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 Recent improvements in the internet of things (IoT), cloud services, and 

network data variety have increased the demand for complex anomaly 

detection algorithms in network intrusion detection systems (IDSs) capable 
of dealing with sophisticated network threats. Academics are interested in 

deep and machine learning (ML) breakthroughs because they have the 

potential to address complex challenges such as zero-day attacks. In 

comparison to firewalls, IDS are the initial line of network security. This 
study suggests merging supervised and unsupervised learning in 

identification systems IDS. Support vector machine (SVM) is an anomaly-

based classification classifier. Deep autoencoder (DAE) lowers 

dimensionality. DAE are compared to principal component analysis (PCA) 
in this study, and hyper-parameters for F-1 micro score and balanced 

accuracy are specified. We have an uneven set of data classes. precision-

recall curves, average precision (AP) score, train-test times, t-SNE, grid 

search, and L1/L2 regularization methods are used. KDDTrain+ and 
KDDTest+ datasets will be used in our model. For classification and 

performance, the DAE+SVM neural network technique is successful. 

Autoencoders outperformed linear PCA in terms of capturing valuable input 

attributes using t-SNE to embed high dimensional inputs on a two-
dimensional plane. Our neural system outperforms solo SVM and PCA 

encoded SVM in multi-class scenarios. 
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1. INTRODUCTION 

The risks of network infiltration that can be avoided now can pose a major threat to the operational 

security of big enterprises, governments, and individual users. There have been 14 notable internet breaches 

in the last decade. Among the websites targeted were the National Assembly, Shinhan Bank, the Defense 

Ministry, the Presidential Blue House, and the New York Stock Exchange. In 2009, a Google employee 

released a rogue website that, for 55 minutes, classified the whole internet as infested with malware. Google's 

reputation suffered significantly as a result of this breach, and the business also incurred financial losses as a 

result of lost advertising revenue [1]. 

As a result, there are possible dangers in network traffic that might compromise a target program or 

device. Denial of service (DOS) attacks, which may overwhelm your system with connection requests, can 

prevent a genuine user from accessing system resources. Man in the middle (MITM) attacks intercept 

network traffic in order to listen in on information exchange. Spoofing attacks aim to impersonate an 

https://creativecommons.org/licenses/by-sa/4.0/
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authorized user in order to convince the system to grant the attacker access. It does this by dispatching IP 

packets from a recognized host [2], [3]. The user to root (U2R) attack circumvents system security by getting 

access across the network. Application layer attacks take use of flaws in the application layer, implying that 

there may be a security flaw on the server side. Unseen assaults, on the other hand, are the most significant 

for our study. Zero-day malware is a sophisticated type of attack since no prior knowledge about the danger 

is available [4], [5]. Training the intrusion detection system (IDS) to deal with this type of assault would 

necessitate the use of a security mechanism capable of discriminating between regular and aberrant network 

traffic. There is a need to classify various sorts of threats based on distinct factors that result in improved 

detection with increased precision and recall so that the user can remain protected against new network-level 

assaults. 

Furthermore, hostile attacks have the capability of wreaking havoc on a system's infrastructure. As a 

result, identifying abnormalities within provided network traffic is critical [6]. With the recent increase in 

data volume due to cloud-based services, better internet connections, and internet of things (IoT) devices, 

there has been an assault of increasingly sophisticated attacks that security measures such as the Internet 

Firewall are unprepared to manage. Internet speeds have increased to 100 Gbps or more, and data is expected 

to increase to 44 ZB [7], [8]. Furthermore, as network data volumes increase, we are seeing a shift in the 

variety of data and protocols delivered by network traffic. If a computer host or application lacks a strong 

IDS, it may be exposed to DOS assaults, jeopardizing data privacy and integrity [9]. To address all of the 

aforementioned concerns, the authors developed the following three research questions in order to tackle the 

original problem in a systematic manner. 

- RQ1: is using deep autoencoders (DAE) as a non-linear dimensionality reduction approach better than 

using a linear dimensionality reduction technique? 

- RQ2: is DAE a superior dimensionality reduction alternative than linear analogues in terms of train/test 

time and memory consumption? 

- RQ3: is it better to include the regularization penalty term in the loss function of our model? If this is the 

case, which type of regularization (L1, L2, and none) is most successful inside the suggested neural 

network scheme? 

As a result, the major goal of this research is to assess the efficacy of our proposed neural network 

design by comparing its performance to well-known performance and classification criteria. The  

precision-recall curve, f1-micro, prediction accuracy, and matthews correlation coefficient will be used in 

this investigation. Combining autoencoder-based representation learning with an SVM is predicted to reduce 

processing needs throughout the model's training and testing phases. Reduced computational and storage 

needs are critical for dealing with time-sensitive network threats that an IDS must deal with. 

Intrusion detection systems: Dorothy Denning's seminal paper titled 'an intrusion-detection model' 

first proposed a model for a real-time detection system capable of detecting various forms of threats [10]. 

Since then, the IDS has advanced significantly, particularly with current advances in machine learning (ML), 

big data, and an industry-wide migration to the cloud. Depending on the detecting mechanism, IDS are 

classified into varieties. The first employs a signature-based detection method, whereas the second employs 

an anomaly-based detection method. An intrusion-based IDS compares a prospective threat's signature to its 

database of known assaults and makes a judgment based on the results. The anomaly-based technique 

requires IDS to be thoroughly educated on regular traffic flow patterns using ML algorithms, allowing the 

IDS to detect aberrant traffic. 

The limitation of a signature-based IDS is its inability to detect unknown threats because it is 

primarily reliant on its database of previous assaults. The signature-based detection approach has gained 

popularity because to its high accuracy rates and cheap memory usage [1], although assaults have become 

more complex over time. Threats such as zero-day assaults are unknown to the public until they infect a host 

system or organization. Such attacks can wreak havoc because they take advantage of the time necessary to 

patch an IDS against that danger. The anomaly-based detection system, on the other hand, outperforms zero 

day since it is trained on good traffic flow and can detect an unusual pattern [11]. One complaint leveled at the 

detection technique in question is its high false-positive rate and excessive memory usage during the training 

phase of the detection algorithm. One of the keys focuses of this research would be overcoming this issue. 

Machine learning algorithms: because ML techniques outperform classical classification methods, 

there is considerable interest in using them to detect anomalies [9], [12]. The adoption of these sophisticated 

algorithms has significantly increased the precision in identifying abnormalities. To optimize the anomaly-

based systems, several ML methods such as random forest (RF), support vector machine (SVM) [13], k-

nearest neighbors (KNN) [14], and Nave Bayes were used. Anomaly detection is fundamentally a 

classification problem. ML algorithms perform an outstanding job of detecting risks in general, but there is 

an additional processing cost, which presents a difficulty for cybersecurity specialists because anomalies 

must be dealt with in real-time circumstances. Furthermore, with the introduction of edge computing, 
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developing an algorithm that does not require a lot of CPU power has become even more important. To 

address these challenges, new implementations of deep learning, a branch of ML, in anomaly-based detection 

approaches have shown promise. Because neural nets employ rigorous optimization approaches based on 

neural networks, they enable more robust and extensive learning on inputs. Neural nets are further 

constructed on mathematics, linear algebra, and probability concepts. 

A neural net's fundamental structure consists of three layers: an input layer, a hidden layer, and an 

outer layer. Deep neural networks are neural networks with two or more hidden layers [15]. Backpropagation 

is enabled by hidden layers in the neural architecture, which allows neural nets to repeatedly alter the 

associated weights and biases of a particular neuron by comparing it to the outcome labels. Within a given 

neural network framework, various hyperparameters may be modified to determine how the model is trained 

on the input data. Learning rate, epochs, hidden layers, neurons, and activation function are some of the 

defining hyperparameters. 

KDDCUP99 and NSL-KDD dataset: the MIT Lincoln Lab produced and developed the KDDCUP99 

dataset in 1998 as part of the DARPA intrusion detection evaluation program [16]. The dataset includes both 

'bad' and 'good' connections obtained from a nine-week raw TCP dump of a military network environment. 

Several research have used anomaly-based modeling on this dataset to evaluate the performance of their 

systems [17]. Despite the fact that there are over 37 assaults in the dataset, they may be roughly classified 

into five attack categories, as shown in Table 1. 

However, due to the synthetic nature of the data, the KDDCUP99 dataset has various flaws, 

including record redundancy. Because the model is biased towards frequent records when trained on 

duplicated data, this problem can lead to statistical mistakes [17]. As a result, we will test our suggested 

anomaly detection approach on the upgraded NSL-KDD dataset, which would fix the previously described 

issue. This dataset will be used in our research to assess the correctness of our suggested algorithms. The 

dataset will be evaluated as a binary (attack/normal) and multi-class dataset in our study. 

A large number of research have been undertaken to identify anomalies using supervised ML 

algorithms such as KNN, SVM, and artificial neural networks (ANN) [12]. In terms of reduced training and 

resource consumption, the combined method of unsupervised deep learning for feature reduction and 

supervised ML for classification has been shown to be superior. In the next chapters, we will look deeper into 

the neural net approaches used by other researchers to improve IDS. 

The remainder of the article examines in depth the literature review of ML applications in the 

intrusion detection domain, which serves to provide a comprehensive overview of the research done so far in 

section two. Section three then describes the method, dataset, and technologies used by the author to get the 

results of the investigations. Section four then provides the outcomes, which indicate that all of the 

aforementioned research questions may be answered in order to solve the original research topic. Finally, the 

author will discuss the method's obstacles and limits for future authors to consider. 
 

 

Table 1. Attack types in NSL-KDD dataset 
Attack type Description Training dataset Testing dataset 

DOS DOS 45,927 7,456 

Probe Surveillance and other probing 11,656 2,421 

remote to local (R2L) Unauthorized access from a remote machine 995 2,756 

U2R Unauthorized access to local superuser (root) privileges 52 200 

 

 

2. RELATED WORKS 

Deep neural networks have been extensively researched in the context of network IDS. In this part, 

we will look at many scholarly publications that have implemented various neural network architectures on 

the KDDCUP99 and the NSL-KDD. In the first portion of the literature review, we will cover the inner 

workings of ML and neural networks in order to comprehend the computations conducted in the backend. In 

the following portion of the literature study, we will identify several deep learning architectures used for 

network IDS to improve accuracy and prediction. In the final half of this section, we will describe how our 

work differs from the existing body of research on deep learning and anomaly detection. 

 

2.1.  Background related to the problem 

2.1.1. Deep learning 

Deep learning is a subclass of ML that aims to simulate the human brain using mathematical 

functions that mimic neuron activity. It discovers patterns in raw data without the need for explicit 

programming. Deep learning algorithms have been known for decades, but they have lately moved to the 

forefront due to the abundance of resources accessible today [18]. A neural network's architecture is made up 

of three layers: an input layer, a hidden layer, and an output layer. Each layer is made up of neurons or 
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perceptrons, which are the building blocks of deep learning. Each node links one neuron to the next via 

successive layers. Each neuron applies weights and biases to the input. The product total of weights and 

biases is then passed through an activation function to handle non-linearity, which is important when dealing 

with classification difficulties. The sigmoid function, for example, is a common activation function. When an 

input is provided to the sigmoid function, the product sum of learnt weights is collapsed into a range from 0 

to 1. The output at the output layer is obtained after the product sum of weights is non-linearized with the 

activation function. This entire procedure is known as feedforward propagation. The output is then compared 

to the actual value and iteratively trained to reduce the difference between the original prediction and the 

actual value. Backpropagation refers to the iterative process of changing the weights and biases of input 

features. 

Loss optimization is attempted using backpropagation. Gradient descent refers to the technique of 

iteratively reducing or optimizing the loss function. The most common loss functions are cross-entropy loss 

and mean squared error loss (RMSE). Figure 1 depicts the neurons in the input layer and their connections to 

the succeeding hidden and output layers. 
 

 

 
 

Figure 1. Neural network architecture 
 

 

2.1.2. Autoencoders 

The autoencoder is a neural network that is trained to copy its input to its output [19]. The neural 

network contains two primary mathematical functions that allow the input to be reconstructed into output. 

The encode function ℎ = 𝑓(𝑥) and the decode function 𝑟 = 𝑔(ℎ). h is the internal representation when the 

input x is being converted to r (called reconstruction). In making the approximate copies of input, the neural 

network learns the most useful properties of the raw dataset. Typically, the h is always a lower-dimension 

subspace of the x because of this autoencoder neural networks have a bottleneck layer that has a lower 

number of nodes than the other layers. 

 

2.1.3. Activation functions 

The 𝑓(. ) and 𝑔(. ) is are the activation functions that non-linearize the bias and weight parameters. 

There are many forms of activation functions that are used such as sigmoid, Tanh, and ReLU activation 

functions [20]. Relu, which stands for rectified linear unit, is a widely used activation function in deep neural 

networks [21]. The primary reason for the success of this activation function is that it does not require a lot of 

computational resources to execute it compared to complicated activation functions that lead to increased 

difficulty in optimization. Mathematically, ReLU is presented as (1): 
 

𝑦 = max(0, 𝑥) (1) 
 

ReLU activation function yields an output of 0 when 𝑥 < 0, and then draws a linear line with a slope of 1 

when 𝑥 > 0. 

Our work employs the scaled exponential linear unit (SELU), one of the most recent activation 

functions utilized in deep learning. In self-normalizing neural networks [22], a SELU activation function that 

shows a self-normalizing feature, which is demonstrated using the Banach fixed-point theorem. Essentially, 

activations closer to zero mean and unit variance allow the network layers to converge to zero mean and unit 

variance. 
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The inclusion of SELU in our scheme is important since we will be using DAE with more than three 

deep layers. When using more than three layers in a neural architecture, the forward neural network may 

suffer from gradient difficulties due to a lack of normalization within the activation function. Because 

normalization happens within the function using SELU, we can avoid this difficulty and fully utilize this 

activation function. 

SELU allows room for deeper network layers owing to its faster processing speeds, in addition since 

the activation encourages normalization there is a presence of regularization penalty. In reference to the 

previously mentioned paper, the authors meticulously derived two fixed parameters used in the feedforward 

process. For standard scaled inputs (mean 0, standard deviation 1), the parameters are a=1.6732~, and  

λ= 1.0507 ~. Having fixed parameters our neural network to not backpropagate through these variables. 

SELU can be mathematically presented as (2). 

 

𝑆𝐸𝐿𝑈(𝑥) =  𝜆 {
𝑥

𝛼𝑒𝑋 − 𝛼
 𝑖𝑓 𝑥>0
𝑖𝑓 𝑥 ≤0

 (2) 

 

2.1.4. Deep autoencoders as a dimensionality reduction tool 

Simply rebuilding inputs into output variables is not regarded beneficial because it achieves nothing. 

The main strength of the autoencoder, however, lies in the internal representation of the encoded input x. The 

lower-dimensional representation enhances performance, particularly when doing classification tasks. 

Classifiers learn quicker in smaller dimensions because they use less memory and processing resources. The 

autoencoder learns by reducing the loss function shown as (3). 
 

𝐿 (𝑥, 𝑔(𝑓(𝑥))) (3) 

 

In the above equation, the loss function penalizes 𝑔(𝑓(𝑥)) for x. Indeed, if the decoder function is 

linear and the L is mean squared error, the resultant subspace is identical to principal component analysis 

(PCA) [19]. Typically, the autoencoder method consists of three basic layers. The encoder layer comes first, 

where the inputs are given weights and biases. In the coding layer, the inputs are then reduced to the most 

useful characteristics. Figure 2 shows that the number of neurons in the input layer is often greater than that 

in the 'code layer.' Finally, the decoder layer includes a decoder function for reconstructing the input. The 

code layer, on the other hand, holds the latent representation of the input vectors, which is required for 

classification-based tasks. Undercomplete is when the code layer has a lesser dimension than the input 

dimension [19]. 

Autoencoders are a promising non-linear feature reduction tool that outperforms other 

dimensionality reduction methods. According to Wang et al. [23] compare autoencoder to cutting-edge 

dimensionality reduction methods such as PCA, linear discriminant analysis, locally linear embedding, and 

isomap. According to the findings, autoencoders not only beat other strategies in lowering dimensionality, 

but they are also effective at spotting repeated structures [18]. Other research, on the other hand, favour PCA, 

a linear dimensionality reduction approach, for real-world tasks over simulated tasks [24]. 
 

 

 
 

Figure 2. SELU plotted for a=1.6732~, λ=1.0507~ 
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There are several varieties of autoencoders, as seen in Figure 3, including sparse, deep, denoising 

[25], convolutional [26], contractive [27], and variational autoencoders. DAE (also known as stacked 

autoencoders) would be used in this study [25]. DAE contains numerous hidden levels, and deeper stacked 

AE is thought to be more capable of training than smaller layers [19], [28]. 
 

 

 
 

Figure 3. Autoencoder neural architecture 

 

 

2.1.5. Support vector machine 

On the NSL-KDD dataset, our dataset will be trained using a SVM for anomaly classification. The 

SVM method seeks a hyperplane (a subspace with a size one smaller than that of its surrounding space) that 

clearly classifies the input points. It does this by utilizing support vectors that are closest to the hyperplane 

(i.e., decision boundary). The hyperplane is positioned so that the support vectors are equidistant to it. The 

algorithm computes the greatest margin hyperplane, which is the margin with the highest sum of the two 

support vectors. The algorithm for a binary SVM classifier might be described mathematically as (4). 

 

𝑓(𝑥𝑖) {
≥ 0 𝑦𝑖 =  +1
< 0 𝑦𝑖 =  −1

 (4) 

 

Unlike logistic regression, which squashes the output of its linear function from 0 to 1, SVM 

squashes the output from -1 to 1. In other terms, the SVM algorithm divides the datapoints into two 

categories: negative and positive 1. SVMs have been shown to be successful when working with high 

dimensional data, even when the number of features employed exceeds the number of data points used. 

Furthermore, SVM is a versatile classifier in that we may select from a variety of kernel functions, including 

linear, polynomial, radial basis function (RBF), sigmoid, and even custom kernels written in Python. We will 

use the RBF kernel for our study since it allows us to do non-linear classification on our dataset. The RBF 

may be stated mathematically as (5). 

 

RBF: 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑥′ ∥2) (5) 

 

2.1.6. Regularization 

We may use a technique called regularization to guarantee that our autoencoder representation has 

the most informative weights. Regularization, in essence, penalizes complexity while encouraging simplicity 

in the training model. It accomplishes this by including a regularization term into our neural network's loss 

function. The presence of this regularization factor in the loss function eliminates the possibility of 

overfitting. Overfitting occurs when our model overlearns the training set of our dataset to the point that it 

recognizes certain quirks and outliers. We may ensure that our model is constructed to predict unknown data 

rather than getting over-trained to predict data from the current training dataset rather than the out-of-sample 

test set by including regularization into our neural network. There are different types of regularization 

procedures, each with its own set of pros and disadvantages depending on the nature of the dataset. In each 

model, L1, L2, and L0 regularization terms are often used to punish complexity [29]. In our report, we will 

utilize all three of these regularization strategies to see which one (or none) helps us reduce loss on our 

testing dataset. L2 regularization may be mathematically defined as (6). 

 

‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2 (6) 
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By taking the squared sum of all determined weights, the L2 regularization term assesses model complexity. 

The neural network is optimized based on the minimization of the following loss function and regularization 

term as (7). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) +  𝜆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)) (7) 

 

If the λ in the above equation is 0, the regularization term is omitted entirely. Setting the correct λ parameter 

is critical for establishing regularization for our model. The model grows more sophisticated as the λ value 

decreases, and vice versa. L1 regularization, on the other hand, is formally defined as (8). 

 
‖𝑤‖ = |𝑤1| + |𝑤2| + |𝑤3| + ⋯ + |𝑤𝑛| (8) 

 

L2 regularization encourages model weights to converge around 0, but L1 regularization pushes weights to 

be exactly 0. Under some conditions, L1 may be superior to L2 depending on the context. For example, a 

model with sparse vectors benefits from L1 regularization since it removes numerous sparse weights, 

reducing RAM load and boosting training and testing time. In this study, we will evaluate L1 and L2 

regularization to see which scenario produces the best results based on our categorization criteria. 

 

2.2.  Literature related to the problem 

The authors of intelligent IDS using artificial neural networks [30] offer a supervised deep learning 

classifier based on ANN. The grid search approach is used in the study, and a multi-layer perceptron with 

two hidden layers of 30 neurons each is chosen. A 10-fold cross validation procedure was also used to obtain 

more robust findings. The model produced a large area under receiver operating characteristic (ROC) curve, 

indicating improved categorization. The average area under receiver operating characteristic (AUROC) was 

0.98, the standard deviation (SD) AUROC was 0.02, the maximum AUROC was 1.00, and the minimum 

AUROC was 0.82. 

Other deep-learning frameworks can be used in addition to supervised deep neural networks for 

training IDS on anomaly. The self-taught learning (STL) framework, which is fundamentally formed of two 

stages, is a promising technique and the subject of this study. For feature and dimension reduction, the initial 

step applies unsupervised deep learning. In the second stage, standard ML models are used for classification. 

According to research conducted by Al-Qatf et al. [31], the combination of two techniques produces much 

better outcomes than alternative frameworks. According to Al-Qatf et al. [31] this strategy is computationally 

efficient. Furthermore, as compared to other shallow ML classifiers, the STL technique adds to an overall 

rise in detection accuracy. 

A work called autoencoder-based feature learning for cyber security application implements an 

autoencoder-based deep learning scheme in which the reduced features are subsequently identified using 

several ML algorithms [32]. The study uses data from two primary datasets: the KDDCUP99 dataset and the 

malware classification dataset, both of which were provided by Microsoft on Kaggle in 2015. The findings 

are compared to independent ML classifiers as well as autoencoder-based input characteristics in the 

research. the study found that gaussian nave bayes combined with AE-based features outperformed other 

deep learning models such as Xgboost and H20 models in terms of intrusion detection accuracy. 

Similarly Shone et al. [7] combine non-symmetric deep auto-encoder (NDAE) with RF. Each 

NDAE contains three hidden layers, each with the same number of neurons. The fundamental difference 

between NDAE and other autoencoders is that it does not use the traditional encoder-decoder paradigm, but 

instead just applies the encoder formula in the outer layer process, making this scheme non-symmetric in 

nature. The technique has been tested on the KDDCUP99 and NSL-KDD datasets. The study is carried out as 

a 5-class and 13-class KDD classification. The comparisons made after developing the models revealed a 5% 

gain in accuracy and a 98.1% reduction in training time. 

The authors propose three primary methods to the anomaly classification problem in the 

comparative study of deep learning models for network intrusion detection [33]. The STL model, for 

example, has an average accuracy of 98.8% across four types of anomalies: DOS, probe, R2L, and U2R. The 

second strategy is based on recurrent neural network (RNN), which takes into account past lags of input 

feature, allowing for an extra memory input. Having that extra memory input allows you to add a time 

component to your study. The RNN based on long short-term memory, on the other hand, achieved an 

average accuracy of 79.2%. Finally, the deep neural network technique on the KDD dataset achieved a 66% 

accuracy. 

The deployment of a deep learning technique to network IDS is still in its early stages, according to 

this section. Given how complex the model-building process can become given its various configurations 

(training, optimization, activation, and classification) and other model-specific configurations (number of 
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hidden layers, learning rate, loss and function), we believe that our approach of using DAE with SVM 

classifier would make a significant contribution to the existing body of literature on the topic. The next 

portion of the article goes into detail about the model-building process and the study's method. 

 

 

3. RESEARCH METHODS 

The authors will define the study's measurements in this section to define the study's boundaries. In 

addition. We will go through the intricacies of the data preparation and hyperparameter tweaking that has 

been accomplished thus far in the project. 

 

3.1.  Definition of terms 

- IDS: An IDS is a device or software application that monitors a network or system for malicious activity 

or policy violations. 

- network level attacks: network-delivered threats that typically gain access to the internal operating 

systems. Common types of network attacks are DOS, spoofing, sniffing, and information gathering. 

- Recall: quantifies the number of positive class predictions made out of all positive examples in the 

dataset. 

- Precision: indicates the proportion of correct predictions of intrusions divided by the total of predicted 

intrusions in the testing process. 

- Accuracy: indicates the proportion of correct classifications of the total records in the testing set. 

- F-score: provides a single score that balances both the concerns of precision and recall in one number. 

- Training and testing time: the number of seconds it takes for neural network or classifier to train and test 

respectively on the dataset. 

- ML: ML is a method of data analysis that automates analytical model building. It is a branch of artificial 

intelligence (AI) based on the idea that systems can learn from data, identify patterns, and make decisions 

with minimal human intervention. 

- Deep learning: deep learning is a subset of ML in AI that has networks capable of learning unsupervised 

from data that is unstructured or unlabeled. 

- Activation function: the activation function of a node or neuron defines a numerical output by taking 

input or a set of inputs. 

 

3.2.  Data preprocessing  

The categorical features in the dataset were encoded using a one-hot encoder during the 

preprocessing phase of the study, which binarizes the categorical values into 0 and 1. L2 normalization was 

used to standardize the numeric variables. Sklearn.preprocessing. The normalization was carried out using 

the Normalizer library. Many neural network techniques require normalized numeric inputs [3], [34]. 

Furthermore, standardization of numeric inputs aids in the avoidance of outliers in the dataset. 

 

3.3.  Hardware and software environment 

- Operating system: windows 10 home 64-bit (10.0, build 17763)  

- BIOS: X510UAR.309 (type: UEFI) 

- Processor: intel(R) core (TM) i5-8250U CPU @ 1.60GHz (8 CPUs), ~1.8GHz 

- Memory: 8192MB RAM 

- DxDiag version: 10.00.17763.0001 64bit Unicode 

- Software environment: Python 3.7.5 64-bit | Qt 5.9.6 | PyQt5 5.9.2 | windows 10 

- Python packages: TensorFlow 2.0.0, NumPy 1.17.2, Pandas 0.25.2 

 

3.4.  Design and implementation of the study 

Because anomaly detection is ultimately a classification issue, the study will be quantitative. DAE 

were chosen as the first stage for dimension reduction, and a SVM classifier was chosen as the second stage 

for classification on the encoded vector. The grid search algorithm, which performs hyperparameter tuning 

and picks parameters that maximize the loss function, will determine the number of hidden layers and 

activation neurons. Instead of PCA, linear discriminant analysis (LDA), or other types of dimension 

reduction, we will employ DAE as a type of non-linear dimension reduction. We will use a SVM for 

classification once we have received the subset vector of reduced features. 

Numpy, Pandas, Scikit-learn, and Keras are Python libraries that are important to the study. Python 

was chosen over other statistical programming languages because it has a larger library set, making it an 

excellent candidate for undertaking deep learning research. The classification will be done on both binary and 
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multi-class labels. The first scenario divides the label into two parts: normal and assault. In the multi-class 

situation, we have divided the labels into five different attack types. 

 

3.5.  Tools and techniques  

Grid search is a technique for fine-tuning hyperparameters. The approach finds the best 

hyperparameters by running an exhaustive search over the parameter grid. The following parameters were 

included in the paper's given grid: epochs, loss function, kernel function, activation function, and the number 

of k-folds for cross-validation. K-fold cross-validation allows the user to divide the training dataset into 

several folds, resulting in less biased and overfitted results. The model's loss function would be the square 

root of the average of squared disparities between forecast and actual observation. The RMSE loss function is 

represented mathematically as (9). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
(𝑌𝑗 + Ῠ𝑗)2  (9) 

 

3.6.  Performance evaluation  

In a two-by-two confusion matrix, the four possible outcomes are as: i) true positive (TP) is attack 

data that is correctly grouped as an attack; ii) false positive (FP) is normal data that is incorrectly grouped as 

an attack; iii) true negative (TN) is normal data that is correctly grouped as normal; iv) false negative (FN) is 

attack data that is incorrectly grouped as an attack. The majority of the performance indicators described will 

be based on these four probable outcomes [35]. The notion of classification threshold is closely related to 

confusion matrix outcomes because we must select a threshold value that helps us decide when to classify a 

result as 'abnormal' or 'normal'. 

 

3.7.  Accuracy 

Based on the four measures computed from the confusion matrix, we can compute accuracy which is 

the fraction of the number of correct predictions to the total number of predictions. We can formulate 

accuracy as (10). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
 (10) 

 

The accuracy rates would be the key performance indicator for the several machines and deep learning 

classifiers we will be working on throughout the study. 

 

3.8.  Precision-recall curve 

The precision and recall metrics are very important measures when dealing with imbalanced classes. 

Precision calculates the proportion of positive identifications that were correct. It could be mathematically 

defined as (11). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃 
 (11) 

 

Recall is defined as the proportion of actual positives correctly identified. It can be written as (12). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
 (12) 

 

As the decision threshold is increased, there is usually a trade-off between precision and recall. 

When the categorization threshold is raised, the recall either decreases or remains constant. In contrast, 

increasing the classification threshold improves accuracy [36]. The precision-recall curve visually depicts the 

inverse connection. 

 

3.9.  F-measure 

The F-measure is a statistic with a single value that is based on precision and recall. The F-measure 

has a value between 0 and 1. The F-measure allows for the simultaneous consideration of accuracy and recall 

through a single measure, as opposed to seeing them as trade-offs. The F-measure is mathematically defined 

as (13). 

 

𝐹𝑀 =
(1+𝛽1)∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13) 
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3.10.  Test and train timings 

Network-level assaults are time-sensitive. Therefore, the test and train timings are critical for this 

investigation. As a result, having a model that can train significantly quicker than other methods would be 

extremely beneficial to our research. 

 

 

4. RESULTS 

4.1.  Visualizing data using t-distributed stochastic neighbor embedding 

We use t-distributed stochastic neighbor embedding (t-SNE), a method for displaying high 

dimensional data, to visualize our dataset. t-SNE makes use of kullback-leibler (KL) divergence, a measure 

of the difference between two probability distributions [37]. KL divergence may be seen of as a 

dimensionality reduction approach since it translates observations into joint probabilities, which reduces the 

amount of information processed overall. When dealing with larger dimensional data (usually more than 50 

dimensions), it is advised to use a previous dimensionality reduction approach to produce a manageable 

subspace that t-SNE can handle well because it requires a significant amount of computer resources. 

Furthermore, applying t-SNE on smaller dimensions handles noise without distorting interpoint distances. In 

our case, we'd use PCA (linear dimensionality reduction) and DAE (non-linear dimensionality reduction) to 

evaluate how t-SNE visualizes the decreased dimensions from both methods. Using DAE, we were able to 

reduce the initial feature space of 122 inputs to a subspace of 10 dimensions. For our dataset, we will use  

t-SNE to display a 2D manifold with varying perplexity levels. Perplexity can be regarded as a smooth 

measure of the number of effective neighbors. Perplexity levels typically range from 5 to 50. When working 

with bigger datasets, however, it is acceptable to use a greater perplexity number. The t-SNE representation 

of AE encoded dimensions can be shown in Figures 4-6, whereas PCA dimensions with altered perplexity 

and iterations can be seen in Figures 7-9. We can see that at increasing perplexity and iterations, both AE and 

PCA are able to cluster various attack groups more effectively than in lower perplexity and iterations. The 

data points in all figures are color-coded according to the NSL-KDD dataset's five assault classifications. The 

graph above's vertical and horizontal axes are formed using the KL divergence technique, which is used to 

embed a high dimensional data space into a smaller subspace. 
 

 

 
 

Figure 4. t-SNE representation of encoded representation (perplexity=50 and iterations=500) 
 

 

 
 

Figure 5. t-SNE representation of encoded representation (perplexity=100 and iterations=500) 
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Figure 6. t-SNE representation of encoded representation (perplexity=50 and iterations=1,000) 

 

 

 
 

Figure 7. t-SNE representation of PCA (perplexity=50 and iterations=500) 

 

 

 
 

Figure 8. t-SNE representation of PCA (perplexity=100 and iterations=500) 
 

 

 
 

Figure 9. t-SNE representation of PCA (perplexity=50 and iterations=1,000) 
 

 

As the perplexity and iterations increase, we can see 'regular' class data points (red dots) merging. A 

normal class is unique from the other attacks labels, indicating that PCA and DAE are highly successful at 
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distinguishing between 'normal' and 'attack'. However, when we focus on the other four attack classes, we 

observe a different picture; with the exception of the 'DOS' attack class, the other three attack classes are 

jumbled together and do not form a discernible cluster. The t-SNE representation of PCA and the DAE hint 

that categorizing the other three assault methods may be difficult. 

 

4.2.  Grid search 

We used the GridSearchCV provided via scikit-learn, an open-source ML package accessible on 

Python, to optimize the parameters for our classifier. The GridSearchCV aims to execute an exhaustive 

search across supplied parameter values for our SVM classifier based on important score. Table 2 illustrates 

the Grid Search with 'Balanced Accuracy' Scoring for our purposes. 

The γ and c parameters are important to consider while dealing with SVM using RBF Kernel 

function. The c variable may be thought of as a regularization term that keeps sparse variables in control. The 

ideal parameter selection is determined by the degree of noise and balance in the dataset. We used the kernel 

methods provided in the scikit-learn python package because our dataset was non-linear. We have four kernel 

functions to pick from: linear, polynomial, RBF, and sigmoid. As indicated in Table 3, we used 'RBF' for our 

investigation since our grid search projected RBF to be the optimum kernel function for optimizing f1-micro. 

 

 

Table 2. Grid search with 'balanced accuracy' scoring 
Balanced accuracy Std C Kernel 

0.458 (+/-0.035) 1 Linear 

0.823 (+/-0.094) 1 RBF 

0.755 (+/-0.081) 1 Poly 

0.611 (+/-0.056) 10 Linear 

0.841 (+/-0.154) 10 RBF 

0.851 (+/-0.100) 10 Poly 

0.66 (+/-0.079) 100 Linear 

0.849 (+/-0.126) 100 RBF 

0.875 (+/-0.106) 100 Poly 

0.688 (+/-0.109) 1,000 Linear 

0.828 (+/-0.091) 1,000 RBF 

0.845 (+/-0.135) 1,000 Poly 
 

Table 3. Grid search with 'f1-micro' scoring 
F1-micro score Std C Kernel 

0.704 (+/-0.258) 1 Linear 

0.815 (+/-0.011) 1 RBF 

0.781 (+/-0.019) 1 Poly 

0.497 (+/-0.017) 10 Linear 

0.883 (+/-0.010) 10 RBF 

0.851 (+/-0.013) 10 Poly 

0.567 (+/-0.023) 100 Linear 

0.928 (+/-0.011) 100 RBF 

0.903 (+/-0.014) 100 Poly 

0.665 (+/-0.028) 1,000 Linear 

0.949 (+/-0.013) 1,000 RBF 

0.937 (+/-0.012) 1,000 Poly 
 

 

 

4.3.  Classification metrics: accuracy, precision-recall, and f-score 

In this section, we will thoroughly study three primary models to understand their efficacy at 

predicting anomalies as well as the quality of their forecast by looking at subtler yet significant variables like 

as accuracy, recall, and f-score. Simply looking at accuracy is insufficient to assess our model's efficacy, 

especially given the NSL-KDD dataset's uneven label distribution. We must pay special attention to 

examining recall values for the models in issue since false negatives (type 1 mistake) might generate 

incursions that could lead to a breach in the information system of another individual or business. To avoid 

such scenario, the recall metric is extremely important to us as cybersecurity specialists. 

It is also necessary to examine the accuracy, recall, and f1-score values of various attack types, since 

this will provide us with a clearer view of the model's performance. For example, failing to have a high recall 

in a U2R attack type might result in a hacker gaining root access to the system. Thus, if we want to construct 

a robust anomaly-based IDS, we need to measure our models' performance against specific attack types as 

well as focus on the overall model. The first model we'll look at is a solo SVM model with input data scaled 

using L2 normalization. The model's predictions are created against an unknown validation set supplied by 

the NSL-KDD. The total prediction accuracy in the binary label scenario illustrated in Table 4 is 77%, while 

the model provides a weighted average f1-score of 76%. In Table 5, we use the same model on a multi-class 

scenario where attack label is further divided into four classes. The overall accuracy as well as weighted f1, 

recall, and precision drop quite significantly when performing multi-label predictions. 

The second model combines dimensionality reduction with PCA and SVM that has been similarly 

tweaked. Based on the binary data in Table 6, we see a 74% reduction in accuracy and recall. Only for 

multiclass labels, we found a drop in weighted averages for recall, f1-score, precision, and overall accuracy 

when compared to the multiclass solo SVM model, as shown in Table 7. 

According to Table 8, our suggested approach significantly improves accuracy and average recall 

rates when dealing with binary labels. As a result, while dealing with many classes, our suggested model 

outperforms the previous two models in terms of weighted averages of precision, recall, and f1-score, as well 

as accuracy. However, when we focus on U2R, we find that the recall rates are significantly greater in the 

solo SVM scenario than in our model, as shown in Table 9. 
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Table 4. Binary label classification report for standalone SVM 
Label Precision (%) Recall (%) F1-score (%) Support 

Normal 65 97 78 9,711 

Attack 97 61 75 12,833 

Other measures 

Accuracy 

   

77 

 

22,544 

Macro average 81 79 77 22,544 

Weighted average 83 77 76 22,544 

 

 

Table 5. Multi-label classification report for standalone SVM 
Label Precision (%) Recall (%) F1-score (%) Support 

Normal 70 84 77 9,711 

DOS 90 70 79 7,460 

Probe 59 62 60 2,421 

R2L 42 23 30 2,885 

U2R 4 60 8 67 

Other measures 

Accuracy 

   

69 

 

22,544 

Macro average 53 60 51 22,544 

Weighted average 72 69 69 22,544 

 

 

Table 6. Binary label classification report for PCA+SVM classifier 
Label Precision (%) Recall (%) F1-score (%) Support 

Normal 63 96 76 9,711 

Attack 95 56 71 12,833 

Other measures 

Accuracy 

   

74 

 

22,544 

Macro average 79 76 73 22,544 

Weighted average 81 74 73 22,544 

 

 

Table 7. Multi-label classification report for PCA+SVM classifier 
Label Precision (%) Recall (%) F1-score (%) Support 

Normal 61 55 58 9,711 

DOS 88 68 77 7,460 

Probe 48 63 54 2,421 

R2L 19 10 13 2,885 

U2R 1 52 2 67 

Other measures 

Accuracy 

   

55 

 

22,544 

Macro average 44 50 41 22,544 

Weighted average 63 55 58 22,544 

 

 

Table 8. Binary label classification report for AE encoded+SVM classifier (L2 regularization) 
Label Precision (%) Recall (%) F1-score (%) Support 

Normal 67 97 80 9,711 

Attack 96 65 77 12,833 

Other measures 

Accuracy 

   

78 

 

22,544 

Macro average 82 81 78 22,544 

Weightedaverage 84 78 78 22,544 

 

 

Table 9. Multi-label classification report for AE encoded+SVM classifier  
Label Precision Recall F1-score Support 

Normal 71% 89% 79% 9711 

DOS 90% 74% 81% 7460 

Probe 70% 62% 65% 2421 

R2L 50% 23% 32% 2885 

U2R 5% 48% 9% 67 

Other measures 

Accuracy 

   

73% 

 

22544 

Macro average 57% 59% 53% 22544 

Weighted average 74% 73% 72% 22544 
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4.4.  Precision-recall curves 

Another interesting technique to examine accuracy and recall metrics is to visualize them using the 

precision-recall curve. The curve assists us in determining the quality of our classifier's output. The link 

between precision and recall measures is often based on a tradeoff; this characteristic is shown in the 

precision-recall curve, which depicts the two metrics depending on various decision bounds. As we progress 

down the curve, the judgment threshold (also known as the classification threshold) drops, the number of 

false positives grows, while the number of false negatives reduces. As a result, accuracy drops but recall rises 

(see previous chapter formulae). 

Another quality metric that may be used to closely study the precision-recall curve is the AP score, 

which is effectively the weighted mean of precisions attained at each threshold, with the increase in recall 

from the previous threshold used as the weight. It is expressed mathematically as (14). 

 

AP = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛  (14) 

 

Where R denotes recall, P denotes precision, and N is the nth threshold. The area underneath precision-recall 

curves are an important element to look for while evaluating them. The area beneath the curve may be 

approximated using AP and trapezoidal principles. A steeper precision-recall curve indicates a high value for 

both measures, which is crucial for a robust, reliable model. We will solely compare the binary  

precision-recall curves for scaled, PCA, and DAE encoded datasets categorized using SVM in this section. 

Other algorithms' precision-recall graphs can be found in the appendix section for additional investigation. 

The precision-recall curve for a standalone SVM working on an RBF kernel function is seen in 

Figure 10. The average accuracy score is 0.57, which is not a good result for an IDS. Figure 11 depicts data 

from PCA encoded inputs combined with the SVM classifier. The curve's form is particularly outward 

facing, indicating an increase in the area beneath the curve compared to the data provided in Figure 10. The 

algorithm has an AP rating of 0.69. 

 

 

 
 

Figure 10. Standalone SVM for binary class precision-recall curve 

 

 

 
 

Figure 11. PCA+SVM binary class precision-recall curve 
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This graph in Figure 12 clearly demonstrates the precision-recall trade-off described at the 

beginning of this section. We can see that when the choice boundary shrinks, the recall grows. The region 

beneath the curve is clearly larger than in the preceding two plots of SVM and PCA-SVM, respectively. Our 

suggested model has an AP score of 0.90, which is rather high. We employ the models in multiclass, but with 

an additional weight balancing modification. Because the precision-recall curve is mostly utilized for binary 

labels, we shall binarize distinct curves for the five classes. Because our dataset has a class imbalance, we 

elected to micro-average rather than macro-average all five classes, which may result in a different 

interpretation. 

Figure 13 depicts precision-recall curves for normalized inputs based on a solo SVM classifier. The 

micro-average of precision-recall curves for all five classes, computed by aggregating the contributions of the 

five classes, is an essential statistic in the preceding graph. According to the curves in Figure 14, PCA 

encoded inputs result in a significant rise in the micro-average of precision-recall, specifically from 0.59 to 

0.63. It should be noted that our graphics show iso curves at various f1 values. Iso-curves are convex-shaped 

curves that, for a given f1-score, follow a combination of precision and recall values. The iso-curves provide 

a consistent reference point for better understanding of the precision-recall curve. Figure 15 depicts data from 

DAE inputs categorized using SVM. The data shows a significantly higher micro-average than the prior two 

models. The area under the micro-AP recall curve is 0.72, which is 10 basis points more than the prior model. 

 

 

 
 

Figure 12. AE+SVM precision-recall curve (polynomial kernel) 

 

 

 
 

Figure 13. Standalone SVM for multiclass precision-recall curves 
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Figure 14. PCA+SVM multiclass precision-recall 

curves 

Figure 15. AE+SVM multiclass precision-recall 

curves 
 

 

4.5.  Performance metrics: train and test time 

One of the most essential characteristics of a successful model is the amount of time and processing 

resources required to make its forecasts. We utilized Python's time module to calculate how long it takes our 

models to train and test on the NSL-KDD dataset. The training and testing times for the algorithms employed 

in this work are shown in Table 10 in seconds. Based on our findings, we can infer that L1 regularized DAE 

combined with SVM saves the greatest time when dealing with binary classes. In the multi-class situation, we 

discover that DAE-SVM without any regularization term takes the least amount of time to train and test the 

NSL-KDD dataset, providing a clear response to our initial research question about the usefulness of an 

autoencoder-based dimensionality reduction technique. In both multi and binary class contexts, a standalone 

SVM appears to take the most time. 
 

 

Table 10. Train and test time based on seconds 
Algorithm Training_Time (sec) Testing_Time (sec) Total_Time (sec) Class 

SVM 392.70 39.68 432.38 Binary 

DAE-SVM 59.13+86.60 2.28 148.01 Binary 

DAE-SVM L1 52.55+90.49 2.80 145.84* Binary 

DAE-SVM L2 62.22+89.64 2.69 154.53 Binary 

SVM 1545.64 133.23 1,678.87 Multi-class 

PCA-SVM 270.16 29.83 299.99 Multi-class 

DAE-SVM 48.09+89.75 7.78 145.62* Multi-class 

DAE-SVM L1 49.20+121.04 10.72 180.96 Multi-class 

DAE-SVM L2 48.60+114.15 9.51 172.26* Multi-class 

*Algorithm that takes the least time to train and test on the NSL-KDD dataset 

 

 

5. CONCLUSION 

The findings of this study covered all of the themes raised in the research question section. To 

summarize our findings, we discovered that a DAE+SVM-based neural network method was successful 

based on several classification and performance criteria. When t-SNE was used to embed higher dimension 

inputs on a two-dimensional plane and was compared to its linear PCA equivalent, autoencoders were 

substantially more effective at capturing valuable features of inputs. In particular, in terms of training and 

testing time, autoencoder encoded inputs showed to be substantially more time-efficient during the model's 

training and testing phases. Furthermore, our proposed neural system outperforms solo SVM and PCA 

encoded SVM in multi-class classification metrics such as weighted average of recall, f-score, and Accuracy. 
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We were able to acquire a more precise perspective of our suggested neural scheme's performance by 

focusing on type 1 (false positives) and type II (false negatives) mistakes by focusing on measures such as 

accuracy and recall. Because we are dealing with anomaly detection, we should place greater emphasis on 

type II error because enabling an anomaly to permeate our IDS has the ability to wreak havoc on our system's 

resources. After thoroughly studying the classification metrics, we can confidently conclude that 

autoencoders are a feasible dimensionality reduction approach when compared to PCA for anomaly detection 

on the NSL-KDD Dataset. 
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