
2021. Vincent is always open to knowledge sharing and teaching. Further info on his homepage:
http://vincent.manuceau.net. He can be contacted at email: vincent@manuceau.net.

Int J Inf & Commun Technol, Vol. 11, No. 1, April 2022: 32-44

http://orcid.org/0000-0003-3425-8459
https://scholar.google.com/citations?user=IPY64xUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222166343
https://publons.com/researcher/4137594/vincent-manuceau/

	Introduction
	Definitions
	Cellular automata
	Inter-planetary file system
	PubSub: IPFS and Libp2p implementations
	About PubSub
	IPFS FloodSub
	Libp2p GossipSub
	Libp2p EpiSub

	Proposed Algorithms
	Simple distributed cellular automata
	Used cellular automata and conventions
	Neighbour publishing version
	Neighbour subscribing version
	Publish-subscribe functions
	Message processing function
	Miscellaneous functions
	CA initialization and known limitations

	Decentralized swarms of distributed CA
	Description and conventions
	Cell and swarm objects
	Publish and subscribe functions
	Cell message broadcast
	Swarm processing function
	Cell processing function

	Preliminary Results - Performance comparisons
	Implementation and experimentation testbed
	DCA NP/NS Grid'5000 experimentation protocol
	Distributed cellular automata performance
	DSDCA Grid'5000 experimentation protocol
	Decentralized swarms of DCA performance
	A few statistics about Grid'5000 usage

	Conclusion and Further works

