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 The need for automated speech recognition has expanded as a result of 

significant industrial expansion for a variety of automation and human-

machine interface applications. The speech impairment brought on by 

communication disorders, neurogenic speech disorders, or psychological 

speech disorders limits the performance of different artificial intelligence-

based systems. The dysarthric condition is a neurogenic speech disease that 

restricts the capacity of the human voice to articulate. This article presents a 

comprehensive survey of the recent advances in the automatic dysarthric 

speech recognition (DSR) using machine learning (ML) and deep learning 

(DL) paradigms. It focuses on the methodology, database, evaluation 

metrics, and major findings from the study of previous approaches. From the 

literature survey it provides the gaps between exiting work and previous 

work on DSR and provides the future direction for improvement of DSR. 

The performance of the various machine and DL schemes is evaluated for 

the DSR on UASpeech dataset based on accuracy, precision, recall, and F1-

score. It is observed that the DL based DSR schems outperforms the ML 

based DSR schemes. 
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1. INTRODUCTION 

Dysarthria is a speech disorder generated due to weakness in speed production muscle or when an 

individual is unable to control them. It frequently causes slow or slurred speech which is difficult to 

understand. Dysarthria can be caused due to neural disorder, troat or tongue muscle weakness, or facial 

paralysis [1], [2]. The muscle used for speed production is controlled by the nervous system and brain. 

Mostly dysarthria is caused due to damage to these muscles. Dysarthria is grouped into developmental and 

acquired dysarthria. The developmental dysarthria normally found in children is occurred due to brain 

damage during or before birth. The acquired dysarthria generally occurred due to brain damage in adulthood 

or later in life such as brain tumors, stroke, head injury, motor neuron disease, or Parkinson's disease [3]–[5]. 

The term "dysarthria" refers to a variety of neurological speech abnormalities caused by injury to the 

central or peripheral nerve systems. Reduced stress, sluggish speech pace, hyper-nasality, muscular stiffness, 

spasticity, monopitch, and a limited range of speech motions are all signs of dysarthric speech. It can impact 
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the subglottal, laryngeal, and articulatory systems, which can make speech production difficult. Stroke, 

Parkinson's disease, and cerebral palsys are the most common roots of motor speech difficulties. According 

to reports, improving human-machine interaction for persons with dysarthria is becoming increasingly 

important in order to boost overall wellness and independence. Physical impairments are common in people 

with dysarthria, making common input methods (typing and touch screen) difficult to use [6], [7]. 

Traditionally, the language or speech therapist diagnosed dysarthria disorder by asking people to read 

passages loudly, recite numbers or weekdays, make various sounds or talk about any familiar topic. The traditional 

techniques performance is limited due to various factors such as inadequate knowledge of experts, tiredness, and 

fatigue. Dysarthria may affect phonation, breathing, prosody, articulation, resonance, and lip movement. It shows a 

larger variation in speech intelligibility. The scope of intelligibility is huge and may depend upon the extent of 

nervous system damage. The typical symptoms of the dysarthria are listed in Figure 1. Because of articulatory 

difficulties, there is no uniformity in articulation. Pronunciation changes and speaking pace slows as a result of 

exhaustion. All of these distinctiveness impair the dysarthric speaker's intelligibility (the degree to which others can 

understand their speech) and limit verbal interactions, reducing their quality of life [8], [9]. 
 

 

 
 

Figure 1. Typical symptoms of dysarthria 
 

 

The classification system helps to narrow down the dimension of perceptual analysis of dysarthric 

speech. The classification of dysarthric speech is given in Figure 2. Most clinicians find this useful to correct 

or reduce the deficit found in dysarthric speech production. Normal speakers typically communicate at rates 

between 150 to 200 words per minute. The speech is clear, timely, and contextually relevant. Speakers with 

severe impairments communicate at a rate of fewer than 15 words per minute. This reduction in the rate of 

communications has implications in the quantity and the quality. People suffering from dysarthria are 

generally physically challenged. It is difficult for them to handle the conventional keyboard or mouse 

interfaces. Dysarthric speakers experience difficulty to contribute enough samples of speech data. Some 

dysarthric speakers get tired soon which may lead to distress. They often fall short to utter certain sounds, 

which results in phonetic variation [10], [11]. 
 
 

 
 

Figure 2. Types and features of dysarthria 

Typical symptoms of dysarthria

• Slurred, breathy speech or nasal sounding

• Very quiet or loud speech

• Monotonous speech

• Wilson's disease

• Difficulty in lip and tongue movement

• Resonance

• Constant drooling due to difficulty in swallowing

• Cerebral palsy

• Lyme disease

• Unable to whisper

• Myasthenia gravis

• Hoarse or strained voice

• Breathing problem

• Phonation

Flaccid

• Resonatory incompetence

• Phonatory incompetence

• Phonatory-prosodic 
insufficiency

Spastics

• Prosodic excess

• Phonatory stenosis

• Articulatory-resonatory 
incompetence

• Prosodic insufficiency

Ataxic

• Articulatory inaccuracy

• Phonatory- prosodic 
insufficiency

• Prosodic excess

Hypo kinetic

• Prosodic 
insufficiency 

Hyper kinetic

• Prosodic insufficiency

• Phonatory stenosis

• Resonatory incompetence

• Prosodic excess

• Articulatory-resonatory 
incompetence

• Articulatory inaccuracy
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The generalized process of dysarthric speech recognition (DSR) is shown in Figure 3 that 

encompasses the pre-processing, feature representation, classification, and DSR. The pre-processing phase 

deals with the primary processing on the dysarthric speech to improve the quality of features and 

performance of the classifiers. It encompasses framing, cropping, speech separation, noise suppression, 

windowing, normalization, speech enhancement, and data augmentation. The dysarthric speech contains 

different types of the reverberations, silent regions, stops, wide variety in pitch, and energy of the signal 

which tends to use speech enhancement to enhance DSR effectiveness. The feature extraction is important 

phase to collect the distinctive and unique characteristics of the normal and dysarthric speech. The features 

are generally grouped into spectral, prosodic, voice quality, and teager-energy operator features. Traditional 

machine learning (ML) based DSR includes feature extraction followed by classification whereas in deep 

learning (DL) the feature extraction may not be used as DL techniques often refers to combination of hidden 

feature extraction layers and classification layer. However, many hybrid DL algorithms uses the traditional 

features as the input to boost the speech intelligibility, feature representation, and DSR accuracy. 
 
 

 
 

Figure 3. Generalized process of DSR 
 

 

Various DSR strategies have been presented in last two decades. This section gives a quick 

overview of recent DSR approaches. Voice tremor has been quantified using phonation parameters that 

define disordered voice, such as jitter and fundamental frequency [9], [12]. To avoid the gender and acoustic 

environment dependence of these parameters, a pitch period entropy-based evaluation was developed [13]. 

Hypophonia has also been described using fluctuation of energy and short-time energy [14]. The  

Teager-Kaiser energy operator which provides the speech intensity measure is utilized to adjust for signal 

frequency [15]. To explore the influence on articulatory dynamics and speech intelligibility, acoustic cues 

based on the first three formants and their respective bandwidths can be studied [16]. Vowel space area 

(VSA) has been investigated for assessing speech intelligibility [17]. A support vector machine (SVM) 

classifier was used to investigate a method for distinguishing dysarthric speech from healthy speech using a 

collection of glottal and openSMILE characteristics [18]. Gurugubelli and Vuppala [19] investigated analytic 

phase characteristics generated from voice signals using the single frequency filtering (SFF) approach. Audio 

descriptor information used for determining musical instrument timbre were combined with an artificial 

neural network (ANN) model to classify dysarthric speech severity levels [20]. For dysarthria classification, 

multi-tapered spectral estimation was used to extract audio descriptor features. 

Research by Johnson et al. [21] evaluate recognition performance for dysarthric speech compared 

with automatic speech recognition (ASR) systems based on Gaussian mixture model (GMM) hidden Markov 

models (HMMs) and SVMs [22]. The experimental results showed that the HMM-based model may provide 

robustness against large-scale word-length variances. Meanwhile, the SVM-based model can alleviate the 

effect of deletion of or reduction in consonants. Rudzicz [23] investigated acoustic models of GMM–HMM, 

conditional random field, SVM, and ANNs [24]. The results showed that the ANNs provided higher accuracy 
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than other models. Revathi et al. [25] presented multiple such as Gamma tone energy (GFE), modified group 

delay function cepstrum (MGDFC), and stock well features for isolated DSR. It used decision level fusion 

with the help of vector quantization (VQ) classifier. It used speech enhancement scheme to minimize the 

distortions and improve the speech intelligibility. It resulted in word error rate (WER) of 4% for the 

dysarthric subjects with 6% intelligibility. Qatab and Mustafa [26] used four types of features such as 

spectral, cepstral, voice quality, prosodic, and overall speech features along with SVM, ANN, linear 

discriminent analysis (LDA), classification and regression tree (CART), Naïve Bayes (NB), and random 

forest (RF) classifier for DSR. Seven feature selection algorithms have been presented for the feature 

selection to select the dominant features such as conditional information feature extraction (CIFE), double 

input symmetrical relevance (DISR), interaction capping (ICAP), conditional mutual information 

maximization (CMIM), conditional redundancy (Condred), joint mutual information (JMI), and relief. It 

provided average ranking score of 4.88 for RF and relief feature selection. Janbakhshi et al. [27] presented 

singular value decomposition (SVD) for the spectro-temporal representation of the dysarthric speech and 

temporal grassmann discriminant analysis (T-GDA) for the DSR. It outperformed the traditional mel 

frequency cepstral coefficient (MFCC)-SVM based DSR. The subspace based learning shows superior 

discrimination between normal and dysarthric speech. The temporal subspace gives enhanced performance 

compared with spectral subspace. 

Recently, DL technology has been widely used in many voiced based automation systems and has 

proven it can provide better performance than conventional ML based methods [28], [29]. Fathima et al. [30] 

applied a multilingual time delay neural network (TDNN) system that combined acoustic modeling and language 

specific information to increase ASR performance. The experimental results showed that the TDNN-based ASR 

system achieved suitable performance, as the WER was 16.07% in this study. Yue et al. [31] investigated 

convolutional and light gated recurrent unit (LiGRU) based multi-spectra acoustic model for DSR. It used data 

augmentation to minimize the data scarcity problem using speed perturbation which has given 11% and 40.6% 

WER for normal and dysarthric speech. Yue et al. [32] developed multi-stream acoustic model based on 

convolutional neural network (CNN), LiGRU, and fully connected multi layer perceptron (MLP) and optimal 

fusion technique for DSR. The proposed model provided a WER of 4.6% for the pre-processed data using 

electromagnetic articulography (EMA). The EMA pre-processing includes Butterworth filter for measurement 

noise minimization and down-sampling for synchronization of MFCC features. 

The data efficiency is major obstacle in the DSR. Soleymanpour et al. [33] proposed text to speech 

(TTS) synthesizer for the data augmentation based on FastSpeech model. The augmented data provided to 

deep neural network (DNN)-HMM with light bidirectional GRU that has given a WER improvement of 

12.2% over the baseline model. Traditional data augmentation approaches majorly focuses on the temporal 

variations of the signal however spectral envelope remains same. Liu et al. [34] presented vocal tract length 

perturbation (VTLP), tempo perturbation and speed perturbation for the data augmentation that concentrates 

on temporal as well as spectral transformations of the dysarthric speech signal. The DNN and Neural 

architecture search (NAS) based DSR provides WER of 25.21 % and 5.4% for UASpeech and CUHK dataset 

respectively. Shahamiri [35] used voicegram to provide the correlation between phonemes and the dysarthric 

speech. The visual data augmentation model is used for the data augmentation to minimize data scarcity 

problem in DSR. The spatial-convolutional neural network (S-CNN) provides an accuracy of 67% on 

UASpeech dataset. The proposed S-CNN some time causes vanishing gradient problem and provides poor 

results for the moderate dysarthria. The intelligibility of the speech is hugely affected due to time domain 

variance of dysarthric speech and background noise. Lin et al. [36] suggested that the DL based voice 

conversion (DVC) using phonetic posteriorgram (PPG) provides stable performance compared with DVC-

mel under noisy condition.  

Kodrasi and Bourlard [37] suggested that spectro-temporal sparsity using the Gini index provided 

better performance than shimmer, jitter, fundamental frequency, harmonics to noise ratio (HNR), and MFCC 

for the DSR. It is observed that spectral sparsity has proven better performance than temporal sparsity.  

Kodrasi [38] used CNN for learning the temporal spectral characteristics obtained using temporal envelope 

and fine structure (TEFS). The TEFS outperformed the traditional short-time fourier transform (SIFT) based 

speech signal spectrogram. The TEFS-CNN provides 85.72% accuracy for DSR whereas SIFT-CNN provides 

69.76% accuracy for DSR. Chandrashekar et al. [39] investigated the time–frequency CNN for capturing the 

temporal as well as spectral properties of the dysarthric speech. The spectro-temporal properties of the speech 

signals are obtained using SIFT, spectrograms using SFF, and constant Q-transform (CQT). The DSR 

performance has shown higher accuracy for the female subjects compared with the male subject. The training 

data deficiency resulted in class imbalance problem. The time-frequency based CNN provides better spectro-

temporal variation of the dysarthric speech which has shown significant improvement in DSR accuracy over 

the traditional ANNs [40]. Fritsch and Doss [41] presented recurrent neural network (RNN) based binary and 

CNN based multi-feature classifier. It provided high correlation for synthesized speech generated using TTS. 

Table 1 provides the summary of various DSR techniques based on ML and DL approaches. 
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Table 1. Summary of ML and DL based DSR 

Ref. 
Speech 

enhancement 

Data 

augmentation 

Feature 

extraction 
Classifier Database 

Performance 

metrics 
Remark 

[31] Cepstral 

processing to 

separate filter 
and speech 

element 

Speed 

perturbation 

CNN-

LiGRU 

Softmax TORGO WER -40.6% 

(dysarthric), 

11% (normal) 

Combination of excitation 

and vocal tract component 

can be used for speaking 
stylemodelling 

[32] EMA - CNN-
LiGRU-

FCMLP 

Softmax TORGO WER -4.6% Over-fitting problem for 
high level articulatory 

feature fusion 

[33] - TTS DNN-
HMM-

BLiGRU 

Softmax TORGO WER -41.6% The severity of dysarthric 
speech depeds upon 

energy, duration and pitch 

of the signal. 
[34] - VTLP, tempo 

perturbation 

and speed 
perturbation 

Model based 

speaker 

adaptation 
and cross-

domain 

generation of 
visual features 

DNN-NAS UASpeech 

and 

Chinese 
University 

of Hong 

Kong 
(CUHK) 

- WER=25.21% 

(UASpeech) 

- WER=5.4% 
(CUHK) 

High WER for low 

intelligibility speaker 

[35] - Visual data 

augmentation 

Voicegram S-CNN UASpeech Accuracy= 

67% 

- Provides less temporal 

representation of speech 
- May cause vanishing 

gradient problem 
[36] - - - CNN with a 

PPG 
10 samples 
of 19 

Chinese 

commands 
for 3 users 

CNN–PPG-
93.49%, 

CNN-MFFC-

65.67%, ASR 
based system-

89.59% 

Class imbalance problem 
issue due to uneven 

dataset size 

[37] - - Spectro-
temporal 

sparsity 

using the 

Gini index 

SVM Spanish 
database 

(PC-GITA 

database) 

Accuracy= 
83.30% 

(GST), 76.7% 

(MFCC), 

60% (HNR), 

57% 

(Shimmer), 
52% (Jitter), 

54.40% (Fo) 

- Less recognition rate due 
to less number of features 

- Not suitable for larger 

dataset 

[38] - - TEFS CNN PC-GITA 
database 

Accuracy 
=85.75, 

AUC=0.93 

Less feature 
discrimination due to 

higher intra-class and 

lower interclass variability 
- Can not handle complex 

auditory models 

[39] - - SIFT, 
spectrogram

s using SFF, 
CQT 

Time-
Frequency 

CNN 

Universal 
Access and 

TORGO 

Accuracy= 
98.00% 

(female), 
95.80% 

(male) 

- Class imbalance problem 
- Complexity of network 

- High computation time 

[26] - - Spectral, 
cepstral, 

voice 

quality, 
prosodic, 

overall 

speech 
features 

LDA, 
CART, NB, 

ANN, 

SVM, and 
RF 

NEMOUR
S database 

Average 
ranking score 

for RF and 

relief feature 
selection 

(4.88) 

- Ability to classify speech 
based on severity level 

- Feature selection is 

important for DSR 
- Not applicable for larger 

dataset 

- Less performance than 
DL approaches 

[27] - - SVD T-GDA PC-GITA, 

MoSpeeDi, 
UASpeech 

Accuracy-

82.0±3.5% 
(PC-GITA), 

80.5±4.7% 

(MoSpeeDi), 
96.30% (UA) 

Temporal subspaces 

provide better 
representation of normal 

and dysarthric speech 

compared with spectral 
subspaces 

[41] - - Pearson’s 

correlation 
coefficient 

and 

Spearman’s 
correlation 

coefficient 

RNN UASpeech 

database 

PCC (0.950), 

SCC (0.957) 

Provides high correlation 

for synthesized speech 
generated using TTS 
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This paper presents a comprehensive survey of distinct ML-based and DL-based DSR systems. It 

focuses on the DSR methodology that comprises enhancement, data augmentation, feature extraction, feature 

selection, and classification techniques. It analyses the dataset, experimental results, and performance metrics 

to depict the merits, demerits, and challenges of the present DSR systems. Additionally the performance of 

the various ML and DL based DSR schems is evaluated on the UASpeech dataset and results are analyzed 

using accuracy, recall, precision, and F1-score. The rest of paper is structured as follow: section 2 depicts the 

generalized process of the automatic DSR and gives the succinct survey of recent ML and DL based speech 

emotion recognition (SER) systems, section 2 elaborates the detailed description of the method, section 3 

gives detailed results and its findings, and section 4 concludes the paper and paves the way for future 

enhancement through future scope. 

 

 

2. RESEARCH METHOD 

The process of the proposed analysis of different feature extraction and classification techniques for 

the DSR is illustrated in the Figure 4. The proposed system used pre-emphasis filtering which uses the 

moving average filter for minimizing noise and normalizing the speech. It diminish the irregularities present 

in the speech signal. 
 
 

 
 

Figure 4. Proposed research method of DSR 
 
 

The proposed system accepts the speech samples from the UASpeech dataset. The samples are 

cropped or appended to 10 second duration to make all data uniform. Out of total UASpeech data 70% and 

30% samples are taken for training and testing purpose. It considers various features for the MFCC, 

perceptual linear prediction (PLP) coding, linear predictive coding (LPC), wavelet packet transform (WPT) 3 

levels, relative spectra (RASTA), and CQT. The features are used to train various ML classifiers such as 

dynamic time warping (DTW), K-nearest neighbour (KNN), SVM, NB, LDA, feedforward neural network 

(FFNN), and linear vector quaintization (LVQ). The feature extracton stage consists of different features 

using traditional algorithms such as MFCC (13 MFCC features, 13 delta feature, and 13 delta-delta features), 

PLP features, LPC features (13 features), WPT features (3 level features), RASTA features, and CQT 

cepstogram features. Futher, it utilize the different ML classifiers for dysarthric voice recognition such as KNN, 

NB, SVM, DTW, LDA, LVQ, and FFNN. It considers the spectrogram representation of the signal for the two 

dimensional DL algorithms. It utilizes the deep convolutional neural network (DCNN), DNN, long short-term 

memory (LSTM), and DCNN-LSTM for the one analysis of the DSR for one dimensional siganla nd two 

dimensional speech signal. The performance of the proposed system is evaluated based on DSR accuracy. 

 

 

3. RESULTS AND DISCUSSION 

This section provides the experimental results of the various machine and DL based schemes for the 

DSR. It considers various features for the MFCC, PLP coding, LPC, WPT (3 levels), RASTA, and CQT. The 

features are used to train various ML classifiers such as DTW, KNN, SVM, NB, LDA, FFNN, and LVQ. It 

used UASpeech dataset for the experimentation as given in Table 2. It is noted that the MFCC+SVM 

provides highest 83.26% accuracy for the DSR compared with other algorithms such as DTW, KNN, NB, 

LDA, FFNN, and LVQ. It is observed that the MFCC spectrogram provides better spectral characteristics of 

Dataset

UASpeech  dataset

• 70% training data

• 30% testing data

Speech enhancement

Pre-emphasis

Feature 
extraction

MFCC

PLP

LPC

WPT

RASTA

CQT

Classifier

ML Classifier

• DTW

• KNN

• SVM

• NB

• LDA

• FFNN 

• LVQ

DL classifier

• DNN

• DCNN

• LSTM

• DCNN+LSTM

Dysartric speech 
recognition
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the dysarthric speech signal that helps to capture the changes occurred on the speech due to dysarthria. The 

experimentations are carried out on UASpeech dataset which is cropped for 5 sec duration. Total 1,000 

samples of normal and dysarthric speech are considered for the evaluation. 
 

 

Table 2. Performance of ML based DSR 
Feature extraction 

techniques 
Classifiers 

DTW KNN SVM NB LDA FFNN LVQ 

PLP 54.79 60.63 62.00 57.38 54.79 52.78 55.00 

RASTA 62.09 63.83 65.26 51.33 62.09 56.65 57.50 

LPC 46.23 59.09 63.00 45.33 46.23 43.45 56.45 
WPT 46.34 68.00 72.50 69.56 62.23 60.86 53.56 

CQT 65.87 72.35 78.00 71.45 68.54 63.50 59.00 

MFCC 62.23 75.54 83.26 73.35 67.00 64.00 61.23 

 
 

Various DL based DSR schemes such as DNN, DCNN, LSTM, and DCNN-LSTM are utilized to 

evaluate the performance of DSR on UASpeech dataset as given in Figure 5. It used five layered 1-D DNN 

that gives 85% accuracy for raw speech and 87.5% accuracy for 39 MFCC coefficients that encompasses 13 

MFCC coefficients, 13 delta coefficients, and 13 delta-delta coefficients that represents the spectral variation 

over the frames of the speech. It provides 89.45% and 90.56% accuracy for 2-D representation of the speech 

signal using CQT and MFCC spectrogram. It is noted that 2D representation of the speech signal provides 

better spectral and spatial representation of the speech signal and helps to improve the accuracy over 1-D 

representation of the signal. Further, it used 5 layered DCNN which encpasses convolution, batch 

normalization, and maximum pooling layer at every layer. It uses 32, 64, 96, 128, and 256 filters for first to 

fifth layer of the DCNN. The DCNN provides gives 86.60% accuracy for raw speech and 88.80% accuracy 

for 39 MFCC coefficients. It provides 90.10% and 91% accuracy for CQT and MFCC spectrogram. 

Afterward, LSTM with five layers is employed for representing the temporal characterstics of the dysarthric 

signal which has given 85%, 86.20%, 87%, and 88.50% accuracy for the raw speech+LSTM, MFCC 

coefficients+LSTM, CQT spectrogram+LSTM, and MFCC spectrogram+LSTM respectively. DCNN helps 

to achieve best spectral representation however lacks in time domain representation of the signal. To improve 

the time domain characteristics LSTM is collaborated with the DCNN which combines the frequency domain 

and time domain characteristics of the speech sigal for DSR. The DCNN-LSTM provides gives 88.20% 

accuracy for raw speech and 89.20% accuracy for 39 MFCC coefficients that encompasses 13 MFCC 

coefficients, 13 delta coefficients, and 13 delta-delta coefficients that represents the spectral variation over 

the frames of the speech. It provides 91.5% and 93% accuracy for 2-D representation of the speech signal 

using CQT and MFCC spectrogram. 
  

 

 
 

Figure 5. Performance of DL based DSR 

 

 

4. CONCLUSION 

Thus, this article presents the DSR based on various ML and DL approaches that covers the 

methodology, database, evaluation metrics, advantages, disadvantages, and finding from the study. It is 

observed that the DL techniques outperformed the traditional ML techniques because of its superior feature 

representation. The DL approaches are less dependent on the hand crafted features unlike traditional ML 

based approaches. The experimental results shows that the DL based DSR schems outperforms the ML based 

DSR schemes and provides better feature representation compared with traditional handcrafted features. The 
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performance of DL framework is better for 2-D representation of the speech signal compared with 1-D signal 

because of higher representation capability in spectral and spatial domin. Also, combination DCNN and 

LSTM provides superiority over DNN, DCBB, and LSTM which has better feature representation capability 

in spectral and temporal domain. Database generation is challenging task because of unavailability of 

theproper resources and proper ground truth. The DSR is very challenging due to variability in the speech 

intelligibility because of various attributes such as language, age, gender, region, and noise. 
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