
International Journal of Informatics and Communication Technology (IJ-ICT)

Vol. 13, No. 1, April 2024, pp. 9~26

ISSN: 2252-8776, DOI: 10.11591/ijict.v13i1.pp9-26 9

Journal homepage: http://ijict.iaescore.com

Predicting anomalies in computer networks using autoencoder-

based representation learning

Shehram Sikander Khan1, Akalanka Bandara Mailewa2
1Department of Information Assurance, St. Cloud State University, St. Cloud, USA

2Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, USA

Article Info ABSTRACT

Article history:

Received Dec 21, 2021

Revised Jan 3, 2023

Accepted Jun 13, 2023

 Recent improvements in the internet of things (IoT), cloud services, and

network data variety have increased the demand for complex anomaly

detection algorithms in network intrusion detection systems (IDSs) capable
of dealing with sophisticated network threats. Academics are interested in

deep and machine learning (ML) breakthroughs because they have the

potential to address complex challenges such as zero-day attacks. In

comparison to firewalls, IDS are the initial line of network security. This
study suggests merging supervised and unsupervised learning in

identification systems IDS. Support vector machine (SVM) is an anomaly-

based classification classifier. Deep autoencoder (DAE) lowers

dimensionality. DAE are compared to principal component analysis (PCA)
in this study, and hyper-parameters for F-1 micro score and balanced

accuracy are specified. We have an uneven set of data classes. precision-

recall curves, average precision (AP) score, train-test times, t-SNE, grid

search, and L1/L2 regularization methods are used. KDDTrain+ and
KDDTest+ datasets will be used in our model. For classification and

performance, the DAE+SVM neural network technique is successful.

Autoencoders outperformed linear PCA in terms of capturing valuable input

attributes using t-SNE to embed high dimensional inputs on a two-
dimensional plane. Our neural system outperforms solo SVM and PCA

encoded SVM in multi-class scenarios.

Keywords:

Artificial neural networks

Autoencoder

Deep learning

Network security

Support vector machine

Vulnerabilities

This is an open access article under the CC BY-SA license.

Corresponding Author:

Akalanka Bandara Mailewa

Department of Computer Science and Information Technology, St. Cloud State University

St. Cloud, USA

Email: amailewa@stcloudstate.edu

1. INTRODUCTION

The risks of network infiltration that can be avoided now can pose a major threat to the operational

security of big enterprises, governments, and individual users. There have been 14 notable internet breaches

in the last decade. Among the websites targeted were the National Assembly, Shinhan Bank, the Defense

Ministry, the Presidential Blue House, and the New York Stock Exchange. In 2009, a Google employee

released a rogue website that, for 55 minutes, classified the whole internet as infested with malware. Google's

reputation suffered significantly as a result of this breach, and the business also incurred financial losses as a

result of lost advertising revenue [1].

As a result, there are possible dangers in network traffic that might compromise a target program or

device. Denial of service (DOS) attacks, which may overwhelm your system with connection requests, can

prevent a genuine user from accessing system resources. Man in the middle (MITM) attacks intercept

network traffic in order to listen in on information exchange. Spoofing attacks aim to impersonate an

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

10

authorized user in order to convince the system to grant the attacker access. It does this by dispatching IP

packets from a recognized host [2], [3]. The user to root (U2R) attack circumvents system security by getting

access across the network. Application layer attacks take use of flaws in the application layer, implying that

there may be a security flaw on the server side. Unseen assaults, on the other hand, are the most significant

for our study. Zero-day malware is a sophisticated type of attack since no prior knowledge about the danger

is available [4], [5]. Training the intrusion detection system (IDS) to deal with this type of assault would

necessitate the use of a security mechanism capable of discriminating between regular and aberrant network

traffic. There is a need to classify various sorts of threats based on distinct factors that result in improved

detection with increased precision and recall so that the user can remain protected against new network-level

assaults.

Furthermore, hostile attacks have the capability of wreaking havoc on a system's infrastructure. As a

result, identifying abnormalities within provided network traffic is critical [6]. With the recent increase in

data volume due to cloud-based services, better internet connections, and internet of things (IoT) devices,

there has been an assault of increasingly sophisticated attacks that security measures such as the Internet

Firewall are unprepared to manage. Internet speeds have increased to 100 Gbps or more, and data is expected

to increase to 44 ZB [7], [8]. Furthermore, as network data volumes increase, we are seeing a shift in the

variety of data and protocols delivered by network traffic. If a computer host or application lacks a strong

IDS, it may be exposed to DOS assaults, jeopardizing data privacy and integrity [9]. To address all of the

aforementioned concerns, the authors developed the following three research questions in order to tackle the

original problem in a systematic manner.

- RQ1: is using deep autoencoders (DAE) as a non-linear dimensionality reduction approach better than

using a linear dimensionality reduction technique?

- RQ2: is DAE a superior dimensionality reduction alternative than linear analogues in terms of train/test

time and memory consumption?

- RQ3: is it better to include the regularization penalty term in the loss function of our model? If this is the

case, which type of regularization (L1, L2, and none) is most successful inside the suggested neural

network scheme?

As a result, the major goal of this research is to assess the efficacy of our proposed neural network

design by comparing its performance to well-known performance and classification criteria. The

precision-recall curve, f1-micro, prediction accuracy, and matthews correlation coefficient will be used in

this investigation. Combining autoencoder-based representation learning with an SVM is predicted to reduce

processing needs throughout the model's training and testing phases. Reduced computational and storage

needs are critical for dealing with time-sensitive network threats that an IDS must deal with.

Intrusion detection systems: Dorothy Denning's seminal paper titled 'an intrusion-detection model'

first proposed a model for a real-time detection system capable of detecting various forms of threats [10].

Since then, the IDS has advanced significantly, particularly with current advances in machine learning (ML),

big data, and an industry-wide migration to the cloud. Depending on the detecting mechanism, IDS are

classified into varieties. The first employs a signature-based detection method, whereas the second employs

an anomaly-based detection method. An intrusion-based IDS compares a prospective threat's signature to its

database of known assaults and makes a judgment based on the results. The anomaly-based technique

requires IDS to be thoroughly educated on regular traffic flow patterns using ML algorithms, allowing the

IDS to detect aberrant traffic.

The limitation of a signature-based IDS is its inability to detect unknown threats because it is

primarily reliant on its database of previous assaults. The signature-based detection approach has gained

popularity because to its high accuracy rates and cheap memory usage [1], although assaults have become

more complex over time. Threats such as zero-day assaults are unknown to the public until they infect a host

system or organization. Such attacks can wreak havoc because they take advantage of the time necessary to

patch an IDS against that danger. The anomaly-based detection system, on the other hand, outperforms zero

day since it is trained on good traffic flow and can detect an unusual pattern [11]. One complaint leveled at the

detection technique in question is its high false-positive rate and excessive memory usage during the training

phase of the detection algorithm. One of the keys focuses of this research would be overcoming this issue.

Machine learning algorithms: because ML techniques outperform classical classification methods,

there is considerable interest in using them to detect anomalies [9], [12]. The adoption of these sophisticated

algorithms has significantly increased the precision in identifying abnormalities. To optimize the anomaly-

based systems, several ML methods such as random forest (RF), support vector machine (SVM) [13], k-

nearest neighbors (KNN) [14], and Nave Bayes were used. Anomaly detection is fundamentally a

classification problem. ML algorithms perform an outstanding job of detecting risks in general, but there is

an additional processing cost, which presents a difficulty for cybersecurity specialists because anomalies

must be dealt with in real-time circumstances. Furthermore, with the introduction of edge computing,

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

11

developing an algorithm that does not require a lot of CPU power has become even more important. To

address these challenges, new implementations of deep learning, a branch of ML, in anomaly-based detection

approaches have shown promise. Because neural nets employ rigorous optimization approaches based on

neural networks, they enable more robust and extensive learning on inputs. Neural nets are further

constructed on mathematics, linear algebra, and probability concepts.

A neural net's fundamental structure consists of three layers: an input layer, a hidden layer, and an

outer layer. Deep neural networks are neural networks with two or more hidden layers [15]. Backpropagation

is enabled by hidden layers in the neural architecture, which allows neural nets to repeatedly alter the

associated weights and biases of a particular neuron by comparing it to the outcome labels. Within a given

neural network framework, various hyperparameters may be modified to determine how the model is trained

on the input data. Learning rate, epochs, hidden layers, neurons, and activation function are some of the

defining hyperparameters.

KDDCUP99 and NSL-KDD dataset: the MIT Lincoln Lab produced and developed the KDDCUP99

dataset in 1998 as part of the DARPA intrusion detection evaluation program [16]. The dataset includes both

'bad' and 'good' connections obtained from a nine-week raw TCP dump of a military network environment.

Several research have used anomaly-based modeling on this dataset to evaluate the performance of their

systems [17]. Despite the fact that there are over 37 assaults in the dataset, they may be roughly classified

into five attack categories, as shown in Table 1.

However, due to the synthetic nature of the data, the KDDCUP99 dataset has various flaws,

including record redundancy. Because the model is biased towards frequent records when trained on

duplicated data, this problem can lead to statistical mistakes [17]. As a result, we will test our suggested

anomaly detection approach on the upgraded NSL-KDD dataset, which would fix the previously described

issue. This dataset will be used in our research to assess the correctness of our suggested algorithms. The

dataset will be evaluated as a binary (attack/normal) and multi-class dataset in our study.

A large number of research have been undertaken to identify anomalies using supervised ML

algorithms such as KNN, SVM, and artificial neural networks (ANN) [12]. In terms of reduced training and

resource consumption, the combined method of unsupervised deep learning for feature reduction and

supervised ML for classification has been shown to be superior. In the next chapters, we will look deeper into

the neural net approaches used by other researchers to improve IDS.

The remainder of the article examines in depth the literature review of ML applications in the

intrusion detection domain, which serves to provide a comprehensive overview of the research done so far in

section two. Section three then describes the method, dataset, and technologies used by the author to get the

results of the investigations. Section four then provides the outcomes, which indicate that all of the

aforementioned research questions may be answered in order to solve the original research topic. Finally, the

author will discuss the method's obstacles and limits for future authors to consider.

Table 1. Attack types in NSL-KDD dataset
Attack type Description Training dataset Testing dataset

DOS DOS 45,927 7,456

Probe Surveillance and other probing 11,656 2,421

remote to local (R2L) Unauthorized access from a remote machine 995 2,756

U2R Unauthorized access to local superuser (root) privileges 52 200

2. RELATED WORKS

Deep neural networks have been extensively researched in the context of network IDS. In this part,

we will look at many scholarly publications that have implemented various neural network architectures on

the KDDCUP99 and the NSL-KDD. In the first portion of the literature review, we will cover the inner

workings of ML and neural networks in order to comprehend the computations conducted in the backend. In

the following portion of the literature study, we will identify several deep learning architectures used for

network IDS to improve accuracy and prediction. In the final half of this section, we will describe how our

work differs from the existing body of research on deep learning and anomaly detection.

2.1. Background related to the problem

2.1.1. Deep learning

Deep learning is a subclass of ML that aims to simulate the human brain using mathematical

functions that mimic neuron activity. It discovers patterns in raw data without the need for explicit

programming. Deep learning algorithms have been known for decades, but they have lately moved to the

forefront due to the abundance of resources accessible today [18]. A neural network's architecture is made up

of three layers: an input layer, a hidden layer, and an output layer. Each layer is made up of neurons or

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

12

perceptrons, which are the building blocks of deep learning. Each node links one neuron to the next via

successive layers. Each neuron applies weights and biases to the input. The product total of weights and

biases is then passed through an activation function to handle non-linearity, which is important when dealing

with classification difficulties. The sigmoid function, for example, is a common activation function. When an

input is provided to the sigmoid function, the product sum of learnt weights is collapsed into a range from 0

to 1. The output at the output layer is obtained after the product sum of weights is non-linearized with the

activation function. This entire procedure is known as feedforward propagation. The output is then compared

to the actual value and iteratively trained to reduce the difference between the original prediction and the

actual value. Backpropagation refers to the iterative process of changing the weights and biases of input

features.

Loss optimization is attempted using backpropagation. Gradient descent refers to the technique of

iteratively reducing or optimizing the loss function. The most common loss functions are cross-entropy loss

and mean squared error loss (RMSE). Figure 1 depicts the neurons in the input layer and their connections to

the succeeding hidden and output layers.

Figure 1. Neural network architecture

2.1.2. Autoencoders

The autoencoder is a neural network that is trained to copy its input to its output [19]. The neural

network contains two primary mathematical functions that allow the input to be reconstructed into output.

The encode function ℎ = 𝑓(𝑥) and the decode function 𝑟 = 𝑔(ℎ). h is the internal representation when the

input x is being converted to r (called reconstruction). In making the approximate copies of input, the neural

network learns the most useful properties of the raw dataset. Typically, the h is always a lower-dimension

subspace of the x because of this autoencoder neural networks have a bottleneck layer that has a lower

number of nodes than the other layers.

2.1.3. Activation functions

The 𝑓(.) and 𝑔(.) is are the activation functions that non-linearize the bias and weight parameters.

There are many forms of activation functions that are used such as sigmoid, Tanh, and ReLU activation

functions [20]. Relu, which stands for rectified linear unit, is a widely used activation function in deep neural

networks [21]. The primary reason for the success of this activation function is that it does not require a lot of

computational resources to execute it compared to complicated activation functions that lead to increased

difficulty in optimization. Mathematically, ReLU is presented as (1):

𝑦 = max(0, 𝑥) (1)

ReLU activation function yields an output of 0 when 𝑥 < 0, and then draws a linear line with a slope of 1

when 𝑥 > 0.

Our work employs the scaled exponential linear unit (SELU), one of the most recent activation

functions utilized in deep learning. In self-normalizing neural networks [22], a SELU activation function that

shows a self-normalizing feature, which is demonstrated using the Banach fixed-point theorem. Essentially,

activations closer to zero mean and unit variance allow the network layers to converge to zero mean and unit

variance.

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

13

The inclusion of SELU in our scheme is important since we will be using DAE with more than three

deep layers. When using more than three layers in a neural architecture, the forward neural network may

suffer from gradient difficulties due to a lack of normalization within the activation function. Because

normalization happens within the function using SELU, we can avoid this difficulty and fully utilize this

activation function.

SELU allows room for deeper network layers owing to its faster processing speeds, in addition since

the activation encourages normalization there is a presence of regularization penalty. In reference to the

previously mentioned paper, the authors meticulously derived two fixed parameters used in the feedforward

process. For standard scaled inputs (mean 0, standard deviation 1), the parameters are a=1.6732~, and

λ= 1.0507 ~. Having fixed parameters our neural network to not backpropagate through these variables.

SELU can be mathematically presented as (2).

𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥

𝛼𝑒𝑋 − 𝛼
 𝑖𝑓 𝑥>0
𝑖𝑓 𝑥 ≤0

 (2)

2.1.4. Deep autoencoders as a dimensionality reduction tool

Simply rebuilding inputs into output variables is not regarded beneficial because it achieves nothing.

The main strength of the autoencoder, however, lies in the internal representation of the encoded input x. The

lower-dimensional representation enhances performance, particularly when doing classification tasks.

Classifiers learn quicker in smaller dimensions because they use less memory and processing resources. The

autoencoder learns by reducing the loss function shown as (3).

𝐿 (𝑥, 𝑔(𝑓(𝑥))) (3)

In the above equation, the loss function penalizes 𝑔(𝑓(𝑥)) for x. Indeed, if the decoder function is

linear and the L is mean squared error, the resultant subspace is identical to principal component analysis

(PCA) [19]. Typically, the autoencoder method consists of three basic layers. The encoder layer comes first,

where the inputs are given weights and biases. In the coding layer, the inputs are then reduced to the most

useful characteristics. Figure 2 shows that the number of neurons in the input layer is often greater than that

in the 'code layer.' Finally, the decoder layer includes a decoder function for reconstructing the input. The

code layer, on the other hand, holds the latent representation of the input vectors, which is required for

classification-based tasks. Undercomplete is when the code layer has a lesser dimension than the input

dimension [19].

Autoencoders are a promising non-linear feature reduction tool that outperforms other

dimensionality reduction methods. According to Wang et al. [23] compare autoencoder to cutting-edge

dimensionality reduction methods such as PCA, linear discriminant analysis, locally linear embedding, and

isomap. According to the findings, autoencoders not only beat other strategies in lowering dimensionality,

but they are also effective at spotting repeated structures [18]. Other research, on the other hand, favour PCA,

a linear dimensionality reduction approach, for real-world tasks over simulated tasks [24].

Figure 2. SELU plotted for a=1.6732~, λ=1.0507~

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

14

There are several varieties of autoencoders, as seen in Figure 3, including sparse, deep, denoising

[25], convolutional [26], contractive [27], and variational autoencoders. DAE (also known as stacked

autoencoders) would be used in this study [25]. DAE contains numerous hidden levels, and deeper stacked

AE is thought to be more capable of training than smaller layers [19], [28].

Figure 3. Autoencoder neural architecture

2.1.5. Support vector machine

On the NSL-KDD dataset, our dataset will be trained using a SVM for anomaly classification. The

SVM method seeks a hyperplane (a subspace with a size one smaller than that of its surrounding space) that

clearly classifies the input points. It does this by utilizing support vectors that are closest to the hyperplane

(i.e., decision boundary). The hyperplane is positioned so that the support vectors are equidistant to it. The

algorithm computes the greatest margin hyperplane, which is the margin with the highest sum of the two

support vectors. The algorithm for a binary SVM classifier might be described mathematically as (4).

𝑓(𝑥𝑖) {
≥ 0 𝑦𝑖 = +1
< 0 𝑦𝑖 = −1

 (4)

Unlike logistic regression, which squashes the output of its linear function from 0 to 1, SVM

squashes the output from -1 to 1. In other terms, the SVM algorithm divides the datapoints into two

categories: negative and positive 1. SVMs have been shown to be successful when working with high

dimensional data, even when the number of features employed exceeds the number of data points used.

Furthermore, SVM is a versatile classifier in that we may select from a variety of kernel functions, including

linear, polynomial, radial basis function (RBF), sigmoid, and even custom kernels written in Python. We will

use the RBF kernel for our study since it allows us to do non-linear classification on our dataset. The RBF

may be stated mathematically as (5).

RBF: 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑥′ ∥2) (5)

2.1.6. Regularization

We may use a technique called regularization to guarantee that our autoencoder representation has

the most informative weights. Regularization, in essence, penalizes complexity while encouraging simplicity

in the training model. It accomplishes this by including a regularization term into our neural network's loss

function. The presence of this regularization factor in the loss function eliminates the possibility of

overfitting. Overfitting occurs when our model overlearns the training set of our dataset to the point that it

recognizes certain quirks and outliers. We may ensure that our model is constructed to predict unknown data

rather than getting over-trained to predict data from the current training dataset rather than the out-of-sample

test set by including regularization into our neural network. There are different types of regularization

procedures, each with its own set of pros and disadvantages depending on the nature of the dataset. In each

model, L1, L2, and L0 regularization terms are often used to punish complexity [29]. In our report, we will

utilize all three of these regularization strategies to see which one (or none) helps us reduce loss on our

testing dataset. L2 regularization may be mathematically defined as (6).

‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2 (6)

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

15

By taking the squared sum of all determined weights, the L2 regularization term assesses model complexity.

The neural network is optimized based on the minimization of the following loss function and regularization

term as (7).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) + 𝜆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)) (7)

If the λ in the above equation is 0, the regularization term is omitted entirely. Setting the correct λ parameter

is critical for establishing regularization for our model. The model grows more sophisticated as the λ value

decreases, and vice versa. L1 regularization, on the other hand, is formally defined as (8).

‖𝑤‖ = |𝑤1| + |𝑤2| + |𝑤3| + ⋯ + |𝑤𝑛| (8)

L2 regularization encourages model weights to converge around 0, but L1 regularization pushes weights to

be exactly 0. Under some conditions, L1 may be superior to L2 depending on the context. For example, a

model with sparse vectors benefits from L1 regularization since it removes numerous sparse weights,

reducing RAM load and boosting training and testing time. In this study, we will evaluate L1 and L2

regularization to see which scenario produces the best results based on our categorization criteria.

2.2. Literature related to the problem

The authors of intelligent IDS using artificial neural networks [30] offer a supervised deep learning

classifier based on ANN. The grid search approach is used in the study, and a multi-layer perceptron with

two hidden layers of 30 neurons each is chosen. A 10-fold cross validation procedure was also used to obtain

more robust findings. The model produced a large area under receiver operating characteristic (ROC) curve,

indicating improved categorization. The average area under receiver operating characteristic (AUROC) was

0.98, the standard deviation (SD) AUROC was 0.02, the maximum AUROC was 1.00, and the minimum

AUROC was 0.82.

Other deep-learning frameworks can be used in addition to supervised deep neural networks for

training IDS on anomaly. The self-taught learning (STL) framework, which is fundamentally formed of two

stages, is a promising technique and the subject of this study. For feature and dimension reduction, the initial

step applies unsupervised deep learning. In the second stage, standard ML models are used for classification.

According to research conducted by Al-Qatf et al. [31], the combination of two techniques produces much

better outcomes than alternative frameworks. According to Al-Qatf et al. [31] this strategy is computationally

efficient. Furthermore, as compared to other shallow ML classifiers, the STL technique adds to an overall

rise in detection accuracy.

A work called autoencoder-based feature learning for cyber security application implements an

autoencoder-based deep learning scheme in which the reduced features are subsequently identified using

several ML algorithms [32]. The study uses data from two primary datasets: the KDDCUP99 dataset and the

malware classification dataset, both of which were provided by Microsoft on Kaggle in 2015. The findings

are compared to independent ML classifiers as well as autoencoder-based input characteristics in the

research. the study found that gaussian nave bayes combined with AE-based features outperformed other

deep learning models such as Xgboost and H20 models in terms of intrusion detection accuracy.

Similarly Shone et al. [7] combine non-symmetric deep auto-encoder (NDAE) with RF. Each

NDAE contains three hidden layers, each with the same number of neurons. The fundamental difference

between NDAE and other autoencoders is that it does not use the traditional encoder-decoder paradigm, but

instead just applies the encoder formula in the outer layer process, making this scheme non-symmetric in

nature. The technique has been tested on the KDDCUP99 and NSL-KDD datasets. The study is carried out as

a 5-class and 13-class KDD classification. The comparisons made after developing the models revealed a 5%

gain in accuracy and a 98.1% reduction in training time.

The authors propose three primary methods to the anomaly classification problem in the

comparative study of deep learning models for network intrusion detection [33]. The STL model, for

example, has an average accuracy of 98.8% across four types of anomalies: DOS, probe, R2L, and U2R. The

second strategy is based on recurrent neural network (RNN), which takes into account past lags of input

feature, allowing for an extra memory input. Having that extra memory input allows you to add a time

component to your study. The RNN based on long short-term memory, on the other hand, achieved an

average accuracy of 79.2%. Finally, the deep neural network technique on the KDD dataset achieved a 66%

accuracy.

The deployment of a deep learning technique to network IDS is still in its early stages, according to

this section. Given how complex the model-building process can become given its various configurations

(training, optimization, activation, and classification) and other model-specific configurations (number of

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

16

hidden layers, learning rate, loss and function), we believe that our approach of using DAE with SVM

classifier would make a significant contribution to the existing body of literature on the topic. The next

portion of the article goes into detail about the model-building process and the study's method.

3. RESEARCH METHODS

The authors will define the study's measurements in this section to define the study's boundaries. In

addition. We will go through the intricacies of the data preparation and hyperparameter tweaking that has

been accomplished thus far in the project.

3.1. Definition of terms

- IDS: An IDS is a device or software application that monitors a network or system for malicious activity

or policy violations.

- network level attacks: network-delivered threats that typically gain access to the internal operating

systems. Common types of network attacks are DOS, spoofing, sniffing, and information gathering.

- Recall: quantifies the number of positive class predictions made out of all positive examples in the

dataset.

- Precision: indicates the proportion of correct predictions of intrusions divided by the total of predicted

intrusions in the testing process.

- Accuracy: indicates the proportion of correct classifications of the total records in the testing set.

- F-score: provides a single score that balances both the concerns of precision and recall in one number.

- Training and testing time: the number of seconds it takes for neural network or classifier to train and test

respectively on the dataset.

- ML: ML is a method of data analysis that automates analytical model building. It is a branch of artificial

intelligence (AI) based on the idea that systems can learn from data, identify patterns, and make decisions

with minimal human intervention.

- Deep learning: deep learning is a subset of ML in AI that has networks capable of learning unsupervised

from data that is unstructured or unlabeled.

- Activation function: the activation function of a node or neuron defines a numerical output by taking

input or a set of inputs.

3.2. Data preprocessing

The categorical features in the dataset were encoded using a one-hot encoder during the

preprocessing phase of the study, which binarizes the categorical values into 0 and 1. L2 normalization was

used to standardize the numeric variables. Sklearn.preprocessing. The normalization was carried out using

the Normalizer library. Many neural network techniques require normalized numeric inputs [3], [34].

Furthermore, standardization of numeric inputs aids in the avoidance of outliers in the dataset.

3.3. Hardware and software environment

- Operating system: windows 10 home 64-bit (10.0, build 17763)

- BIOS: X510UAR.309 (type: UEFI)

- Processor: intel(R) core (TM) i5-8250U CPU @ 1.60GHz (8 CPUs), ~1.8GHz

- Memory: 8192MB RAM

- DxDiag version: 10.00.17763.0001 64bit Unicode

- Software environment: Python 3.7.5 64-bit | Qt 5.9.6 | PyQt5 5.9.2 | windows 10

- Python packages: TensorFlow 2.0.0, NumPy 1.17.2, Pandas 0.25.2

3.4. Design and implementation of the study

Because anomaly detection is ultimately a classification issue, the study will be quantitative. DAE

were chosen as the first stage for dimension reduction, and a SVM classifier was chosen as the second stage

for classification on the encoded vector. The grid search algorithm, which performs hyperparameter tuning

and picks parameters that maximize the loss function, will determine the number of hidden layers and

activation neurons. Instead of PCA, linear discriminant analysis (LDA), or other types of dimension

reduction, we will employ DAE as a type of non-linear dimension reduction. We will use a SVM for

classification once we have received the subset vector of reduced features.

Numpy, Pandas, Scikit-learn, and Keras are Python libraries that are important to the study. Python

was chosen over other statistical programming languages because it has a larger library set, making it an

excellent candidate for undertaking deep learning research. The classification will be done on both binary and

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

17

multi-class labels. The first scenario divides the label into two parts: normal and assault. In the multi-class

situation, we have divided the labels into five different attack types.

3.5. Tools and techniques

Grid search is a technique for fine-tuning hyperparameters. The approach finds the best

hyperparameters by running an exhaustive search over the parameter grid. The following parameters were

included in the paper's given grid: epochs, loss function, kernel function, activation function, and the number

of k-folds for cross-validation. K-fold cross-validation allows the user to divide the training dataset into

several folds, resulting in less biased and overfitted results. The model's loss function would be the square

root of the average of squared disparities between forecast and actual observation. The RMSE loss function is

represented mathematically as (9).

𝑅𝑀𝑆𝐸 = √
1

𝑛
(𝑌𝑗 + Ῠ𝑗)2 (9)

3.6. Performance evaluation

In a two-by-two confusion matrix, the four possible outcomes are as: i) true positive (TP) is attack

data that is correctly grouped as an attack; ii) false positive (FP) is normal data that is incorrectly grouped as

an attack; iii) true negative (TN) is normal data that is correctly grouped as normal; iv) false negative (FN) is

attack data that is incorrectly grouped as an attack. The majority of the performance indicators described will

be based on these four probable outcomes [35]. The notion of classification threshold is closely related to

confusion matrix outcomes because we must select a threshold value that helps us decide when to classify a

result as 'abnormal' or 'normal'.

3.7. Accuracy

Based on the four measures computed from the confusion matrix, we can compute accuracy which is

the fraction of the number of correct predictions to the total number of predictions. We can formulate

accuracy as (10).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (10)

The accuracy rates would be the key performance indicator for the several machines and deep learning

classifiers we will be working on throughout the study.

3.8. Precision-recall curve

The precision and recall metrics are very important measures when dealing with imbalanced classes.

Precision calculates the proportion of positive identifications that were correct. It could be mathematically

defined as (11).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11)

Recall is defined as the proportion of actual positives correctly identified. It can be written as (12).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12)

As the decision threshold is increased, there is usually a trade-off between precision and recall.

When the categorization threshold is raised, the recall either decreases or remains constant. In contrast,

increasing the classification threshold improves accuracy [36]. The precision-recall curve visually depicts the

inverse connection.

3.9. F-measure

The F-measure is a statistic with a single value that is based on precision and recall. The F-measure

has a value between 0 and 1. The F-measure allows for the simultaneous consideration of accuracy and recall

through a single measure, as opposed to seeing them as trade-offs. The F-measure is mathematically defined

as (13).

𝐹𝑀 =
(1+𝛽1)∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13)

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

18

3.10. Test and train timings

Network-level assaults are time-sensitive. Therefore, the test and train timings are critical for this

investigation. As a result, having a model that can train significantly quicker than other methods would be

extremely beneficial to our research.

4. RESULTS

4.1. Visualizing data using t-distributed stochastic neighbor embedding

We use t-distributed stochastic neighbor embedding (t-SNE), a method for displaying high

dimensional data, to visualize our dataset. t-SNE makes use of kullback-leibler (KL) divergence, a measure

of the difference between two probability distributions [37]. KL divergence may be seen of as a

dimensionality reduction approach since it translates observations into joint probabilities, which reduces the

amount of information processed overall. When dealing with larger dimensional data (usually more than 50

dimensions), it is advised to use a previous dimensionality reduction approach to produce a manageable

subspace that t-SNE can handle well because it requires a significant amount of computer resources.

Furthermore, applying t-SNE on smaller dimensions handles noise without distorting interpoint distances. In

our case, we'd use PCA (linear dimensionality reduction) and DAE (non-linear dimensionality reduction) to

evaluate how t-SNE visualizes the decreased dimensions from both methods. Using DAE, we were able to

reduce the initial feature space of 122 inputs to a subspace of 10 dimensions. For our dataset, we will use

t-SNE to display a 2D manifold with varying perplexity levels. Perplexity can be regarded as a smooth

measure of the number of effective neighbors. Perplexity levels typically range from 5 to 50. When working

with bigger datasets, however, it is acceptable to use a greater perplexity number. The t-SNE representation

of AE encoded dimensions can be shown in Figures 4-6, whereas PCA dimensions with altered perplexity

and iterations can be seen in Figures 7-9. We can see that at increasing perplexity and iterations, both AE and

PCA are able to cluster various attack groups more effectively than in lower perplexity and iterations. The

data points in all figures are color-coded according to the NSL-KDD dataset's five assault classifications. The

graph above's vertical and horizontal axes are formed using the KL divergence technique, which is used to

embed a high dimensional data space into a smaller subspace.

Figure 4. t-SNE representation of encoded representation (perplexity=50 and iterations=500)

Figure 5. t-SNE representation of encoded representation (perplexity=100 and iterations=500)

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

19

Figure 6. t-SNE representation of encoded representation (perplexity=50 and iterations=1,000)

Figure 7. t-SNE representation of PCA (perplexity=50 and iterations=500)

Figure 8. t-SNE representation of PCA (perplexity=100 and iterations=500)

Figure 9. t-SNE representation of PCA (perplexity=50 and iterations=1,000)

As the perplexity and iterations increase, we can see 'regular' class data points (red dots) merging. A

normal class is unique from the other attacks labels, indicating that PCA and DAE are highly successful at

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

20

distinguishing between 'normal' and 'attack'. However, when we focus on the other four attack classes, we

observe a different picture; with the exception of the 'DOS' attack class, the other three attack classes are

jumbled together and do not form a discernible cluster. The t-SNE representation of PCA and the DAE hint

that categorizing the other three assault methods may be difficult.

4.2. Grid search

We used the GridSearchCV provided via scikit-learn, an open-source ML package accessible on

Python, to optimize the parameters for our classifier. The GridSearchCV aims to execute an exhaustive

search across supplied parameter values for our SVM classifier based on important score. Table 2 illustrates

the Grid Search with 'Balanced Accuracy' Scoring for our purposes.

The γ and c parameters are important to consider while dealing with SVM using RBF Kernel

function. The c variable may be thought of as a regularization term that keeps sparse variables in control. The

ideal parameter selection is determined by the degree of noise and balance in the dataset. We used the kernel

methods provided in the scikit-learn python package because our dataset was non-linear. We have four kernel

functions to pick from: linear, polynomial, RBF, and sigmoid. As indicated in Table 3, we used 'RBF' for our

investigation since our grid search projected RBF to be the optimum kernel function for optimizing f1-micro.

Table 2. Grid search with 'balanced accuracy' scoring
Balanced accuracy Std C Kernel

0.458 (+/-0.035) 1 Linear

0.823 (+/-0.094) 1 RBF

0.755 (+/-0.081) 1 Poly

0.611 (+/-0.056) 10 Linear

0.841 (+/-0.154) 10 RBF

0.851 (+/-0.100) 10 Poly

0.66 (+/-0.079) 100 Linear

0.849 (+/-0.126) 100 RBF

0.875 (+/-0.106) 100 Poly

0.688 (+/-0.109) 1,000 Linear

0.828 (+/-0.091) 1,000 RBF

0.845 (+/-0.135) 1,000 Poly

Table 3. Grid search with 'f1-micro' scoring
F1-micro score Std C Kernel

0.704 (+/-0.258) 1 Linear

0.815 (+/-0.011) 1 RBF

0.781 (+/-0.019) 1 Poly

0.497 (+/-0.017) 10 Linear

0.883 (+/-0.010) 10 RBF

0.851 (+/-0.013) 10 Poly

0.567 (+/-0.023) 100 Linear

0.928 (+/-0.011) 100 RBF

0.903 (+/-0.014) 100 Poly

0.665 (+/-0.028) 1,000 Linear

0.949 (+/-0.013) 1,000 RBF

0.937 (+/-0.012) 1,000 Poly

4.3. Classification metrics: accuracy, precision-recall, and f-score

In this section, we will thoroughly study three primary models to understand their efficacy at

predicting anomalies as well as the quality of their forecast by looking at subtler yet significant variables like

as accuracy, recall, and f-score. Simply looking at accuracy is insufficient to assess our model's efficacy,

especially given the NSL-KDD dataset's uneven label distribution. We must pay special attention to

examining recall values for the models in issue since false negatives (type 1 mistake) might generate

incursions that could lead to a breach in the information system of another individual or business. To avoid

such scenario, the recall metric is extremely important to us as cybersecurity specialists.

It is also necessary to examine the accuracy, recall, and f1-score values of various attack types, since

this will provide us with a clearer view of the model's performance. For example, failing to have a high recall

in a U2R attack type might result in a hacker gaining root access to the system. Thus, if we want to construct

a robust anomaly-based IDS, we need to measure our models' performance against specific attack types as

well as focus on the overall model. The first model we'll look at is a solo SVM model with input data scaled

using L2 normalization. The model's predictions are created against an unknown validation set supplied by

the NSL-KDD. The total prediction accuracy in the binary label scenario illustrated in Table 4 is 77%, while

the model provides a weighted average f1-score of 76%. In Table 5, we use the same model on a multi-class

scenario where attack label is further divided into four classes. The overall accuracy as well as weighted f1,

recall, and precision drop quite significantly when performing multi-label predictions.

The second model combines dimensionality reduction with PCA and SVM that has been similarly

tweaked. Based on the binary data in Table 6, we see a 74% reduction in accuracy and recall. Only for

multiclass labels, we found a drop in weighted averages for recall, f1-score, precision, and overall accuracy

when compared to the multiclass solo SVM model, as shown in Table 7.

According to Table 8, our suggested approach significantly improves accuracy and average recall

rates when dealing with binary labels. As a result, while dealing with many classes, our suggested model

outperforms the previous two models in terms of weighted averages of precision, recall, and f1-score, as well

as accuracy. However, when we focus on U2R, we find that the recall rates are significantly greater in the

solo SVM scenario than in our model, as shown in Table 9.

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

21

Table 4. Binary label classification report for standalone SVM
Label Precision (%) Recall (%) F1-score (%) Support

Normal 65 97 78 9,711

Attack 97 61 75 12,833

Other measures

Accuracy

77

22,544

Macro average 81 79 77 22,544

Weighted average 83 77 76 22,544

Table 5. Multi-label classification report for standalone SVM
Label Precision (%) Recall (%) F1-score (%) Support

Normal 70 84 77 9,711

DOS 90 70 79 7,460

Probe 59 62 60 2,421

R2L 42 23 30 2,885

U2R 4 60 8 67

Other measures

Accuracy

69

22,544

Macro average 53 60 51 22,544

Weighted average 72 69 69 22,544

Table 6. Binary label classification report for PCA+SVM classifier
Label Precision (%) Recall (%) F1-score (%) Support

Normal 63 96 76 9,711

Attack 95 56 71 12,833

Other measures

Accuracy

74

22,544

Macro average 79 76 73 22,544

Weighted average 81 74 73 22,544

Table 7. Multi-label classification report for PCA+SVM classifier
Label Precision (%) Recall (%) F1-score (%) Support

Normal 61 55 58 9,711

DOS 88 68 77 7,460

Probe 48 63 54 2,421

R2L 19 10 13 2,885

U2R 1 52 2 67

Other measures

Accuracy

55

22,544

Macro average 44 50 41 22,544

Weighted average 63 55 58 22,544

Table 8. Binary label classification report for AE encoded+SVM classifier (L2 regularization)
Label Precision (%) Recall (%) F1-score (%) Support

Normal 67 97 80 9,711

Attack 96 65 77 12,833

Other measures

Accuracy

78

22,544

Macro average 82 81 78 22,544

Weightedaverage 84 78 78 22,544

Table 9. Multi-label classification report for AE encoded+SVM classifier
Label Precision Recall F1-score Support

Normal 71% 89% 79% 9711

DOS 90% 74% 81% 7460

Probe 70% 62% 65% 2421

R2L 50% 23% 32% 2885

U2R 5% 48% 9% 67

Other measures

Accuracy

73%

22544

Macro average 57% 59% 53% 22544

Weighted average 74% 73% 72% 22544

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

22

4.4. Precision-recall curves

Another interesting technique to examine accuracy and recall metrics is to visualize them using the

precision-recall curve. The curve assists us in determining the quality of our classifier's output. The link

between precision and recall measures is often based on a tradeoff; this characteristic is shown in the

precision-recall curve, which depicts the two metrics depending on various decision bounds. As we progress

down the curve, the judgment threshold (also known as the classification threshold) drops, the number of

false positives grows, while the number of false negatives reduces. As a result, accuracy drops but recall rises

(see previous chapter formulae).

Another quality metric that may be used to closely study the precision-recall curve is the AP score,

which is effectively the weighted mean of precisions attained at each threshold, with the increase in recall

from the previous threshold used as the weight. It is expressed mathematically as (14).

AP = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛 (14)

Where R denotes recall, P denotes precision, and N is the nth threshold. The area underneath precision-recall

curves are an important element to look for while evaluating them. The area beneath the curve may be

approximated using AP and trapezoidal principles. A steeper precision-recall curve indicates a high value for

both measures, which is crucial for a robust, reliable model. We will solely compare the binary

precision-recall curves for scaled, PCA, and DAE encoded datasets categorized using SVM in this section.

Other algorithms' precision-recall graphs can be found in the appendix section for additional investigation.

The precision-recall curve for a standalone SVM working on an RBF kernel function is seen in

Figure 10. The average accuracy score is 0.57, which is not a good result for an IDS. Figure 11 depicts data

from PCA encoded inputs combined with the SVM classifier. The curve's form is particularly outward

facing, indicating an increase in the area beneath the curve compared to the data provided in Figure 10. The

algorithm has an AP rating of 0.69.

Figure 10. Standalone SVM for binary class precision-recall curve

Figure 11. PCA+SVM binary class precision-recall curve

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

23

This graph in Figure 12 clearly demonstrates the precision-recall trade-off described at the

beginning of this section. We can see that when the choice boundary shrinks, the recall grows. The region

beneath the curve is clearly larger than in the preceding two plots of SVM and PCA-SVM, respectively. Our

suggested model has an AP score of 0.90, which is rather high. We employ the models in multiclass, but with

an additional weight balancing modification. Because the precision-recall curve is mostly utilized for binary

labels, we shall binarize distinct curves for the five classes. Because our dataset has a class imbalance, we

elected to micro-average rather than macro-average all five classes, which may result in a different

interpretation.

Figure 13 depicts precision-recall curves for normalized inputs based on a solo SVM classifier. The

micro-average of precision-recall curves for all five classes, computed by aggregating the contributions of the

five classes, is an essential statistic in the preceding graph. According to the curves in Figure 14, PCA

encoded inputs result in a significant rise in the micro-average of precision-recall, specifically from 0.59 to

0.63. It should be noted that our graphics show iso curves at various f1 values. Iso-curves are convex-shaped

curves that, for a given f1-score, follow a combination of precision and recall values. The iso-curves provide

a consistent reference point for better understanding of the precision-recall curve. Figure 15 depicts data from

DAE inputs categorized using SVM. The data shows a significantly higher micro-average than the prior two

models. The area under the micro-AP recall curve is 0.72, which is 10 basis points more than the prior model.

Figure 12. AE+SVM precision-recall curve (polynomial kernel)

Figure 13. Standalone SVM for multiclass precision-recall curves

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

24

Figure 14. PCA+SVM multiclass precision-recall

curves

Figure 15. AE+SVM multiclass precision-recall

curves

4.5. Performance metrics: train and test time

One of the most essential characteristics of a successful model is the amount of time and processing

resources required to make its forecasts. We utilized Python's time module to calculate how long it takes our

models to train and test on the NSL-KDD dataset. The training and testing times for the algorithms employed

in this work are shown in Table 10 in seconds. Based on our findings, we can infer that L1 regularized DAE

combined with SVM saves the greatest time when dealing with binary classes. In the multi-class situation, we

discover that DAE-SVM without any regularization term takes the least amount of time to train and test the

NSL-KDD dataset, providing a clear response to our initial research question about the usefulness of an

autoencoder-based dimensionality reduction technique. In both multi and binary class contexts, a standalone

SVM appears to take the most time.

Table 10. Train and test time based on seconds
Algorithm Training_Time (sec) Testing_Time (sec) Total_Time (sec) Class

SVM 392.70 39.68 432.38 Binary

DAE-SVM 59.13+86.60 2.28 148.01 Binary

DAE-SVM L1 52.55+90.49 2.80 145.84* Binary

DAE-SVM L2 62.22+89.64 2.69 154.53 Binary

SVM 1545.64 133.23 1,678.87 Multi-class

PCA-SVM 270.16 29.83 299.99 Multi-class

DAE-SVM 48.09+89.75 7.78 145.62* Multi-class

DAE-SVM L1 49.20+121.04 10.72 180.96 Multi-class

DAE-SVM L2 48.60+114.15 9.51 172.26* Multi-class

*Algorithm that takes the least time to train and test on the NSL-KDD dataset

5. CONCLUSION

The findings of this study covered all of the themes raised in the research question section. To

summarize our findings, we discovered that a DAE+SVM-based neural network method was successful

based on several classification and performance criteria. When t-SNE was used to embed higher dimension

inputs on a two-dimensional plane and was compared to its linear PCA equivalent, autoencoders were

substantially more effective at capturing valuable features of inputs. In particular, in terms of training and

testing time, autoencoder encoded inputs showed to be substantially more time-efficient during the model's

training and testing phases. Furthermore, our proposed neural system outperforms solo SVM and PCA

encoded SVM in multi-class classification metrics such as weighted average of recall, f-score, and Accuracy.

Int J Inf & Commun Technol ISSN: 2252-8776

Predicting anomalies in computer networks using autoencoder-based … (Shehram Sikander Khan)

25

We were able to acquire a more precise perspective of our suggested neural scheme's performance by

focusing on type 1 (false positives) and type II (false negatives) mistakes by focusing on measures such as

accuracy and recall. Because we are dealing with anomaly detection, we should place greater emphasis on

type II error because enabling an anomaly to permeate our IDS has the ability to wreak havoc on our system's

resources. After thoroughly studying the classification metrics, we can confidently conclude that

autoencoders are a feasible dimensionality reduction approach when compared to PCA for anomaly detection

on the NSL-KDD Dataset.

REFERENCES
[1] N. Harale and B. B. Meshram, “Network based intrusion detection and prevention systems: attack classification, methodologies

and tools,” Research Inventy: International Journal of Engineering And Science, vol. 6, no. 5, pp. 1–12, 2016.

[2] A. M. Dissanayaka, S. Mengel, R. R. Shetty, L. Gittner, S. Kothari, and R. Vadapalli, “A review of MongoDB and singularity

container security in regards to HIPAA regulations,” UCC 2017 Companion-Companion Proceedings of the 10th International

Conference on Utility and Cloud Computing, pp. 91–97, 2017, doi: 10.1145/3147234.3148133.

[3] “Secure NoSQL based medical data processing and retrieval,” in UCC 2017 Companion - Companion Proceedings of the 10th

International Conference on Utility and Cloud Computing, 2017, pp. 99–105. doi: 10.1145/3147234.3148132.

[4] S. Thapa and M. Bissanayaka, Akalanka, “The role of intrusion detection/prevention systems in modern computer networks: a

review,” Midwest Instruction and Computing Symposium (MICS), vol. 53, pp. 1–14, 2020.

[5] A. B. Mailewa, S. Mengel, L. Gittner, H. Khan, and A. M. Dissanayaka, “Dynamic and portable vulnerability assessment testbed

with linux containers to ensure the security of MongoDB in singularity LXCs dynamic and portable vulnerability assessment

testbed with linux containers to ensure the security of MongoDB in singularity ,” pp. 1–5, 2018.

[6] M. K. Asif, T. A. Khan, T. A. Taj, U. Naeem, and S. Yakoob, “Network intrusion detection and its strategic importance,” 2013

IEEE Business Engineering and Industrial Applications Colloquium (BEIAC), pp. 140–144, 2013, doi:

10.1109/BEIAC.2013.6560100.

[7] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network intrusion detection,” IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018, doi: 10.1109/TETCI.2017.2772792.

[8] E. Simkhada, E. Shrestha, S. Pandit, U. Sherchand, and A. M. Dissanayaka, “Security threats/attacks via botnets and botnet

detection and prevention techniques in computer networks: a review,” The Midwest Instruction and Computing

Symposium.(MICS), North Dakota State University, Fargo, ND, pp. 1–15, 2019.

[9] A. M. Dissanayaka, S. Mengel, L. Gittner, and H. Khan, “Vulnerability prioritization, root cause analysis, and mitigation of

secure data analytic framework implemented with mongodb on singularity linux containers,” ACM International Conference

Proceeding Series, pp. 58–66, 2020, doi: 10.1145/3388142.3388168.

[10] J. Gu, L. Wang, H. Wang, and S. Wang, “A novel approach to intrusion detection using SVM ensemble with feature

augmentation,” Computers and Security, vol. 86, pp. 53–62, 2019, doi: 10.1016/j.cose.2019.05.022.

[11] A. M. Dissanayaka, S. Mengel, L. Gittner, and H. Khan, “Security assurance of MongoDB in singularity LXCs: an elastic and

convenient testbed using Linux containers to explore vulnerabilities,” Cluster Computing, vol. 23, no. 3, pp. 1955–1971, 2020,

doi: 10.1007/s10586-020-03154-7.

[12] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,” IEEE Access, vol. 6, pp. 48231–48246,

2018, doi: 10.1109/ACCESS.2018.2863036.

[13] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural networks and support vector machines,” Proceedings

of the International Joint Conference on Neural Networks, vol. 2, pp. 1702–1707, 2002, doi: 10.1109/ijcnn.2002.1007774.

[14] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intrusion detection,” Computers & Security, vol. 21, no. 5, pp.

439–448, Oct. 2002, doi: 10.1016/S0167-4048(02)00514-X.

[15] Z. Chiba, N. Abghour, K. Moussaid, A. El omri, and M. Rida, “Intelligent approach to build a Deep Neural Network based IDS

for cloud environment using combination of machine learning algorithms,” Computers & Security, vol. 86, pp. 291–317, Sep.

2019, doi: 10.1016/j.cose.2019.06.013.

[16] C. Xenakis, C. Panos, and I. Stavrakakis, “A comparative evaluation of intrusion detection architectures for mobile ad hoc

networks,” Computers & Security, vol. 30, no. 1, pp. 63–80, Jan. 2011, doi: 10.1016/j.cose.2010.10.008.

[17] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” IEEE Symposium on

Computational Intelligence for Security and Defense Applications, CISDA 2009, pp. 1–6, 2009, doi:

10.1109/CISDA.2009.5356528.

[18] P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification using self organising feature maps and machine activity

data,” Computers & Security, vol. 73, pp. 399–410, Mar. 2018, doi: 10.1016/j.cose.2017.11.016.

[19] S. Ni, Q. Qian, and R. Zhang, “Malware identification using visualization images and deep learning,” Computers & Security, vol.

77, pp. 871–885, Aug. 2018, doi: 10.1016/j.cose.2018.04.005.

[20] S.-H. Wang, P. Phillips, Y. Sui, B. Liu, M. Yang, and H. Cheng, “Classification of alzheimer’s disease based on eight-layer

convolutional neural network with leaky rectified linear unit and max pooling,” Journal of Medical Systems, vol. 42, no. 5, pp. 1–

11, May 2018, doi: 10.1007/s10916-018-0932-7.

[21] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” in 6th International Conference on Learning

Representations, ICLR 2018 - Workshop Track Proceedings, Oct. 2017. doi: 1710.05941 Focus to learn more.

[22] T. Unterthiner, G. Klambauer, S. Hochreiter, and A. Mayr, “Self-normalizing neural networks,” in Advances In Neural

Information Processing Systems, 2017.

[23] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing, vol. 184, pp. 232–242, Apr.

2016, doi: 10.1016/j.neucom.2015.08.104.

[24] L. Van Der Maaten, E. Postma, J. V. den H.-J. M. L. Res, and U. 2009, “Dimensionality reduction: a comparative,” Journal of

Machine Learning Research, vol. 10, pp. 1–41, 2009.

[25] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, “Stacked denoising autoencoders: learning useful representations

in a deep network with a local denoising criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010.

[26] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, pp. 52–59. doi: 10.1007/978-3-642-21735-7_7.

 ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 13, No. 1, April 2024: 9-26

26

[27] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders: Explicit invariance during feature

extraction,” in Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 833–840.

[28] Q. Xu, C. Zhang, L. Zhang, and Y. Song, “The learning effect of different hidden layers stacked autoencoder,” in Proceedings -

2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, (IHMSC), 2016, pp. 148–151. doi:

10.1109/IHMSC.2016.280.

[29] O. Demir-Kavuk, M. Kamada, T. Akutsu, and E.-W. Knapp, “Prediction using step-wise L1, L2 regularization and feature

selection for small data sets with large number of features,” BMC Bioinformatics, vol. 12, no. 1, pp. 1–10, Dec. 2011, doi:

10.1186/1471-2105-12-412.

[30] A. Shenfield, D. Day, and A. Ayesh, “Intelligent intrusion detection systems using artificial neural networks,” ICT Express, vol.

4, no. 2, pp. 95–99, Jun. 2018, doi: 10.1016/j.icte.2018.04.003.

[31] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep learning approach combining sparse autoencoder with SVM for

network intrusion detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018, doi: 10.1109/ACCESS.2018.2869577.

[32] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, “Autoencoder-based feature learning for cyber security

applications,” in Proceedings of the International Joint Conference on Neural Networks, 2017, pp. 3854–3861. doi:

10.1109/IJCNN.2017.7966342.

[33] B. Lee, S. Amaresh, C. Green, and D. Engels, “Comparative study of deep learning models for network intrusion detection,” SMU

Data Science Review, vol. 1, 2018.

[34] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network intrusion detection: a review,” Computers & Security,

vol. 30, no. 6–7, pp. 353–375, Sep. 2011, doi: 10.1016/j.cose.2011.05.008.

[35] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, “A study on the relationships of classifier performance metrics,” in

Proceedings-International Conference on Tools with Artificial Intelligence, ICTAI, 2009, pp. 59–66. doi: 10.1109/ICTAI.2009.25.

[36] R. S. M. Carrasco and M.-A. Sicilia, “Unsupervised intrusion detection through skip-gram models of network behavior,”

Computers & Security, vol. 78, pp. 187–197, Sep. 2018, doi: 10.1016/j.cose.2018.07.003.

[37] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine learning research, vol. 9, pp. 2579–2605,

2008.

BIOGRAPHIES OF AUTHORS

Shehram Sikander Khan received his M.Sc. in Information Assurance from

St. Cloud State University in spring 2020. He is an experienced Business Intelligence
Analyst with deep expertise in data warehousing, process validation and business needs

analysis. He has proven ability to understand customer requirements and translate into

actionable project plans. Also, he dedicated and hard-working with a passion for Data

Analysis. He has a thorough knowledge of project management, database design, strategic
planning, data visualization, and machine learning. He is currently working as a Business

Intelligence Analyst at Global Overview, Marketing and Advertising, Minnetonka,

Minnesota, USA. He can be contacted at email: shehram.khan@go.stcloudstate.edu.

Akalanka Bandara Mailewa (Dissanayaka Mohottalalage) earned his Ph.D.

in Computer Science from Texas Tech University, Lubbock, Texas, USA in Spring 2020 and

his Ph.D. dissertation research focuses on implementation of secure big data analytic

framework with MongoDB and Linux Containers in high performance clusters (HPC) in
regards to HIPAA regulations. He received his M.Sc. in Computer Science from Saint Cloud

State University, Saint Cloud, Minnesota, USA and earned his B·Sc. Engineering (Hons) in

Computer Engineering from University of Peradeniya, Kandy, Sri Lanka. In industry, he

worked in multiple fulltime roles such as; Network Engineer, Systems Administrator,
Software Developer, and Software Test Automation Engineer. He is certified with several

Microsoft certifications such as MCP, MCTS, MCSA, MCITP, MCSE, and MCSE-security

while he has followed RHCT and CCNA courses. In addition, he is a Palo-Alto Networks

Authorized Cybersecurity Academy Instructor with CIC and CPC certifications. His

research interest includes Big-data security, IoT security, cryptography, ethical hacking,

penetration testing, and software test automation. In various research areas, he has published

several scientific journal articles and conference proceedings by presenting in several well-

known conferences. Also, he is serving as an editorial board member and a reviewer of
several journals and conferences. In addition, he has received several fellowships, awards,

and travel grants from various institutes and organizations. Overall, about 15 years of

teaching experiences in higher education, he is currently working as a tenure-track assistant

professor in the department of computer science and information technology at Saint Cloud
State University, Saint Cloud, Minnesota, USA. He can be contacted at email:

amailewa@stcloudstate.edu.

https://orcid.org/0000-0001-7582-3042
https://www.scopus.com/authid/detail.uri?authorId=58222771700
https://orcid.org/0000-0003-4426-0608
https://scholar.google.com/citations?hl=en&user=tRsoo28AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57386643200

