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 This research paper focuses on enhancing the frequent pattern growth  

(FP-growth) algorithm, an advanced version of the Apriori algorithm,  

by employing a parallelization approach using the Apache Spark framework. 

Association rule mining, particularly in healthcare data for predicting and 

diagnosing diabetes, necessitates the handling of large datasets which 

traditional methods may not process efficiently. Our method improves the 

FP-growth algorithm’s scalability and processing efficiency by leveraging 

the distributed computing capabilities of apache spark. We conducted a 

comprehensive analysis of diabetes data, focusing on extracting frequent 

itemsets and association rules to predict diabetes onset. The results 

demonstrate that our parallelized FP-growth (PFP-growth) algorithm 

significantly enhances prediction accuracy and processing speed, offering 

substantial improvements over traditional methods. These findings provide 

valuable insights into disease progression and management, suggesting a 

scalable solution for large-scale data environments in healthcare analytics. 
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1. INTRODUCTION 

In the realm of data mining, the extraction of meaningful patterns from large and complex datasets is 

crucial, particularly in healthcare, where precise analysis can significantly influence outcomes. This 

discipline plays a pivotal role in transforming vast amounts of raw data into useful information, which is 

particularly essential in fields requiring detailed data analysis [1]. Among various data mining techniques, 

this paper focuses on association analysis [2], [3], classification [4], and clustering [5], [6], which are 

increasingly vital due to the burgeoning volume of data generated in medical research and practice. 

Traditional algorithms often falter under the weight of such datasets, as they require substantial 

computational power and storage capacity, leading to inefficiencies in mining frequent patterns [7]. 

Association rule mining, a key method within data mining, involves identifying frequent itemsets 

and using these to generate strong association rules [8]. This process typically consists of two major steps: 

the first is the identification of all frequent itemsets where the support is at least as great as the specified 

minimum support threshold, and the second is the generation of robust association rules from these itemsets 

that satisfy predefined minimum support and confidence levels [9]. Despite the importance of association 

rule mining, the efficiency of traditional methods like the Apriori algorithm degrades significantly with large 

data volumes [10]. These methods are constrained by their computational intensity and are often incapable of 

handling large-scale data effectively, as evidenced by their slow processing times and high memory usage. 

https://creativecommons.org/licenses/by-sa/4.0/
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Addressing these challenges, this paper introduces a novel approach by parallelizing the frequent 

pattern growth (FP-growth) algorithm using the apache spark framework. This method, designed to 

overcome the limitations of traditional algorithms, leverages horizontal partitioning to enhance adaptability 

and processing efficiency. Our implementation of parallelized FP-growth (PFP-growth) algorithm 

significantly improves computation time, memory usage, and the efficiency of identifying frequent itemsets, 

which is critical for effective data analysis in healthcare settings [11]. 

Our implementation of parallelized FP-growth (PFP-growth) algorithm significantly improves 

computation time, memory usage, and the efficiency of identifying frequent itemsets, which is critical for 

effective data analysis in healthcare settings [12]. This study aims to harness the advanced capabilities of the 

PFP-growth algorithm to extract and analyze association rules from a comprehensive diabetes dataset, 

thereby enhancing the predictive accuracy and understanding of disease progression [13]. By integrating the 

PFP-growth algorithm into the spark platform, we propose a scalable, efficient solution to analyze large-scale 

healthcare data, offering new insights into diabetes management and risk factor identification [14]. The 

following sections will review relevant literature to further contextualize our approach, describe our 

methodology, present the dataset transformation and results, and discuss the implications of our findings in 

improving diabetes prediction and management. 

 

 

2. LITTERATURE REVIEW 

Over the last few decades, the development of algorithms for extracting association rules from 

datasets has significantly advanced, reflecting a core area of data mining research [15]. The drive to 

accelerate the discovery of association rules has often been motivated by the need to improve the efficiency 

of mining operations, particularly as datasets grow and complexity. 

Initially, he focuses was on foundational algorithms such as the apriori algorithm, which remains a 

cornerstone in the field for its basic yet effective approach to rule discovery. The Apriori algorithm and its 

derivatives excel in efficiently generating frequent itemsets, a fundamental and computationally intensive 

step in association rule mining [16]. 

Recent advancements have included specialized algorithms that enhance efficiency and 

applicability. For instance, an efficient algorithm tailored for Spark has shown promise in handling large-

scale data more effectively [17]. The R-apriori algorithm is another adaptation that optimizes the mining of 

frequent items under specific constraints [18]. The utility of association rules extends beyond traditional 

applications; for example, a method utilizing moodle activity log data for cluster and association analysis 

visualization has been developed, demonstrating the versatility of association rules in various contexts [19]. 

In practical applications, association rules are pivotal in diverse fields such as healthcare and 

genetics. They are employed for tasks ranging from the detection and monitoring of infectious diseases  

[20], [21], understanding medication prescription patterns [22], to uncovering genetic patterns [23]. 

Specifically, in healthcare, association rules have been used to identify risk factors in diabetes, a critical area 

of study given the global prevalence of the condition [24]. Furthermore, these techniques have been applied 

to pediatric data to detect common risk factors in diseases affecting children [25]. The application of fuzzy 

sets to extend the functionality of association rules illustrates the ongoing innovation in the field. This 

approach allows for handling imprecise data, thereby broadening the scope of environments in which 

association rule mining can be effectively applied. 

Despite these advancements, traditional algorithms for extracting association rules often struggle 

with time and memory efficiency. This has led to the exploration of parallel algorithms as a necessary 

evolution to address the computational demands of large datasets. The proposed study utilizes the PFP 

algorithm on a diabetes dataset to extract itemsets that are indicative of risk factors leading to the disease, 

showcasing a practical application of these theoretical advancements. This literature review sets the stage for 

discussing the implementation of the PFP algorithm in the subsequent section, highlighting its potential to 

address the identified challenges and improve the efficiency of association rule mining in large-scale 

healthcare data environments. 

 

 

3. PROPOSED METHOD 

This study introduces the PFP-growth algorithm, a robust solution for extracting association rules 

from large-scale datasets. Leveraging the Apache Spark framework, this innovative approach addresses the 

scalability challenges of the traditional FP-growth algorithm. By overcoming these inherent limitations, the 

PFP-growth algorithm is particularly effective in handling expansive data. 
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3.1.  Horizontal partitioning and algorithm adaptation 

The conventional FP-growth algorithm, renowned for its efficiency in smaller datasets, utilizes a 

compact tree structure to capture transaction patterns without candidate generation. While offering significant 

advantages over the apriori algorithm, FP-growth struggles with scalability, often facing significant 

slowdowns and increased memory usage as data volume grows. To mitigate these scalability issues, we 

employ horizontal partitioning, a technique that divides the data across multiple computational nodes within 

the spark cluster. This segmentation facilitates independent processing on manageable data chunks, 

enhancing both scalability and processing speed. 

We have adapted the FP-growth algorithm to effectively harness spark’s distributed computing 

model. Each node constructs a local FP-tree from its subset of the dataset and independently executes the 

mining process. This parallel structure allows for localized frequent itemset generation without the overhead 

of centralized data processing. 

These modifications ensure that the PFP-growth algorithm not only maintains the integrity of the 

mining process but also achieves substantial gains in efficiency. By leveraging multiple nodes, the workload 

is distributed, significantly reducing the time required for mining operations. The parallel nature of this 

approach also limits the memory load on any single node, thereby preventing bottlenecks and ensuring faster 

computation. 

 

3.1.1. Detailed execution within spark’s architecture 

Apache spark’s architecture is integral to the implementation of the PFP-growth algorithm. 

Operating under a master-slave setup, spark employs a central coordinator (master) to manage the 

distribution of tasks and resources across multiple worker nodes (slaves). Here are the execution process 

steps as demonstrated in Figure 1. 

 

 

 
 

Figure 1. PFP-growth algorithm execution process 

 

 

- Step 1: data distribution- initially, the complete dataset is distributed as a resilient distributed dataset 

(RDD). This step sets the foundation for high availability and robust data handling. 

- Step 2: data preprocessing- data is pre-processed and infrequent items are removed. This step enhances the 

efficiency of the subsequent mining process by reducing the dataset size and complexity. 

- Step 3: data segmentation- each worker node receives segments of the F_list, stored as RDDs, ready for 

local processing. This segmentation ensures that data handling is manageable and scalable across nodes. 

- Step 4: local mining operations- workers independently execute the FP-growth process to identify frequent 

itemsets based on predefined support thresholds. 

- Step 5: intermediate aggregation- post mining, each node aggregates its frequent itemsets, labeled as local 

frequent itemsets. This aggregation prepares the data for a unified analysis across the spark cluster. 

- Step 6: global synthesis– results are aggregated and synthesized from all nodes to form the comprehensive 

set of association rules. This ensures that the outcomes are accurate and cover all possible frequent patterns 

within the dataset. 

The utilization of RDDs not only facilitates efficient data manipulation and fault recovery but also 

supports the parallel execution of tasks. Spark’s execution model, encompassing task distribution and 

resource management, is ideally suited to meet the demands of large-scale data mining. This architecture 

provides a robust framework for the PFP-growth algorithm, ensuring that it performs optimally across varied 

and large datasets. Once the architecture is set up, the next crucial step involves preparing the actual data for 

mining, as detailed in the following section. 
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3.2.  Data preparation and transformation for mining 

To effectively utilize the PFP-growth algorithm within the apache spark framework, our study 

required meticulous preparation and transformation of the Pima Indians Diabetes database [26]. This well-

curated dataset, which includes records from 768 women of Pima Indian descent, contains several critical 

attributes such as plasma glucose concentration, diastolic blood pressure, triceps skin fold thickness, 2-hour 

serum insulin levels, body mass index (BMI), diabetes pedigree function, the number of pregnancies, and 

age. These attributes are systematically documented in Table 1, providing a structured overview that 

highlights each variable’s range. Nevertheless, it is essential to transform these continuous variables into 

categorical intervals, which are crucial for identifying and leveraging patterns predictive of diabetes in our 

algorithm. 

Guided by rigorous statistical analysis and substantial domain knowledge, we transformed these 

attributes into categorical intervals. This strategic categorization is designed to distinguish between diabetic 

and non-diabetic groups based on specific attributes. For instance, age was categorized into ‘Young’ [0, 30] 

and ‘senior’ [31, 80] groups to reflect different risk profiles. This categorization is visualized in Figure 2, 

Figure 2(a), which illustrates the age distribution of diabetic and non-diabetic individuals. Diabetic patients 

are denoted with an orange color and the symbol “0,” while non-diabetic individuals are marked in blue and 

represented by the symbol “1.” Blood pressure readings were segmented into low [0, 40], medium [41, 90], 

and high [91, 120] categories to correlate with varying diabetes risks. This distribution is shown in Figure 2(b). 

Similarly, glucose levels were divided into normal [0, 125] and high [126, 200], aligning with clinical 

thresholds for diabetes diagnosis, as depicted in Figure 2(c). Insulin levels were also split into low [0, 30], 

medium [31, 150], and high [151, 800] categories to capture the variations in insulin dynamics, detailed in 

Figure 2(d). These transformations, as detailed in Table 1, were applied to all remaining attributes for the 

subsequent data analysis phase. This enabled precise handling and effective mining of the dataset to accurately 

predict the onset of diabetes. This strategic categorization, detailed in Table 1 and illustrated in figures showing 

the distribution of these attributes among diabetic and non-diabetic individuals, ensures the dataset is optimally 

structured for our FP-growth implementation on apache spark’s distributed computing platform. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 2. Age distribution; (a) blood pressure distribution, (b) glucose levels distribution, (c) insulin levels 

distribution, and (d) of diabetic and non-diabetic individuals 
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Table 1. Descriptive summary and categorical transformations for diabetes prediction 
Attributes Description Value interval Categorical intervals 

P It shows how many times patient is pregnant [0-17] P1 {0-5}, P2{>5} 
G Plasma glucose concentration over 2 h in an oral 

glucose tolerance test 

[0-199] G1{0-125}, G2{>125} 

BP It indicates the patient’s blood pressure (mm Hg) [0-122] B1{0-40}, B2{40-90}, B3{>90} 
S It shows skin fold thickness [0-99] S1{0-8}, S2{8-45}, S3{>45} 

I 2-Hour serum insulin (mu U/ml) [0-846] I1{0-30}, I2{30-150}, I3{>150} 

BMI It indicates body mass index [0-67] BMI1{0-30}, BMI2{>30} 
D It shows family history of patient [0-2.45] D1{0-0.8}, D2{>0.8} 

A It shows age of patient [21-81] A1 {0-30}, A2{>30} 

O 1 for diabetes and 0 for non-diabetes (0,1) 0 for non-diabetic, and 1 for diabetic 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Analysis of PFP-growth performance 

The comparative analysis of the computing times for the PFP-growth, FP-growth, and R-apriori 

algorithms, as depicted in Figure 3, reveals significant performance differences across three runs.  

The PFP-growth algorithm demonstrates a consistent reduction in computing time from 6 seconds in the first 

run to 4 seconds in the third, highlighting its efficient scalability and optimization when parallelized using the 

apache spark framework. In contrast, the FP-growth algorithm shows relatively higher computing times, 

decreasing marginally from 18.38 seconds in the first run to 17.48 seconds in the third. This variation 

suggests that while FP-growth benefits from parallel processing, it does not achieve the same efficiency gains 

as the PFP-growth algorithm. 

 

 

 
 

Figure 3. Comparative computing time of PFP-growth, FP-growth, and R-apriori algorithms across three runs 

 

 

Interestingly, the R-apriori algorithm starts with a computing time of 6.35 seconds, which 

significantly reduces to 3.09 seconds by the third run. This performance indicates that R-apriori optimizes its 

process more effectively over successive runs, likely due to better handling of datasets with constraints or 

more efficient data pruning techniques. These findings underscore the enhanced capability of the PFP-growth 

algorithm to manage large datasets efficiently, a crucial advantage for its application in healthcare data 

analytics for diabetes prediction. The parallelization of the FP-growth algorithm appears to effectively reduce 

computational overhead, thereby improving processing speed considerably compared to its non-parallel 

counterpart. 

 

4.2.  Performance of the parallel FP-growth algorithm in extracting itemsets 

Figure 4 illustrates how the PFP-growth algorithm’s performance varies with different minimum 

support thresholds. There is a notable decrease in the number of itemsets generated as the minimum support 

threshold increases. At a lower threshold (e.g., 0.2), the algorithm identifies a larger number of itemsets, 

capturing more granular patterns within the dataset. However, this number significantly diminishes as the 

threshold increases, indicating that fewer itemsets meet the higher criteria of support. 

This trend highlights the algorithm’s ability to filter out less significant itemsets and focus 

computational resources on those patterns that occur more frequently. Such behavior is vital for efficiently 

managing large-scale data environments like those in healthcare analytics, where identifying the most 

impactful patterns can substantially affect predictive accuracy and patient outcomes. The relationship 
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between the number of itemsets and the minimum support threshold also reflects the algorithm’s adaptability 

to various data densities and distributions, which is essential for tailoring the pattern discovery process to 

specific research needs or clinical relevance. 

 

 

 
 

Figure 4. Performance of parallel FP-growth algorithm in extracting itemsets at different minimum support 

thresholds 

 

 

4.3.  Analysis of association rules for diabetes prediction 

The top 10 association rules extracted from the diabetes dataset, generated with a minimum support 

of 0.4 and a confidence level of 0.5, offer vital insights into factors significantly associated with diabetes risk. 

These rules, detailed in Table 2, integrate various patient characteristics such as age, body mass index (BMI), 

glucose levels, family history, blood pressure, skin fold thickness, and insulin levels. They reveal patterns 

that either increase or decrease the likelihood of developing diabetes. For instance, rule 1 indicates that 

younger patients (A1: age≤30) with a BMI≤30 (BMI1), fewer pregnancies (P1:≤5), and a lower family 

diabetes history (D1:≤0.8) are less likely to have diabetes. This suggests that traditional risk factors such as 

age, obesity, and family history significantly influence the onset of diabetes. Additionally, rule 2 highlights 

that patients with high glucose levels (G2:>125 mg/dl) and a higher BMI (BMI2:>30) are at increased risk 

for diabetes, aligning with established medical knowledge that links elevated glucose levels and obesity with 

heightened diabetes risk. 

 

 

Table 2. Key association rules identifying risk and protective factors for diabetes 
Rule number Antecedent Consequent Confidence 

1 [“BMI1”, “A1”, “P1”, “D1”] [“0”] 0.93 

2 [“G2”, “BMI2”] [“1” 0.90 
3 [“G1”, “S2”, “P1”, “D1”, “B2”] [“0”] 0.89 

4 [“A2”, “G2”, “BMI2”] [“1”] 0.88 

5 [“G1”, “S2”, “D1”] [“0”] 0.85 
6 [“A1”, “P1”, “G1”, “S1”] [“0”] 0.85 

7 [“S3”, “G2”] [“1”] 0.85 

8 [“I3”, “G2”] [“1”] 0.83 
9 [“B3”, “BMI2”] [“1”] 0.80 

10 [“G2”, “BMI2”] [“B2”] 0.859813084 

 

 

In conclusion, the key insights derived from these rules include:  

- Protective factors: younger age (≤ 30 years), lower BMI (≤30), fewer pregnancies (≤5), and lower family 

history scores (≤0.8) collectively contribute to a lower likelihood of diabetes. These factors suggest that 

proactive management of lifestyle and genetic predispositions from a young age can significantly reduce 

diabetes risk. 

- Intermediate risk factors: moderate skin fold thickness (8-45 mm) and blood pressure (40-90 mm Hg), 

when appearing alongside other moderate risk factors, still indicate a generally lower risk for diabetes, 

suggesting that these factors alone do not significantly raise diabetes risk unless accompanied by more 

severe indicators. 

- High-risk profiles: high glucose levels (>125 mg/dl) coupled with higher BMI (>30) emerge as strong 

predictors of diabetes. This confirms well-established clinical understandings that link metabolic 

dysfunction with the development of diabetes. 
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- Compounded risk from hypertension and obesity: individuals with very high blood pressure (>90 mm Hg) 

and higher BMI are significantly more likely to develop diabetes, underscoring the interplay between 

hypertension, obesity, and metabolic health. 

These findings notably contribute to medical knowledge by enhancing predictive models and 

informing targeted interventions. By integrating these insights, healthcare providers can develop personalized 

management plans that address specific risk factors identified in patients, thus improving preventive and 

therapeutic approaches in diabetes care. This analysis not only deepens our understanding of the 

multifactorial nature of diabetes but also underscores the value of advanced data mining techniques in 

discovering complex patterns within medical datasets. 

 

 

5. CONCLUSION 

This study underscores the substantial benefits of utilizing the PFP-growth algorithm within apache 

spark for mining association rules from large healthcare datasets. By exploiting spark’s distributed computing 

capabilities, we have significantly improved the scalability and efficiency of the FP-growth algorithm, 

facilitating faster and more precise analysis of complex datasets like those encountered in diabetes research. 

The PFP-growth algorithm’s adept handling of large data volumes with greater speed and reduced memory 

overhead represents a marked improvement over traditional method like the apriori algorithm. The insights 

derived from the diabetes dataset not only deepen our understanding of the disease’s dynamics but also 

demonstrate the potential applicability of this method to other medical research areas with similar data 

challenges. Moreover, the analysis of association rules has led to the identification of critical risk and 

protective factors for diabetes, providing a foundation for more targeted medical interventions and 

personalized treatment approaches. In essence, integrating advanced data mining techniques with robust 

platforms like apache spark is transforming the landscape of healthcare research, offering new avenues for 

enhancing disease management and medical diagnostics. 
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