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ABSTRACT

This study addresses the escalating prevalence of diabetic retinopathy (DR)
and glaucoma, major global causes of vision impairment. We propose an
innovative iterative Q-learning model that integrates with fuzzy C-means
clustering to improve diagnostic accuracy and classification speed. Traditional
diagnostic frameworks often struggle with accuracy and delay in disease stage
classification, particularly in discerning complex features like exudates and
veins. Our model overcomes these challenges by combining fuzzy C means with
Q learning, enhancing precision in identifying key retinal components. The core
of our approach is a custom-designed 45-layer 2D convolutional neural network
(CNN) optimized for nuanced detection of DR and glaucoma stages. Compared
to previous approaches, the performance on the IDRID and SMDG-19 datasets
and associated samples shows a 10.9% rise in precision, an 8.5% improvement
in overall accuracy, an 8.3% enhancement in recall, a 10.4% larger area under
the curve (AUC), a 5.9% boost in specificity, and a 2.9% decrease in latency.
This methodology has the potential to bring about significant changes in the
field of DR and glaucoma diagnosis, leading to prompt medical interventions
and possibly decreasing vision loss. The use of sophisticated machine learning
techniques in medical imaging establishes a model for future investigations in
ophthalmology and other clinical situations.
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1. INTRODUCTION
Diabetic retinopathy (DR) and glaucoma are two of the most common eye diseases that can lead to

vision loss. These diseases affect millions of people worldwide. To prevent vision loss, early and accurate
detection of these diseases is crucial. Physicians utilize fundus images, a specialized camera, to examine the
eyes and identify these diseases. However, reading these images can be hard and takes a lot of delay for clinical
scenarios. In the past, scientists have made computer programs to help doctors read these images. But these
programs are not always right. They sometimes miss important signs of the disease or take too long to give an
answer. This issue is critical as delayed detection of the disease can exacerbate and result in blindness. This
paper talks about a new way to use computers to find diabetic retinopathy and glaucoma in fundus images and
samples. The new method uses fuzzy C-means and Q-learning. Fuzzy C means a way to group similar things
together in an image, like blood vessels or spots that shouldn’t be there. Q-learning is a type of learning where
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the computer tries different things and learns from its mistakes to get better over time. The new method also
uses a special kind of computer program called a 2D convolutional neural network (CNN). The 45 layers of
this program enable detailed analysis of the images. It helps to more accurately identify the signs of diabetic
retinopathy and glaucoma. We tested the new method on two large sets of eye images, called IDRID and
SMDG-19. The results were very good. The new method was better at finding the right stage of the disease
compared to the old methods. It was more accurate, faster, and made fewer mistakes.

A study by Hao et al. [1] created a hybrid variation-aware network for angle-closure assessment in
anterior segment optical coherence tomography (AS-OCT). This showed how computational methods can be
used to make diagnostics more accurate. In the same way, Manassakorn et al. [2] showed GlauNet, a CNN
architecture for optical coherence tomography angiography (OCTA) imaging. This showed how important
advanced CNN models are for improving eye diagnostics. Furthermore, Kunumpol et al. [3] explored the
integration of virtual reality perimetry with artificial intelligence (AI) for glaucoma diagnosis, underscoring
the potential of modern technology in enhancing diagnostic accuracy. Advancements in treatment strategies
are also evident, such as the research by Silverman et al. [4] on high-frequency ultrasound activation for
glaucoma treatment, showcasing diverse applications of ultrasound technology in ophthalmology. Studies like
Yi et al. [5] with MTRA-CNN and Das et al. [6] with CA-Net demonstrate significant advancements in
glaucoma classification and prediction models, highlighting the effectiveness of specialized neural network
architectures in detailed disease classification. Also, Pham et al. [7] and Shi et al. [8] looked at multimodal
deep learning and artifact-tolerant clustering-guided learning models for predicting and analyzing ophthalmic
images in glaucoma. This shows how important it is to have strong models that can deal with large datasets.
The works [9]–[11] have evidenced advancements in segmentation models, classification techniques, and
ophthalmology applications in the realm of DR. These studies collectively represent a dynamic and rapidly
evolving field, increasingly leveraging AI, deep learning, and innovative imaging technologies to improve the
diagnosis and management of DR and glaucoma [12]–[14], indicating a paradigm shift towards more accu-
rate, efficient, and patient-centric approaches in ophthalmology scenarios. The application of deep learning
algorithms and artificial neural network gives better results and provide help to the ophthalmologists [15]–[20].

The research focused on recognizing these diseases individually, and there is little work on expanding
modern machine and deep learning models to detect several eye ailments. The main reason is that each eye
disease has unique abnormal signals. Additionally, a model designed for one condition may perform poorly for
another. However, we addressed this assumption and developed a robust model that can identify and recognize
three eye illnesses with high accuracy. Thus, we demonstrated that deep learning algorithms can diagnose
different eye problems, like ophthalmologists. In order to tackle these difficulties, this study presents a novel
strategy that integrates the advantages of fuzzy C-means clustering, Q-learning, and a specially constructed
45-layer 2D CNN. This combination represents a notable deviation from conventional approaches, providing a
more subtle and effective examination of fundus images and samples. The motivation is twofold: to enhance
disease detection accuracy and expedite the diagnostic process, facilitating prompt medical intervention.

2. METHODOLOGY
People commonly use fundus scans as a bilateral technique to identify eye issues associated with

diabetes. The first stage is detecting and locating the existence of a disease, while the following step requires
partitioning the localized areas into separate segments using the Q-learning technique. For the localization step,
we utilize the CNN approach. We generate annotations for diseases and subsequently employ CNN training to
extract features from photos. We use the FCM clustering methodology for segmentation, widely recognized as a
reliable method, particularly for picture segmentation. These features feed into the pooling layer, subsequently
serving as input for the group and fully connected layers. We evaluate the model by precisely detecting the
affected regions using the test scans and a regression confidence score. Figure 1 illustrates the configuration of
the suggested methodology.

The initial stage involves pre-processing the input image and marking the annotations. By comparing
the ground-truth bounding box with each image, we must identify the specific affected region to train the
model. LabelImg is a software tool that adds annotations to retinal images and manually generates bounding
boxes. Figure 2 presents a sample ground-truth photographs for diabetic retinopathy as shown in Figure 2(a)
and glaucoma shown in Figure 2(b). XML files store annotations, which include information on the object
class and bounding box values (xmin, ymin, xmax, ymax, width, and height). We use the XML file of each
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image to create a CSV file, which we then use to generate a train record file for training.
The localization phase is the second phase. CNNs are utilized for DR to analyse images and identify

potential areas of concern. The method we employ, which consists of max-pooling and convolutional layers,
analyses the entire image and generates the feature map. The pooling layer retrieves fixed-size feature vectors
from the feature map of the convolutional layer. Then it is inputted into interconnected layers before diverging
into output layers. The multi-class DR object detection model, trained by CNN, can precisely identify multi-
class objects within an image. Blood hemorrhages, microaneurysms, soft and hard-exudates, and a backdrop
class are employed for the localization of DR.

We trained our skills using glaucoma, OD, OC, and background lessons. CNN successfully detected
the OD (optic disc) and OC (optic cup) regions and evaluated the background of the retinal image. The
maxpooling and convolutional layers provide the feature map, which is then utilized by the pooling layer
to extract feature vectors of a fixed size. After being input into layers, the information then diverges into output
layers.

Figure 1. Model architecture for the overall method used for classification of different disease types

(a) (b)

Figure 2. Sample annoted images (a) diabetic retinopathy and (b) glaucoma

The next phase explains mathematical modeling. Figure 1 shows that the suggested model uses a new
combination of fuzzy C mean (FCM) clustering and Q learning, which creates a fresh way to separate fundus
scans. This process, integral to the model’s functioning, begins with the collection of fundus scans, which serve
as the input for different use cases. Segmented fundus scans, primed for further analysis and classification of
DR and glaucoma levels, are the end goal.
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The first step in the model’s operation involves applying FCM clustering, an unsupervised method that
partitions the input fundus scans into distinct clusters. In (1) estimates the objective function, which defines the
FCM algorithm in its essence.

Jm(U, V )] =

n∑
i=1

c∑
j=1

u(i, j,m)||x(i)− v(j)||2 (1)

Where, n is the number of data points (pixels in the fundus scans), c is the number of clusters, u(i,j) is the degree
of membership of x(i) in the cluster j, v(j) is the centroid of the cluster, and m is a real number greater than 1
that influences the fuzziness of the clustering process. The optimization of the FCM is conducted through an
iterative process, where the update of membership u(i,j) and the cluster centers v(j) are calculated via (2) and
(3),

u(i, j) =
1∑c

k=1(
||xi−vk||
||xi−vj|| )

2
m−1

(2)

vj =

∑n
i=1 u(i, j,m) ∗ x(i)∑n

i=1 u(i, j,m)
(3)

The iterative process continues until the maximum change in u(i,j) between two consecutive iterations
is less than a specified threshold, indicating convergence scenarios. Subsequently, the segmented outputs from
FCM serve as inputs to the Q learning model process. Q learning, a form of reinforcement learning, adapts its
strategy to maximize the reward signals. In the context of image segmentation, the reward signal is designed to
favor segmentations that accurately represent the distinct regions within the fundus scans. The reward function
R(s,) is formulated based on the degree of segmentation accuracy via (4),

R(s, α) = α ∗Accuracy(s, α)− β ∗ Complexity(s, α) (4)

where, and are weighting factors that balance the importance of accuracy versus complexity in the
segmentation process. The term accuracy(s,) quantifies the correctness of the segmentation, while,
complexity(s,) assesses the computational complexity or simplicity of the segmentation result, ensuring that
the model does not overfit or produce overly intricate segmentations.

The list of actions A in this model includes various operations that can be applied to modify the
segmentation, such as adjusting the clustering parameters in FCMs, altering the threshold values, and changing
the spatial resolution of the segmentation process. Each action aA has the potential to transform the current state
of the image segmentation into a new state, ideally improving the segmentation quality levels. The states S in
this model are represented by the different possible segmentations of the fundus scans. Each state sS is a distinct
configuration of segmented regions within an image, varying based on the parameters and thresholds applied
during the segmentation process. The model explores these states through the actions, aiming to discover the
state that yields the most accurate segmentation with manageable complexity levels. Based on this, the Q
learning model utilizes an iterative Q function, which is defined via (5),

Q(s, α) = Q(s, α) + α[R(s, α) + γmαxα′Q(s′, α′)−Q(s, α)] (5)

where, s represents the current state (segmented image), a represents an action taken by the model (modifying
segmentation parameters), R(s,) is the reward for taking action in state s, is the learning rate, is the discount
factor, and s’ is the new state after action is taken for different use cases. The Q learning model iteratively
updates its Q values based on the reward received from the segmented images, refining the segmentation
parameters to optimize the segmentation quality levels. The fusion of FCM and Q learning allows the model
to not only segment the fundus images into meaningful clusters but also to refine these clusters iteratively,
enhancing the accuracy and precision of the segmentation process. This iterative fusion leads to a more
nuanced and sophisticated understanding of the fundus scans, which is pivotal for the accurate diagnosis and
classification of ocular diseases.

In the advanced operations of medical image analysis, the proposed model’s 45-layer CNN stands as
an efficient and unique process, adeptly classifying segmented fundus scans into specific types and stages of
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diabetes and glaucoma types. The cornerstone of this model is its deep and complex 45-layer CNN architecture,
meticulously designed to capture the subtlest of features in the segmented scans. The first layer of this
architecture is a convolutional layer, which performs an operation defined via (6),

F (i, j, l) = σ

(
b(l) +

M−1∑
m=0

N−1∑
n=0

K(m,n, l) · I
(
i+m, j + n, (l − 1)

))
(6)

where, F(i,j,l) is the feature map at layer l, is a non-linear activation rectified linear unit (ReLU), b(l) is the
bias, K(m,n,l) represents the kernel weights, and I(i+m,j+n,(l-1)) is the input from the previous layers.

Following next 40 convolutional layers, each introducing additional complexity and depth to the
feature extraction process, the architecture integrates pooling layers. These layers are designed to reduce the
spatial dimensions of the feature maps, enhancing the model’s efficiency and its ability to capture more global
features. After this, the pooling operation is performed which is defined via (7),

P (i, j, l) = max

(
F (k, l, l)|kε[i, i+K], lε[j, j +K]

)
(7)

where, Pij(l) is the output of the pooling layer, Fkl(l) is the feature map from the previous convolutional layer,
and K is the size of the pooling windows. Further into the network, the model employs fully connected layers,
which synthesize the learned features into more abstract representations. The operation in a fully connected
layer is estimated via (8),

A(l) = σ
(
W (l) ·A(l − 1) + b(l)

)
(8)

where, A(l) is the activation in layer l, W(l) represents the weights, b(l) is the bias.
The final layers of the CNN, crucial for the classification task, involve softmax functions that convert

the activations into probability distributions, indicative of the likelihood of each class and stages. The softmax
function for a particular class k is defined via (9),

Sk
(
(A(L)

)
=

eAk(L)∑c
j=1 e

Ak(L)
(9)

where, Sk(A(L)) is the softmax output for class k, Ak(L) is the activation of the last layer for class k, and
C is the total number of classes. This sophisticated CNN architecture is further enhanced by dropout layers
interspersed throughout, designed to mitigate the risk of overfitting scenarios. The dropout function for a
neuron is represented via (10),

F (out) = {0 with probability p, and Ai(l), with probability(1− p)} (10)

where, D(Ai(l)) is the output after dropout, Ai(l) is the activation, and p represents the dropout rate levels.
The culmination of this process is the model’s ability to classify the segmented fundus scans into specific
types of diabetes and glaucoma, followed by a further classification into their respective stages. The model’s
output layers, employing the softmax function, deliver the final classification, marking the end of a complex
journey from image input to detailed medical insights for different scenarios. This model not only showcases
the potential of AI in healthcare but also marks a significant stride forward in the battle against these pervasive
ocular diseases. Performance of this model was estimated in terms of different metrics, and compared with
existing methods in the next section of this article.

3. RESULT AND DISCUSSION
The proposed model is an efficient and pioneering advancement in the field of ophthalmic diagnostics,

representing a paradigm shift in the detection and classification of DR and glaucoma from fundus scans. At
its core, this model combines a carefully planned 45-layer 2D CNN with the novel techniques of iterative
Q learning and FCM clustering. This makes it much better at detecting small changes in the retina that are
signs of these conditions. The IQMSDRG model has amazing performance metrics, such as precision and
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accuracy rates that are much higher than well-known models like GlauNet, MTRA, and MIMC. This shows
how advanced machine learning techniques can change medical imaging for the better. Its ability to accurately
classify the stages of DR and glaucoma not only paves the way for timely and targeted medical interventions,
but also opens new horizons for research and application in the broader field of medical diagnostics.

We benchmark the IQMSDRG model’s outcomes against existing models like GlauNet, MTRA, and
MIMC. This comparison is based on metrics like precision, accuracy, recall, specificity, AUC, and processing
delays. This experimental setup, with its comprehensive approach to data utilization and rigorous testing
protocols, aims to validate the effectiveness of the IQMSDRG model. It underscores the model’s potential
to significantly enhance the diagnostic accuracy and efficiency in identifying DR and glaucoma, as evidenced
by the comparative analysis with existing diagnostic frameworks.

When analyzing the results, a pattern emerges: the proposed IQMSDRG model consistently
outperforms the other models in terms of precision across almost all test scan sizes. Figure 3 shown Graphical
analysis on various parameters. The precision of the graphical representation is given in Figure 3(b). For in-
stance, at 812 NTS, IQMSDRG exhibits a precision of 92.68%, notably higher than GlauNet (83.45%), MTRA
(68.27%), and MIMC (86.83%). This trend continues at 1508 NTS, where IQMSDRG achieves a remarkable
precision of 96.28%, surpassing GlauNet’s 79.57%, MTRA’s 88.43%, and MIMC’s 88.74%. The significant
precision rates indicate the model’s ability to correctly classify a high number of true positive cases, reducing
the likelihood of false positives. This is crucial in medical diagnostics, where the accuracy of classification can
directly impact patient treatment and management decisions. As the NTS gets higher, IQMSDRG becomes
more accurate; for example, it reached 97.18% at 13920 NTS, showing that it can handle large and varied
datasets well.

Figure 3(d) presents a comparison of the models’ accuracy. Upon analysis, the IQMSDRG model
consistently demonstrates superior accuracy in comparison to the other models across a broad range of test scan
sizes. For instance, at 812 NTS, the accuracy of IQMSDRG stands at 87.46%, surpassing GlauNet (83.91%),
MTRA (84.08%), and MIMC (85.66%). This trend toward superior performance is also evident in other test
sizes, such as 1508 NTS, where IQMSDRG achieves 92.80% accuracy, significantly higher than the other
models.

Analysing the data, it’s evident that the IQMSDRG model exhibits a consistently higher recall rate
compared to the other models in most test scenarios. For instance, at 812 NTS, IQMSDRG shows a recall
of 93.60%, significantly higher than GlauNet (80.38%), MTRA (76.86%), and MIMC (78.09%). This trend
is observable across various NTS, such as 4988 NTS, where IQMSDRG reaches a recall of 93.05%, again
outperforming the other models. Furthermore, the consistent performance of IQMSDRG across varying
numbers of test scans demonstrates its robustness and adaptability to different clinical settings and patient
volumes. After analysing the data, the IQMSDRG model demonstrates consistently higher specificity in
comparison to the other models across most NTS values. For instance, at 812 NTS, IQMSDRG achieves a
specificity of 88.90%, which is notably higher than GlauNet (73.37%), MTRA (60.65%), and MIMC (76.63%).
This trend of higher specificity is evident across various test sizes, such as 4524 NTS, where IQMSDRG
records a specificity of 90.98%, outperforming the other models. Higher specificity reduces the likelihood of
false positives, which is critical in medical settings to avoid unnecessary patient anxiety and over-treatment or
misdiagnosis. Refer Figure 3(c) and 3(e).

Analysing the data, we see that the delay times for the IQMSDRG model are competitive with other
models, showcasing its efficiency in processing scans as shown in Figure 3(f). For instance, at 812 NTS,
IQMSDRG has a delay of 97.46 ms, which is comparable to MIMC’s 94.78 ms and better than GlauNet’s
113.69 ms. Across various NTS, IQMSDRG’s delay remains within a reasonable range, indicating its consistent
performance. For example, at 5568 NTS, IQMSDRG shows a delay of 96.36 ms, demonstrating its ability to
maintain efficiency even as the number of scans increases.

Examining the provided data, the IQMSDRG model consistently shows higher AUC values in
comparison to the other models across most NTS values. For example, at 812 NTS, IQMSDRG achieves
an AUC of 90.03, significantly surpassing GlauNet (78.82), MTRA (75.83), and MIMC (60.14). This trend
continues at higher NTSs, such as 6612 NTS, where IQMSDRG has an AUC of 93.78, indicating its superior
diagnostic ability. Innovatively integrating iterative Q learning and FCM clustering with a sophisticated
45-layer 2D CNN achieves these results. These technical advancements enable the model to effectively
differentiate between the nuanced features of DR and glaucoma, leading to a more accurate classification.
Comparison with various implemented method is summarized as per Table 1. Refer Figure 3(a).
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Table 1. Comparison of parameters for various methods
Method Precision (%) Recall rate (%) AUC (%) Specificity (%) Accuracy (%) Delay (ms)
GlauNet 83.45 80.38 78.82 73.37 83.91 113.69
MTRA 68.27 76.86 75.83 60.65 84.08 99.96
MIMC 86.83 78.09 60.14 76.63 85.66 94.78

IQMSDRG 92.68 93.6 90.03 88.9 87.46 93.46

(a) (b)

(c) (d)

(e) (f)

Figure 3. Graphical analysis on various parameters: (a) AUC, (b) precision, (c) recall, (d) accuracy, (e)
specificity, and (f) delay (ms)

4. CONCLUSION
This study makes a substantial contribution to the field of medical diagnostics, specifically in the

identification and classification of DR and glaucoma. The proposed IQMSDRG model has a complex 45-layer
2D CNN, iterative Q learning, and FCM clustering. It performs much better than existing models like GlauNet,
MTRA, and MIMC in terms of precision, accuracy, recall, specificity, and AUC. The model demonstrates
exceptional competency, as indicated by its impressive precision, which may reach up to 97.18%, and
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accuracy, which can peak at 97.27%. These qualities are of utmost importance for ensuring dependable
medical diagnoses. The IQMSDRG model has the potential to significantly transform the early identifica-
tion and precise diagnosis of DR and glaucoma in clinical settings. This technology’s high precision and
accuracy guarantee dependable detection of disease phases, enabling prompt and appropriate medical
interventions. Preventing the advancement of these disorders is crucial, as they are among the primary
factors contributing to worldwide vision loss. In conclusion, the IQMSDRG model not only marks a
significant advancement in the field of medical imaging and diagnostics for DR and glaucoma but also opens
avenues for future innovations in healthcare technology. Its integration with advanced machine learning
techniques sets a precedent for tackling complex diagnostic challenges, potentially reshaping the landscape
of medical diagnostics and patient care scenarios.
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