
International Journal of Informatics and Communication Technology (IJ-ICT)
Vol. 12, No. 2, August 2023, pp. 85∼91
ISSN: 2252-8776, DOI: 10.11591/ijict.v12i2.pp85-91 ❒ 85

Comparison of three common software-defined network
controllers

Rikie Kartadie1, Edy Prayitno2
1Department of Computer Engineering, Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia

2Department of Information System, Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia

Article Info

Article history:

Received Dec 17, 2021
Revised Mar 16, 2022
Accepted Apr 15, 2022

Keywords:

Controller
Floodlight
Open daylight
Open network operating system
Software-defined network

ABSTRACT

The software-defined network (SDN) controller adds and removes the contents
of the flow table through secure channels to determine how packets are processed
and how the flow table is managed. The controller pays attention to network in-
telligence and becomes the middle part, where the network manages the transfer
data of the aircraft delivered via the OpenFlow (OF) switch. To this end, the
controller provides an interface for managing, controlling, and managing this
switch flow table. Run tests to calculate controller throughput and latency lev-
els and test using the cbance tool, which can test transmission control protocol
(TCP) and user datagram protocol (UDP) protocols. The tests are run by forcing
the controller to run at maximum without any additional settings (default set-
tings) in order to use the correct information about the controller’s capabilities.
Because of this need, you need to test the performance of your controller. In
this study, the tests were run on three popular controllers. Test results show that
flowed controllers are more stable than open network operating dystem (ONOS)
and open daylight (ODL) controllers in managing switch and host loads.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rikie Kartadie
Department of Computer Engineering, Universitas Teknologi Digital Indonesia
Jl. Raya Janti, Jl. Majapahit No. 143, Jaranan, Banguntapan, Bantul, Yogyakarta 55918, Indonesia
Email: rikie@utdi.ac.id

1. INTRODUCTION
The controller that directly controls the data from the device is a major component of the software-

defined network (SDN). The controller is responsible for determining the way to handle packages and manage
flow tables by adding and removing contents of flow tables through secure channels. The controller con-
centrates network intelligence, while the network maintains data forwarding that is distributed through the
OpenFlow (OF) switch. For this reason, the controller provides an interface for managing, controlling, and
administering flow tables on the switch [1].

The controller performance is one of the tens controllers selection criteria [2], the SDN controller must
be able to make flow tables beforehand to the possible level and must have called capabilities and I/O that can
ensure that the controller is not an obstacle in the formation of flow. Thus, two of the key performance metrics
associated with the SDN controller are set up flow time and the amount of flow per second. This performance
metric is very influential when additional SDN controllers must be deployed. For example, if a switch in the
SDN architecture starts to provide a flow that is larger than can be supported by an existing SDN controller,
so more than one controller must be implemented. The flow setup time and the amount of flow per second are
closely related to the latency and throughput generated by the controller. This is also done on the performance

Journal homepage: http://ijict.iaescore.com

86 ❒ ISSN: 2252-8776

test carried out on open daylight (ODL) by SDNTC even though using different tools [3]. The active mode
switch consistently initiates traffic to the controller in the form of a packet in message. For most stress tests,
MT-collective benchmark (cbench) and multinet switches operate in both active and idle modes [4]. Cbench is
a sequential open-source program (parallel application) with multiple datasets (formerly MiDataSets) compiled
by the community for realistic benchmarking and research that enables program and architecture optimization.
The source code for individual programs has been simplified for portability. Some evolving controllers are
ODL [5], pythonic operating system (POX) [6], network operating system (NOX) [7], Beacon [8], Ryu [9],
open network operating system (ONOS) [10], floodlight [11], maestro [12], and there are still a few others that
continue to emerge and develop. Controller developers develop it by using a variety of platforms, with the use
of a variety of platforms this makes each controller has a different performance from each another.

Muntaner tested the NOX, Maestro, Beacon, and Trema controllers. The four controllers are con-
trollers that do not use graphical user interface (GUI) in the performing input table flow, while this study
examines controllers that use GUI in the performing input table flow [1]. Research by Turull et al. [2] focusing
on network virtualization applications and measuring the delay that occurs in internet control message protocol
(ICMP) messages, the transfer time of the transmission control protocol (TCP) connections, and packet loss in
user datagram protocol (UDP) traffic, various delays between switches and controllers. This research focuses
on throughput and latency by simulating the amount of flow per second and simulating the number of switches
involved in the floodlight controller and ONOS [13].

Research by Rowshanrad et al. [14] tested the performance of floodlight and ODL by measuring the
performance of the controller when run on 3 mininet standard topologies namely single, linear, and tree with
the number of switches and hosts involved a maximum of 8 (eight) switches. While what is going to be done in
this research is to involve as many switches and hosts as possible and measure the flexibility of the controller
to run or control a variety of those devices. Therefore, the floodlight and ONOS controllers are tested.

According to Kartadie et al. [15] also conducts OF performance testing using OpenWRT-based soft-
ware. His research shows that the performance of OF switch-based software is often implemented on campus.
Testing OpenWRT switching performance supported OF software on campus implementations results in a fluc-
tuating prototype latency value quite diverse compared to mininet. During this study, the performance test used
is not a tool test or software-based OpenWRT test but is targeted at a test employing a controller.

Research by Duque et al. [16] also tested the performance of floodlight and ODL controllers, Duque’s
research emphasized the performance of both controllers in handling load balancing by not being attentive to the
quantity of devices involved. This study does not focus on load balancing but focuses on the value of the output
and latency displayed by both floodlight, ONOS, and ODL controllers with the number of devices involved.
Research with almost the same approach was research conducted by Asadollahi and Goswami [17], which
performs throughput and latency testing, but only tests one controller, namely floodlight, while researchers
conduct tests on a floodlight, ONOS, and ODL controllers and compare the performance of the controller,
which one was better.

In line with the research conducted by Zhu [18], throughput and latency are components employed
in measuring the performance of the controller. Tools that may be employed in measuring throughput and
latency consistent with Zhu include cbench, PktBlaster, and OF network (OFnet) which have their respective
advantages. Actual performance testing may be tested using queuing models like those conducted by Xiong et
al. [19] the research to be allotted adopts this study, but directly compares the two controllers. Other research
about controller testing includes testing the performance of floodlight controllers with POX [20] by testing
using the topology found within the mininet. This research does not use a particular topology instead puts a
burden on the number of devices to the controller. Topology is not the most reference during this study. From
some research that has been done, most of them focus on testing the performance or performance of floodlight
controllers, and compared to other controllers from different vendors, there are even some that compare with
controllers that have different platforms. On the opposite hand, this study also tested the ability of controllers
to handle the number of switches involved and also the ability of controllers to handle the flow. The test to be
dispensed is to check the throughput and latency by using the common building block (CBB) test tool following
the recommendations given by previous researchers. A comparison of features between flood light, ONOS, and
ODL obtained from Mamushiane [13] are often seen in Table 1 (adjusted as needed).

Floodlight, ONOS, and ODL are commonly used controllers, so accurate information is needed in
this case controller performance, especially if the controller will be used for implementation or other tests,
especially on switch usage and flows that may be involved and as a basis for selecting controllers. Testing is

Int J Inf & Commun Technol, Vol. 12, No. 2, August 2023: 85–91

Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 87

limited to using the mininet emulator with OF 1.3 protocol to emulate switches and hosts, and used cbench
tool. The controller function in the specification is so important that the performance of the controller is
deemed necessary to test how well the controller performs. After testing, it is expected to know the amount
of throughput and latency of controllers, especially floodlight, ONOS, and ODL controllers that have the same
Java platform.

Table 1. Feature-bade comparison of SDN controllers [13]
Floodlight ODL ONOS

Southbound interface OF 1.0, 1.2,1.3,1.4,1.5 OF 1.0, 1.3, NETCONF/YANG, OF 1.0, 1.3,
OVSDB,PCEP,BGP/LS, LISP, 1.4, 1.5,NETCONF
SNMP, OFCONFIG

REST API YES YES YES
OS support Linux, Linux, Linux,

Windows, MAC Windows, MAC Windows, MAC
Virtualization Mininet & OVS Mininet & OVS Mininet & OVS
Distribute/centralize Distribute Distribute Distribute

2. RESEARCH METHOD
In this study, the floodlight, ONOS, and ODL controllers to be tested are run on the host/PC while

the Mininet emulator is installed and running on VirtualBox/guest, the OF protocol is used and embedded in
mininet is OF 1.3. Floodlight, ONOS, and ODL latency tests with the number of switches ranging from 2
to 450 until the switch limit can no longer be set by the controller. Floodlight, ONOS, and ODL throughput
testing with the best number of switches that can still be managed by the controller during latency testing. The
test scheme can be seen in Figure 1.

Figure 1. Test scenarios conducted

The specifications of the PC/Laptop used in this test are as follows; i) CPU: intel® CoreTM i3-4005U
CPU @1.70 GHz×4 threat, ii) RAM: SODIMM DDR3 4 Gb 1333 MHz, and iii) operation system: Linux
UBUNTU 18.04 LTS kernel 4.15.0-47-generic. As shown in Figure 1, the test scenario, testing is completed
by using cbench involving a variety of switches and specific hosts (according to the planned research flow
diagram) to induce the performance of the controller. The controller was placed on VirtualBox, PC/host run
mininet that emulated switches and run cbench. In testing all CPUs threats were used, no changes/variations in
CPU, threats were made.

2.1. Latency test
In latency tests, a load with a test length of 5,000 ms is given and a pause start testing after fea-

tures reply is received for 5 ms. Latency test is carried out with the following command:

Comparison of three common software-defined network controllers (Rikie Kartadie)

88 ❒ ISSN: 2252-8776

˜/oflops/cbench\$ cbench ˜
-c [ip-kontroler] -p 6633 -l 5 ˜
-m 5000 -D 5 -M 5 ˜
-s [number of switches]

2.2. Throughput test
This is the same as the latency test, but the throughput test is called with the following command:

˜/oflops/cbench\$ cbench ˜
-c [ip-kontroler] -p 6633 -l 5 ˜
-m 5000 -D 5 -M [number of MAC] ˜
-s [number of Switch] -t

The test is carried out in the range of 30–450 hosts with the optimal number of switches with an
increase in the range of 10 hosts. The two methods above are used in floodlight, ONOS, and ODL tests.
Responses/second for latency and throughput-based performance evaluation. this scale is used as a metric
to measure these two evaluations. This is because these two evaluations run multiple requests in parallel.
Packet in messages are the only switch-solicited OF packet that should get a response from a controller, so
cbench uses a ”responses/sec” scale [21].

2.3. Research assumptions used
This study uses several basic assumptions that do not damage or affect the results. This supposal

relies on the understanding that topology diagrams are not only within the sort of physical networks and virtual
network components but can even include applications that are used, are being developed or applications also
can play a job as nodes and links [13]. CPU and memory usage at the time of testing was not tested and is
considered not to affect the testing process because it is in a fixed environment.

3. RESULTS AND DISCUSSION
3.1. Latency test

Latency testing is performed on a range of 30 to 450 switches with an increase in the range of 10
switches. The number of tests per session is 5x the number of repetitions. Examples of responses from cbench
to testing are as shown in.

cbench: controller benchmarking tool
running in mode ’latency’
connecting to
controller at 192.168.56.1:6633
faking 10 switches
offset 1 :: 5 tests
each; 5000 ms per test
with 5 unique source MACs per switch
learning destination
mac addresses before the test
starting test with 5 ms
delay after features_reply
ignoring first 1 "warmup"
and last 0 "cooldown" loops
connection delay of 0ms
per 1 switch(es)
debugging info is off
01:33:14.386 10 switches: fmods/sec:
6366 3231 3227 3034 3191 5651 3132
3063 2414 2203 total = 7.101693 per ms
01:33:19.488 10 switches: fmods/sec:
7004 3502 3500 3496 3492 6818 3370
3310 2652 2162 total = 7.861158 per ms
01:33:24.590 10 switches: fmods/sec:
7010 3530 3531 3534 3527 6920 3443
3379 2618 2153 total = 7.928978 per ms
01:33:29.694 10 switches: fmods/sec:
7062 3529 3546 3547 3529 6910 3418
3400 2682 2184 total = 7.959643 per ms
01:33:34.797 10 switches: fmods/sec:

Int J Inf & Commun Technol, Vol. 12, No. 2, August 2023: 85–91

Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 89

7108 3536 3546 3554 3547 6976 3467
3388 2702 2196 total = 8.002956 per ms
RESULT: 10 switches 4 tests
min/max/avg/stdev =
7861.16/8002.96/7938.18/51.66
responses/s

Sample data from the latency test results on the floodlight, ONOS, and ODL controller is seen within
the sample data Table 2 where this table provides samples of data obtained in testing with a predetermined
switch range. The test value is presented within the sort of a graph that may be seen in Figure 2, the graph
will be seen within the response changes every additional number of switches that has got to be handled by
controller. In Table 2 when viewed from the average data (avg) responses/second vs switches, the response
given by the floodlight controller shows a relatively stable response, even though the ONOS controller gives a
high value for a small number of switches, it gives a fluctuating value, until finally, it does not respond to the
switch value of 450, while the ODL controller is only able to respond to the switch value of 210, and then does
not respond. The average value of latency can be seen in Figure 2, it can be seen from the three controllers, the
floodlight controller can provide a more stable latency value compared to other controllers and can continue to
respond with an increase in the number of switches and a relatively small decrease in response value compared
to ONOS and ODL.

Table 2. Sample data of controllers latency (responses/sec)
Number of switches

30 70 210 360 450
Floodlight controller min 1789.03 1661.75 1390.09 933.61 185.49

max 2519.33 2003.42 1729.03 1658.19 1331.69
avg 2229.46 1831.35 1615.53 1407.83 995.09

ONOS controller min 294,00 1493,97 0,00 0,00 0
max 12543.25 5465.99 4543.79 4381.88 30
avg 5859.89 3649.59 1135.95 1468.59 7.5

ODL controller min 1634.4 891.6 5.2 0 0
max 1986.98 1968.2 76.6 0 0
avg 1816.24 1634.4 23.85 0 0

A significant decrease in response is given on the number of switches above 210, which can be caused
because cbench has an algorithm waiting for a new flow mod match to respond. As quoted from github mininet,
that the latency algorithm in cbench is to simulate n switches (n=16, was the default), then make n OF sessions
to the controller. For each CBB session have steps: i) sending a packet; ii) waiting for a suitable flood mod
to return as a response; and iii) repeating steps (1) and (2), then 4) counting the number of times steps (1)-(3)
occur per second, so the ability of controllers to respond to data packets only on vulnerable switches 1-50
switches.

Figure 2. Controller latency average test results (in responses/sec)

3.2. Throughput test
Throughput testing is performed on a range of switches 10 to 450 hosts with an increase in the range

of 10 hosts. The number of test switches is 20 switches, each session is repeated five times. Sample data can
be seen in Table 3. From the data obtained, a graph was made throughput on controllers as shown in Figure 3.

Comparison of three common software-defined network controllers (Rikie Kartadie)

90 ❒ ISSN: 2252-8776

Table 3. Sample data throughput controllers (responses/sec)
Number of hosts

30 70 210 360 450
Floodlight controller min 79.06 322.66 419.88 1185.06 1498.26

max 84.55 326.11 422.04 1190.84 1503.06
avg 80.62 323.11 421.57 1187.79 1500.38

ONOS controller min 153.85 323.72 249.91 244.12 195.45
max 246.94 708.97 380.96 323.94 851.59
avg 200.16 511.41 293.41 267.32 466.09

ODL controller min 70.4 374.76 817.96 1256.84 1720.32
max 95.86 398.66 907.53 1347.97 1798.36
avg 85.41 385.62 867.56 1301.11 1747.99

Figure 3. Controller throughput average test results (in responses/sec)

When viewed from the typical data (avg) responses/second vs. the number of hosts shown in Table 3
and Figure 3, the ODL controller can provide good capabilities because with the increasing number of hosts,
although floodlight can provide almost the same value, the results provided cannot be said to be stable, the
data on the number of hosts 210 floodlights had decreased performance. While ONOS gave relatively lower
results than the two controllers, but the given value did not experience a significant increase, so it can be said
that this controller experienced a constant response. The upper the quantity of flow/seconds will be served by a
controller. The throughput testing algorithm uses cbench [22], [23], declaring in throughput mode (e.g.,, with
’-t’): for every session: as long because the buffer isn’t full: i) package in is queued for processing and ii)
calculates flow mod after they return. With a less complicated algorithm, cbench provides a way more stable
lead to throughput testing and is directly proportional to the quantity of hosts handled by the controllers.

4. CONCLUSION
The controller can be an important part of the SDN architecture. The controller performance should be

tested with various environments. Testing of the controller provides a better view of the choice of controller to
be used, although this test still needs improvement, especially in testing with other elements. This test results
that the floodlight controller is superior in responding to the latency test compared to the ONOS and ODL
controllers, although it provides less stability in the throughput test. The researcher stated that the results of
this study were not perfect and could not be used as a reference, but the results of this study could provide a
more detailed picture of the controller’s performance. The determining element in performance testing is the
accuracy in reading the data, and in determining the tool to be used. In selecting a tool, consideration should
rest on whether or not it is suitable for the instrument to be tested, and which response controller we are testing.
Further research is expected to provide much better results, by replacing better test equipment or by adding test
instruments.

REFERENCES
[1] G. R. D. T. Muntaner, “Evaluation of OpenFlow controllers,” in Tech. Rep., 2012.
[2] D. Turull, M. Hidell, and P. Sjödin, “Performance evaluation of openflow controllers for network virtualization,” 2014 IEEE 15th In-

ternational Conference on High Performance Switching and Routing (HPSR), 2014, pp. 50-56, doi: 10.1109/HPSR.2014.6900881.
[3] SDNCTC, “ONOS controller performance test report,” Global SDN Certified Testing Center, 2016, pp. 1-18.
[4] I. T. S. Lab, “OpenDaylight performance stress test report,” Tech. Rep., 2016.

Int J Inf & Commun Technol, Vol. 12, No. 2, August 2023: 85–91

Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 91

[5] M. Sisov, “Building a software-defined networking system with OpenDaylight controller,” M.S. thesis, Dept. Inf. Technol., Metropo-
lia Univ. of Applied Sciences, Helsinki, Finland, 2016.

[6] S. Kaur, J. Singh, and N. S. Ghumman, “Network programmability using POX controller,” in ICCCS International conference on
communication, computing and systems, 2014, pp. 134-138.

[7] N. Gude et al., “NOX: towards an operating system for networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 3, Jul. 2008, doi: 10.1145/1384609.1384625.

[8] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, 2013, pp. 13-18, doi: 10.1145/2491185.2491189.

[9] “Component-based software defined networking framework: build SDN agilely,” Ryu SDN framework. [Online]. Available:
https://ryu-sdn.org/ (accessed Oct. 08, 2020).

[10] M. Sameer and B. Goswami, “Experimenting with ONOS scalability on software defined network,” Journal of Advanced Research
in Dynamical and Control Systems, vol. 10, no. 14, Jan. 2018, pp. 1820–1830.

[11] “Floodlight controller,” Project Floodlight, 2016. [Online]. Available: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
overview (accessed Oct. 08, 2020).

[12] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: a system for scalable OpenFlow control” Rice University, 2010, pp. 1-10.
[13] L. Mamushiane, A. Lysko, and S. Dlamini, ”A comparative evaluation of the performance of popular SDN controllers,” 2018

Wireless Days (WD), 2018, pp. 54-59, doi: 10.1109/WD.2018.8361694.
[14] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance evaluation of SDN controllers: floodlight and OpenDaylight,” IIUM

Engineering Journal, vol. 17, no. 2, pp. 47–57, 2016, doi: 10.31436/iiumej.v17i2.615.
[15] R. Kartadie, F. Rozi, and E. Utami, “Openflow switch software-based performance test on its implementation on campus network,”

Journal of Theoretical and Applied Information Technology, vol. 96, pp. 4136–4146, Jul. 2018.
[16] J. P. Duque, D. D. Beltr´an, and G. P. Leguizam, “OpenDaylight vs. Floodlight: Comparative Analysis of a Load Balancing Algo-

rithm for Software Defined Networking,” International Journal of Communication Networks and Information Security (IJCNIS),
vol. 10, no. 2, Apr. 2022. doi: 10.17762/ijcnis.v10i2.3178.

[17] S. Asadollahi and B. Goswami, ”Experimenting with scalability of floodlight controller in software defined networks,” 2017 Inter-
national Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp.
288-292, doi: 10.1109/ICEECCOT.2017.8284684.

[18] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN controllers: benchmarking & performance evaluation,” in
arXiv-Networking and Internet Architecture, pp. 1–14, 2019, doi: 10.48550/arXiv.1902.04491.

[19] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation of OpenFlow-based software-defined networks based on
queueing model,” Computer Networks, vol. 102, pp. 172–185, Jun. 2016, doi: 10.1016/j.comnet.2016.03.005.

[20] I. Z. Bholebawa and U. D. Dalal, “Performance analysis of SDN/OpenFlow controllers: POX versus floodlight,” Wireless Personal
Communications, vol. 98, no. 2, pp. 1679–1699, 2018, doi: 10.1007/s11277-017-4939-z.

[21] R. Sherwood, “oflops/cbench at master-mininet/oflops,” GitHub, 2013. [Online]. Available:
https://github.com/mininet/oflops/tree/master/cbench (accessed Oct. 16, 2019).

[22] “libfluid: benchmarks,” GitHub. [Online]. Available: https://opennetworkingfoundation.github.io/libfluid/md doc Benchmarks.html
(accessed Sept. 01, 2021).

[23] R. Jawaharan, P. M. Mohan, T. Das, and M. Gurusamy, “Empirical evaluation of sdn controllers using mininet/wireshark and
comparison with cbench,” 2018 27th International Conference on Computer Communication and Networks (ICCCN), 2018, pp.
1-2, doi: 10.1109/ICCCN.2018.8487382.

BIOGRAPHIES OF AUTHORS

Rikie Kartadie master of Computer Science from Universiti Amikom Yogyakarta (2014).
Now a lecturer at the Department of Computer Engineering, Universitas Technologi Digital Indone-
sia. Research interests are computer networks, SDN, and IoT, teaching in the field of networking.
Have received several grants from the Ministry of Research, Technology and Higher Education. Ad-
ditional duties as head of information systems and publications of LPPM-UTDI. He can be contacted
at email: rikie@utdi.ac.id.

Edy Prayitno master of Engineering from Universitas Gadjah Mada Yogyakarta (2010).
Now a lecturer at the Departement of Information System, Universitas Teknologi Digital Indonesia.
Research interests are information system, IoT, and computer network. He received several grants
from the Ministry of Education and Culture of the Republic of Indonesia. He can be contacted at
email: edyprayitno@utdi.ac.id.

Comparison of three common software-defined network controllers (Rikie Kartadie)

https://orcid.org/0000-0003-1947-353X
https://scholar.google.com/citations?hl=en&user=p-pd-scAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202988064
https://www.webofscience.com/wos/author/record/165690
https://orcid.org/0000-0003-4107-4471
https://scholar.google.com/citations?user=keyZps0AAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57200211322

	Introduction
	Research Method
	Latency test
	Throughput test
	Research assumptions used

	Results and Discussion
	Latency test
	Throughput test

	Conclusion

