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 Diseases in edible and industrial plants remains a major concern, affecting 

producers and consumers. The problem is further exacerbated as there are 

different species of plants with a wide variety of diseases that reduce the 

effectiveness of certain pesticides while increasing our risk of illness. A 

timely, accurate and automated detection of diseases can be beneficial. Our 

work focuses on evaluating deep learning (DL) approaches using transfer 

learning to automatically detect diseases in plants. To enhance the 

capabilities of our approach, we compiled a novel image dataset containing 

87,570 records encompassing 32 different plants and 74 types of diseases. 

The dataset consists of leaf images from both laboratory setups and 

cultivation fields, making it more representative. To the best of our 

knowledge, no such datasets have been used for DL models. Four pre-

trained computer vision models, namely VGG-16, VGG-19, ResNet-50, and 

ResNet-101 were evaluated on our dataset. Our experiments demonstrate 

that both VGG-16 and VGG-19 models proved more efficient, yielding an 

accuracy of approximately 86% and a f1-score of 87%, as compared to 

ResNet-50 and ResNet-101. ResNet-50 attains an accuracy and a f1-score of 

46.9% and 45.6%, respectively, while ResNet-101 reaches an accuracy of 

40.7% and a f1-score of 26.9%. 
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1. INTRODUCTION 

Plant diseases affects global food production, biodiversity, our health and the livelihoods of farmers 

[1]–[7]. The correct usage of pesticides to preserve yields requires a high level of expertise since the 

indication of a particular disease varies from one plant species to another [2]. Even experienced plant 

pathologists may fall short in diagnosing diseases correctly, resulting in chemicals such as bactericides, 

fungicides and nematicides being used excessively, thus adversely affecting biodiversity [8]–[13]. Their use 

is also harmful to our health, causing both acute and chronic consequences such as neurological and 

metabolic deficits [2]–[5], [13]. Furthermore, the United Nations estimated that toxic exposure causes an 

average of 200,000 deaths per year [14]. On the other hand, in developing countries, the livelihoods of 

smallholder farmers who generate more than 80% of the cultivation are disastrously constrained by yield 

loss, which is reported to be more than 50% per year due to pests and diseases [15], [16].  

Most of the time, diseases in plants are first detected by experienced farmers when they become 

visible. Though trained raters can detect the ailments with their naked eyes, their analysis may be erroneous 

https://creativecommons.org/licenses/by-sa/4.0/
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as they can be subjected to fatigue or loss of concentration since the necessary process of continuous plant 

monitoring is tedious and time-consuming, and harvests may expand over vast areas [17]. Plant disease 

detection can also be conducted through techniques such as enzyme-linked immunosorbent assay (ELISA), 

deoxyribonucleic or acid ribonucleic acid (DNA or RNA) probes, squash blots, tissue blotting and 

polymerase chain reaction (PCR) by distinguishing DNA or proteins that are different for each disease  

[18]–[21]. However, though the molecular test kits can detect diseases promptly, their development is 

expensive and they can be inaccessible to smallholder farmers [18]–[21]. On the other hand, to identify plant 

diseases quickly, researchers at North Carolina State University developed a sensory device to sample the 

airborne levels of volatile organic compounds (VOCs) that plants' leaves release [21]. Sensor-based methods 

have also been adopted to identify plant diseases by detecting early changes in plant physiology such as 

changes in leaf shape, tissue color and transpiration rate [20], [22], [23]. Nevertheless, accessibility,  

cost-benefit and training time are some factors that negatively affect the successful implementation of these 

technologies by smallholder farmers [21]. Furthermore, due to their efficiency in computer vision, various 

works in recent years have proposed the use of deep learning (DL) algorithms to detect diseases in plants. In 

the context of plant classification, DL performs classification more accurately than traditional machine 

learning (ML) methods [24]–[27]. However, further DL research in plant diseases is required in order to 

produce functional systems that can be utilized in practice [28]. The aim of this paper is to evaluate the  

state-of-the-art ML models to identify plant diseases and contribute to alleviating drawbacks encompassing 

plant disease detection, which could be of help to researchers in the field of computer vision for plant disease 

detection. 

 

 

2. LITERATURE REVIEW 

Application of ML methods in the agricultural sector to detect plant diseases has shown tremendous 

success [29]–[32]. According to Zhang et al. [33] ResNet performed better than GoogleNet and AlexNet for 

detecting tomato plant disease. Research by Türkoğlu and Hanbay [34] ResNet-50 with support vector 

machine (SVM) classifier performed efficiently in terms of f1-score and recall when classifying eight 

different plant diseases. Research by Ferentinos [35] deployed convolutional neural network (CNN) models 

such as AlexNet, AlexNetOWTbn, GoogLeNet, OverFeat, and visual geometry group (VGG), by using 

87,848 images, VGG reached a relatively higher accuracy of 99.53% when classifying plant diseases. 

Research by Jiang et al. [36] the VGG-inception architecture outranked ResNet, AlexNet, 

GoogLeNet and VGG in performance when classifying five types of apple plant diseases. Research by 

Nachtigall et al. [37] AlexNet performs better than multi-layer perceptron (MLP) with an accuracy of 97.3% 

when classifying diseases in apple plants from a dataset of 1,450 records. Research by  

Türkoğlu and Hanbay [34] AlexNet outperformed SqueezeNet in terms of accuracy when distinguishing 

tomato plant disease. Research by Brahimi et al. [24] AlexNet and GoogleNet perform better than 

classification techniques such as SVM and random forest, and AlexNet model reaches a relatively high 

accuracy of 99.18% for tomato disease detection. 

Research by Kawasaki et al. [27] a CNN architecture that utilizes the Caffe framework [38] was 

proposed to detect diseases in the leaves of cucumbers. 800 images of leaves were used as dataset which was 

then augmented through rotational transformations. The study attained an accuracy of 94.9%. Research by  

Jia et al. [39] image rotations, and perspective transformations were used to enlarge 4,483 original images 

from the Stanford background dataset [40], after which transfer learning using CaffeNet architecture [38] was 

implemented to classify 13 types of diseases in plants. According to Rangarajan et al. [41] AlexNet has better 

accuracy compared to VGG-16 when determining six types of diseases in tomato plants [42]. Research by 

Mohanty et al. [6] when using the PlantVillage dataset with 38 classes, transfer learning of GoogleNet 

achieved an accuracy of 99.35%. 

Overall, image recognition is extremely useful due to its ability to handle a large number of input 

parameters, such as image pixels [29]. It has a fast processing time, and it also lessens human efforts and 

errors [43]. In due course, computer vision through ML can be effectively used by farmers or even 

inexperienced users [29]. 

Nevertheless, various limitations were encountered in several studies. In many cases, the datasets 

used consist solely of images taken in laboratory-controlled environments and not in real-world setups  

[28], [35]. An evaluation of trained models utilizing plant images that include real-world environments 

showed a significant reduction in accuracy by 31% [28]. Another major setback of CNN for identifying 

specific diseases in plants is that existing public datasets consist of limited records and classes, and as such, 

cannot identify the vast variety of plants' ailments [29], [44]. Experimental results indicate that the use of 

datasets with small records prevents neural networks from properly learning the classes [29], [45], [46]. 
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3. MATERIALS AND METHOD 

This section covers the method used to implement the novel customized dataset and apply DL 

models for plant disease detection. The experiments were conducted with Jupyter notebook by using Keras 

with Tensorflow as backend on a simple model laptop without graphics processing unit (GPU). Figure 1 

shows a high-level view of the architecture of our proposed solution. 

 

 

 
 

Figure 1. High level architecture of the proposed solution 

 

 

3.1.  Dataset 

A customized dataset of 87,570 leaf images, under both lab-controlled and real-world conditions, 

across 32 crop species segregated into 97 distinct classes of healthy and diseased plants, was compiled for 

this paper as shown in Figure 2 and Table 1 (see in Appendix) by cleaning and combining multiple open 

datasets together. Among the 97 categories, 74 and 23 classes belong to diseased and healthy plants, 

respectively. The main issue with many existing open source datasets is that they consist of images of leaves 

assessed under lab-controlled setups only and often contain a small number of records and classes that are not 

appropriate for real-world applications. Our customized dataset consists of a rather large set of records, 

which can definitely help to overcome the issue of overfitting. Overfitting is a major problem linked to small 

datasets that consequently produce less reliable models that do not generalize well. Moreover, our 

customized dataset results in an interesting mix of both lab-controlled and real-world images due to the 

various open datasets that we used, as depicted in Table 2. 

 

 

 
 

Figure 2. Some leaf images from our customized dataset 
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Table 2. Description of datasets from which leaf images were adopted 
Dataset name Dataset description Environme

nt 

Number of 

records 

Number 

of classes 

URL where dataset is 

available 

PlantVillage [47] An expertly curated dataset by 

PlantVillage which is a non-profit 

project by Penn State University 
and EPFL 

Lab-

controlled 

54,303 38 https://www.tensorflow

.org/datasets/catalog/pl

ant_village 

PlantDoc A dataset of internet scraped images 

which was accepted at ACM India 
Joint International Conference on 

Data Science and Management of 

Data in 2020 

Both lab-

controlled 
and real-

world 

2,598 17 https://github.com/prati

kkayal/PlantDoc-
Dataset 

Rice leaf diseases A dataset which was created under 

the supervision of farmers by 

separating infected leaves of rice 
into different disease classes 

Lab-

controlled 

120 3 https://archive.ics.uci.e

du/ml/datasets/Rice+L

eaf+Diseases# 

RoCoLe [48] A dataset of Robusta coffee leaf 

images which were visually 
assessed for classification by an 

expert 

Real-world 1,560 5 https://data.mendeley.c

om/datasets/c5yvn32dz
g/2 

Cassava leaf disease 
classification 

A dataset of cassava images 
compiled by farmers and experts at 

the National Crops Resources 

Research Institute in collaboration 
with Makerere University 

Real-world 21,367 5 https://www.kaggle.co
m/c/cassava-leaf-

disease-

classification/data 

Cotton leaf infection A dataset for cotton leaf disease 

classification 

Both lab-

controlled 
and real-

world 

1,195 4 https://www.kaggle.co

m/datasets/raaavan/cott
onleafinfection 

Dataset of citrus 
fruit and leaves [49] 

A dataset of citrus fruits and leaves 
images acquired under the 

supervision of a domain expert 

Lab-
controlled 

759 5 https://data.mendeley.c
om/datasets/3f83gxmv

57/2 

Data for: a low shot 
learning method for 

tea leaf’s disease 

identification [50] 

A dataset of tea leaf's disease 
images for the paper entitled ‘A low 

shot learning method for tea leaf’s 

disease identification’ 

Both lab-
controlled 

and real-

world 

130 3 https://data.mendeley.c
om/datasets/dbjyfkn6jr/

1 

Chili plant diseases A dataset of chili leaf images Real-world 500 5 https://www.kaggle.co

m/dhenyd/chili-plant-

diseas 

Wheat leaf  

dataset [51] 

A dataset of wheat Leaf images 

collected at at Holeta wheat farm in 

Ethiopia 

Real-world 407 3 https://data.mendeley.c

om/datasets/wgd66f8n

6h/ 
Banana leaf disease 

images [52] 

A dataset of banana leaf images 

collected by farmers and verified by 

plant pathologists 

Real-world 1,288 3 https://data.mendeley.c

om/datasets/rjykr62kdh

/1 
Guava fruits and 

leaves dataset [53] 

A dataset of guava fruits and leaves 

collected in Pakistan under the 

supervision of a domain expert  

Real-world 306 4 https://data.mendeley.c

om/datasets/s8x6jn5cvr

/1 
PlantaeK [54] A dataset of leaf images of grapes, 

cherry, apple, apricot, pear, 
cranberry, peach, and walnut 

collected in Jammu and Kashmir 

Lab-

controlled 

2,157 14 https://data.mendeley.c

om/datasets/t6j2h22jpx
/1 

Ibean [55] A dataset of beans leaf images 
compiled by the Makerere AI 

laboratory in collaboration with the 

National Crops Resources Research 
Institute (NaCRRI) in Uganda  

Real-world 1,295 3 https://www.tensorflow
.org/datasets/catalog/be

ans 

 

 

3.2.  Class distribution 

In most public datasets for the identification of diseases in plants, we have observed the existence of 

a class imbalance whereby the number of plant images in some classes is greater than those of other classes. 

As explained by various researchers, the class imbalance issue in datasets for plant disease detection still 

prevails because disease lesions in real cultivation fields are less prevalent, and exhausting labor 

requirements are involved in capturing and annotating leaf images [56], [57]. From Figure 3, it can be 

observed that common related datasets, including our customized dataset, have different numbers of images 

in each class. The common datasets represented in Figure 3 not only suffer from the class imbalance issue but 

also consist of fewer records than our dataset. 

https://www.kaggle.com/dhenyd/chili-plant-disease
https://www.kaggle.com/dhenyd/chili-plant-disease
https://www.kaggle.com/dhenyd/chili-plant-disease
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Figure 3. Class imbalance in common plant datasets and the customized dataset 

 

 

3.3.  Data processing 

Images of the customized dataset were programmatically selected at random, and split into train and 

test sets in a ratio of 70 to 30% respectively. The train and test sets comprise 61,259 and 26,311 images 

respectively, and were loaded from their respective directories using the Keras ImageDataGenerator feature. 

For the purpose of data augmentation which serves to introduce sample diversity and reduce overfitting, the 

ImageDataGenerator object was initialized with the parameters shown in Table 3. Additionally, "categorical" 

class mode was used given that the classification is based on more than 2 classes. The train and test batches 

were of size 64 each. "steps_per_epoch" was calculated as the number of train images per batch size while 

"validation_steps" was calculated as the number of test images per batch size. 
 

 

Table 3. Image augmentation parameters 
Parameter Value 

Horizontal flip True 
Vertical flip True 

Width shift range 0.1 
Height shift range 0.1 

Zoom range 0.2 
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3.4.  Transfer learning for classification 

In this work, transfer learning utilizing the architectures of four state-of-the-art CNNs models  

pre-trained on the ImageNet dataset, namely VGG-16, VGG-19, ResNet-50, and ResNet-101 was applied to 

our customized dataset of leaf images. ImageNet is a large collection of annotated images such as objects, 

animals and scenes, while transfer learning is the approach that aims to save time and computational 

resources by reusing features learned from one task in another rather than relearning from scratch. On the 

other hand, CNN consists of deep, feed-forward artificial neural networks that emulate the way the human 

vision system works by employing the mechanism of distinguishing one image from another by analyzing 

input images and then assigning weights to various aspects of each image. 

VGG was the runner up of the 2014 ImageNet large scale visual recognition challenge (ILSVRC) 

while ResNet was the winner of ILSVRC 2015 [58], [59]. The advantage of ResNet over VGG is that it 

consists of deep networks which do not allow the vanishing gradient problem to occur [59]. Tables 4 and 5 

illustrate the VGG and ResNet architectures used in this paper. 
 
 

Table 4. ResNet-50 and ResNet-101 architectures as per the original paper [59] 
Layer name Output size 50-layer 101-layer 

conv1 112×112 7×7, 64, stride 2  

conv2_x 56×56 
3×3 max pool, stride 2 
[1 × 1,64 3 × 3,64 1 × 1,256 ] × 3 

 
[1 × 1,64 3 × 3,64 1 × 1,256 ] × 3 

conv3_x 28×28 [1 × 1,28 3 × 3,128 1 × 1,512 ] × 4 [1 × 1,28 3 × 3,128 1 × 1,512 ] × 4 
conv4_x 14×14 [1 × 1,256 3 × 3,256 1 × 1,1024 ] × 6 [1 × 1,256 3 × 3,256 1 × 1,1024 ] × 23 
conv5_x 7×7 [1 × 1,512 3 × 3,512 1 × 1,2048 ] × 3 [1 × 1,512 3 × 3,512 1 × 1,2048 ] × 3 

 1×1 average pool, 100-d FC, softmax 
FLOPs 7.6×109 11.3×109 

 

 

Table 5. VGG-16 and VGG-19 architectures as derived from the original paper [58] 
ConvNet configuration 

16 weight layers 19 weight layers 

input (224×224 RGB image) 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

maxpool 

conv3-128 
conv3-128 

conv3-128 
conv3-128 

maxpool 

conv3-256 
conv3-256 

conv3-256 

conv3-256 
conv3-256 

conv3-256 

conv3-256 
maxpool 

conv3-512 

conv3-512 
conv3-512 

conv3-512 

conv3-512 
conv3-512 

conv3-512 

maxpool 
conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

maxpool 

FC-4096 
FC-4096 

FC-1000 

softmax 

 

 

The 4 pre-trained models, VGG16, VG19, ResNet50, and ResNet101 were loaded with ImageNet 

weights, and the final output layer in each base model was removed since it did not correspond to the number 

of units that our plant disease classification work required. The training images in RGB format were resized 

to 100×100 and then fed as input to each pre-trained model. Due to the difference between the tasks of 

ImageNet and ours, we proceeded with fine-tuning the models. All layers of each base model were frozen, 

and then the following layers of the specific models were set to trainable, provided that that layer was not a 

batch normalization one: 

- The last 4 layers of the VGG-16 model. 

- The last 10 layers of the VGG-19 model. 
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- The last 11 layers of the ResNet-50 model. 

- The last 21 layers of the ResNet-101 model. 

Table 6 describes the further operations conducted on each model. During the fine-tuning process, 

the batch normalization layers were kept frozen to prevent the accuracy of the first epoch from decreasing 

significantly. Dropout layers were also added to the models to randomly set the activation to zero so as to 

prevent each network from over-learning certain features. Moreover, Adam optimizer was used to enhance 

performance and speed when training the models. A low learning rate was additionally set to allow the 

models to learn optimally by not allowing much changes to occur from what was previously learned. 

Afterwards, to overcome overfitting/underfitting and find a best-fit model, the EarlyStopping callback was 

used to monitor the validation accuracy of each model such that the training ends if there is no improvement 

in the performance measure after 10 epochs. 
 

 

Table 6. Further operations carried out on each pre-trained model 
Model Operations on each model Further operations on each model 

VGG-16 

VGG-19 
-  Add a global average pooling 2D layer - Define the output layer as a dense layer, with 

SoftMax activation function, containing 97 
neurons 

- Compile the model using Adam optimizer 

with a learning rate of 0.0001 and categorical 
cross-entropy loss 

ResNet-50 
ResNet-101 

- Create a sequential model 
- Use the pre-trained model as a layer in the sequential model 

- Add a global average pooling 2D layer 
- Add a dense layer of 1,024 neurons and ReLU activation 

- Add a dropout layer of dropout rate of 30% 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Experimental results 
To evaluate and compare the performance of the deep transfer learning models for detecting diseases 

in plants, we plotted the accuracy/loss versus epoch graph for each model as illustrated in Figure 4, and used 

overall accuracy, precision, f1-score and recall as evaluation metrics, as shown in Table 7, true positive (TP), 

true negative (TN), false positive (FP) and false negative (FN) respectively. 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
 + 

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (4) 

 
 

 
 

Figure 4. Accuracy/loss versus epoch of each model 
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Table 7. Comparing results of models implemented 
Performance metric VGG-16 VGG-19 ResNet-50  ResNet-101 

Accuracy 0.8590 0.8591 0.4692 0.4068 
Precision 0.8954 0.8966 0.5981 0.7337 

Recall 0.8427 0.8377 0.3703 0.1662 

F1-score 0.8700 0.8700 0.4564 0.2689 

 

 

From Table 7, it can be observed that the VGG-16, VGG-19, ResNet-50, and ResNet-101 models are: 

- 85.90%, 85.91%, 46.92%, and 40.68% accurate in making a correct prediction respectively. 

- able to predict a specific class correctly 89.54%, 89.66%, 59.81%, and 73.37% of the time respectively. 

- able to predict 84.27%, 83.77%, 37.03% and 16.62% of the classes correctly out of all time a specific 

class should have been predicted respectively. 
In terms of accuracy, precision, recall and f1-score, VGG-16 and VGG-19 outperform ResNet-50 

and ResNet-101. The accuracy and f1-score of both VGG-16 and VGG-19 are more or less similar, as can be 

deduced from Table 7. F1-score is computed as the weighted mean of precision and recall. Given the 

existence of the imbalanced class distribution in our customized dataset, f1-score is an ideal metric to 

evaluate our models as it takes into account both precision and recall. A vast difference between the f1-score 

of the VGG and ResNet models can be noted from Table 7. The f1-scores of ResNet-50 and ResNet-101 are 

less than those of the VGG models by 41.36% and 60.11%, respectively. We therefore conclude that  

VGG-16 and VGG-19 achieve the best performance compared to ResNet-50 and ResNet-101. 

 

4.2.  Comparison with existing studies 

A comparison of our proposed models with related works is given in Table 8. From the results 

emanating from Sumalatha et al. [60] whereby a subset of the PlantVillage dataset of 11,333 records was 

used, it can be observed that there is a wide difference between the accuracy of VGG-19 and ResNet-50, 

which is similar to our case. However, when using the Adam optimizer, as in this paper, that research work 

obtained a higher accuracy than us for VGG-19 and ResNet-50. Nonetheless, as explained by various 

researchers [61], those models, as well as other similar state-of-the-art systems with a relatively higher 

accuracy, are not practical for use in real life because the leaf images studied contain no realistic 

backgrounds. In another study conducted by Ahmad et al. [62] with a dataset of tomato leaf images from real 

cultivation fields, f1-scores within the range of 77% and 83% were attained for VGG-16 and VGG-19 which 

is in line with our research. However, that paper utilized fewer records than us, and yielded less accuracy and 

a lower f1-score for VGG-16 and VGG-19 as compared to our work. Research by Mohameth et al. [63] also 

obtained a higher level of accuracy for VGG-16 than ResNet-50 like us, when classifying diseases in wheat. 

 

 

Table 8. Comparison between DL studies for plant disease detection 
Paper Dataset Dataset 

size 

Number of 

classes 

Environment CNN 

architecture 

Accuracy 

(%) 

Proposed work Customized 

dataset 

87,570 97 Both lab-controlled and 

real-world  

VGG-16  85.90 

VGG-19 85.91 

ResNet-50  46.92 

ResNet-101 40.68 

Sumalatha et al. [60] PlantVillage 11,333 10 Lab-controlled  VGG-19  92.49 
ResNet-50 60.18 

Ahmad et al. [62] Tomato 

leaves 

15,216 6 Real world  VGG-16  76.29 

VGG-19  79.60 
Mohameth et al. [63] PlantVillage 54,000 36 Lab-controlled  VGG-16  97.82 

ResNet-50  95.38 

 

 

4.3.  Contribution in practice 

This work has the potential to make a great contribution towards diagnosing plant diseases in real 

cultivation fields due to the customized dataset being the widest compilation of plants in both real world and 

laboratory scenarios. It consists of the largest number of records and the broadest classes of diseased plants to 

date. We shall publish this dataset, and anticipate that it will be of aid to researchers and people in the 

agricultural sector. 
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5. CONCLUSION 

This research work has been able to show that, through transfer learning and fine-tuning, VGG-16 

and VGG-19 outperform ResNet-50 and ResNet-101 on the customized dataset. The dataset consists of 

87,570 leaf images categorized into 97 classes and is able to detect 74 diseases in plants. At the time of 

working on this paper, no single public dataset with leaf images in both real-world settings and laboratory 

setups contained more records or classes. As such, no DL models have been able to detect a larger number of 

plant diseases than this work. Classifying diseases in fields consisting of a wide variety of different plant 

species is important. In addition, due to the unbalanced number of images in the classes of our dataset, we 

have analyzed the f1-score along with the accuracy of the models. We concluded that VGG-16 and VGG-19 

perform better than ResNet-50 and ResNet-101 as they have a higher f1-score and accuracy. The overall 

accuracy of VGG-19 and VGG-16 is 85.9%, and the f1-score of VGG-19 and VGG-16 is 87.0%. 

 

 

6. LIMITATIONS AND FUTURE WORK 

As future work, the performance of the models implemented can be enhanced by reducing the class 

imbalance problem so as to ascertain that there is a comparable number of images in each class. Significantly 

higher classes can be downsampled while data in relatively small classes of the customized dataset can be 

augmented through ML techniques such as generative adversarial networks (GAN) with label smooth 

regularization for curbing the resulting loss function. Additionally, the number of epochs, layers, image size, 

learning rate and optimizer can be varied. 

Furthermore, existing datasets for disease classification in plants still have a limited number of 

records since collecting and annotating leaf images is difficult. As more data spanning wider varieties of 

plants and their diseases becomes available over time, more robust and efficient DL models can be developed 

to better classify diseases in plants. Further analysis will also be required in order to determine whether the 

models developed can cater for disease detection in individual plant species. 

 

 

APPENDIX 

 

Table 1. Number of images in each class 
Plant Class Number of images 

Apple Apple black rot 621 
Apple cedar apple rust 362 

Apple healthy 1,814 

Apple scab 723 
Banana Banana healthy 155 

Banana sigatoka 320 

Banana xanthomonas 814 
Basil Basil wilted 89 

Basil with mildew 109 

Healthy basil 165 
Bean  Bean angular leaf spot 

Bean healthy 
Bean rust  

432 

428 
436 

Blueberry Blueberry healthy 1,608 

Brassica Brassica black rot 107 
Cassava  Cassava bacterial blight 1,087 

Cassava brown streak disease 2,189 

Cassava green mottle 2,386 
Cassava healthy 2,577 

Cassava mosaic disease 13,158 

Cherry  Cherry healthy 1,024 
Cherry powdery mildew 1,052 

Chili  Chili healthy 100 

Chili leaf curl 83 
Chili leaf spot 

Chili whitefly 

100 

100 

 Chili yellowish 100 
Citrus Citrus black spot 171 

 Citrus canker 163 

 Citrus greening 204 
 Citrus healthy 58 

 Citrus melanose 13 

Coffee Coffee healthy 794 
 Coffee red spider mite 167 

 Coffee rust level 1 344 

 Coffee rust level 2 166 
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Table 1. Number of images in each class (continue) 
Plant Class Number of images 

 Coffee rust level 3 62 
Corn Corn cercospora leaf spot 579 

Corn common rust 1,202 

Corn healthy 1,162 
Corn northern leaf blight 997 

Cotton Cotton bacterial blight 448 

Cotton curl virus 418 
Cotton fusarium wilt 419 

Cotton healthy 425 

Grape Grape black rot 1,240 
Grape esca black measles 1,383 

Grape healthy 596 

Grape leaf blight isariopsis leaf spot 1,076 
Guava Guava canker 77 

Guava dot 76 

Guava healthy 277 
Guava mummification 83 

Guava rust 70 

Coriander  Healthy coriander 272 
Kale Kale with spots 137 

Lettuce  Lettuce anthracnose 154 

Lettuce bacterial spot 173 
Lettuce downy mildew 123 

Lettuce soft rot 57 

Mint Mint fusarium wilt 175 
Mint leaf rust 193 

Powdery mildew mint leaf 199 

Orange  Orange huanglongbing citrus greening 5,507 
Parsley  Parsley leaf blight disease 19 

Parsley leaf spot disease 169 

Peach  Peach bacterial spot 2,297 
Peach healthy 675 

Pepper  Pepper bell bacterial spot 1047 

Pepper bell healthy 1,482 

Potato  Potato early blight 1,000 

Potato healthy 152 

Potato late blight 1,000 
Raspberry Raspberry healthy 413 

Rice Rice bacterial leaf blight 40 

Rice brown spot 40 
Rice leaf smut 40 

Soybean  Soybean healthy 5,100 

Squash Squash powdery mildew 1,855 
Strawberry Strawberry healthy 517 

Strawberry leaf scorch 1,109 

Tea 
 

Tomato 
 

 

 
 

 

 
 

 

 
Wheat 

Tea leaf blight 
Tea red scab 

Tomato bacterial spot 
Tomato early blight 

Tomato healthy 

Tomato late blight 
Tomato leaf mold 

Tomato mosaic virus 

Tomato septoria leaf spot 
Tomato spider mites two spotted spider mite 

Tomato target spot 

Tomato yellow leaf curl virus 
Wheat healthy 

Wheat septoria 

Wheat stripe rust 

40 
38 

2,127 
1,006 

1,599 

1,982 
963 

379 

1,801 
1,676 

1,404 

5,359 
102 

97 

208 
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