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In classification problems, mislabeled data can have a dramatic effect on the
capability of a trained model. The traditional method of dealing with mislabeled
data is through expert review. However, this is not always ideal, due to the large
volume of data in many classification datasets, such as image datasets supporting
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the data. Herein, we propose an ordered sample consensus (ORSAC) method to
Keywords: support data cleaning by flagging mislabeled data. This method is inspired by
the random sample consensus (RANSAC) method for outlier detection. In short,
the method involves iteratively training and testing a model on different splits
of the dataset, recording misclassifications, and flagging data that is frequently

Classification
Computer vision

Data Clegning misclassified as probably mislabeled. We evaluate the method by purposefully
Label noise mislabeling subsets of data and assessing the method’s capability to find such
RANSAC data. We demonstrate with three datasets, a mosquito image dataset, CIFAR-10,

and CIFAR-100, that this method is reliable in finding mislabeled data with a
high degree of accuracy. Our experimental results indicate a high proficiency
of our methodology in identifying mislabeled data across these diverse datasets,
with performance assessed using different mislabeling frequencies.
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1. INTRODUCTION

Mislabeled data, or label noise, is a common issue in classification problems and can significantly
compromise the efficiency of models designed for classification tasks. Traditional methods often rely on
expert review of the dataset, which may not be practical due to the substantial volume of data in many
classification datasets and the limited availability of human expertise for review. This issue is problematic in
various applications of machine learning, especially in computer vision. It becomes particularly challenging for
extremely fine-grained datasets where few human experts are available for labeling the data [[1]-[3]. In these
cases, automated or semi-automated methods to identify mislabeled data for exclusion, or to flag subsets of
the data for review, are highly desirable. When flagging subsets of the data for review, low precision may be
acceptable if there is very high sensitivity, since the method may serve as a screening tool rather than as the final
decision maker on a sample.

The ubiquitous issue of data mislabeling not only hinders the accuracy of machine learning models but
also stands as a roadblock to the advancement of sophisticated, fine-grained classification tasks. The impact
of mislabeled data is even more pronounced in datasets where labeling requires specialized expertise, such
as in medical diagnostics [4] or species identification in biological sciences [S]-[7]. Current methodologies
typically involve manual or semi-automated processes of data review, which are time-consuming and may
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not be feasible due to the scarcity of domain experts. This scarcity is especially evident in the shortage of
taxonomists, contributing to the global taxonomic impediment [8]-[10]. Even the slightest misclassification
can have far-reaching implications in fields like medical imaging and environmental conservation, underlining
the critical need for a more efficient and reliable approach to addressing data mislabeling. This need is doubly
important, as the shortage of experts not only necessitates greater reliance on computer-aided decision-making
but also impedes the development of datasets to support classification models, given the extreme scarcity of an
expert’s time.

Recent advancements in machine learning, particularly in deep learning, have opened new avenues for
addressing the issue of mislabeled data. Studies have demonstrated that deep learning models can be trained
not only to perform classification tasks but also to identify inconsistencies in labeling by learning complex
patterns and anomalies in the data [[11], [[12]]. Moreover, the integration of active learning and human-in-the-loop
approaches has shown potential in efficiently managing large datasets by selectively querying human input on the
most ambiguous cases [[13]. This combination of automated learning and selective expert involvement presents
a promising direction for tackling the challenge of label noise in datasets. Incorporating these advancements,
our proposed ordered sample consensus (ORSAC) method aligns with this emerging trend. It leverages the
strengths of deep learning for the initial flagging of potential mislabels and allows for targeted expert review,
thus optimizing the use of limited expert resources. This approach not only augments the efficiency of data
cleaning but also contributes to the development of more robust and accurate classification models, particularly
in specialized fields where expert knowledge is vital yet scarce.

In this paper, we introduce the ORSAC method to tackle the persistent challenge of data mislabeling
in classification tasks. Our approach employs an iterative process of training and testing a model on different
portions of the dataset, documenting misclassifications, and marking frequently misclassified data as potential
mislabels. The intuition behind this process is that a model trained on mostly correct data will likely misclassify
mislabeled data found in the test set [14]. While inspired by the established random sample consensus (RANSAC)
technique, ORSAC is specifically adapted to address the complex issue of label noise in datasets. This adaptation
allows for more accurate identification of mislabeled data, which is particularly useful in intricate, fine-grained
datasets. At the same time, it retains the essential scalability needed for handling large volumes of data.
Consequently, ORSAC represents a meaningful advancement in the area of data quality for machine learning. It
effectively combines algorithmic precision with the practical necessity of scalability, offering a valuable tool in
the ongoing effort to improve data-cleaning processes. While ORSAC builds upon existing methodologies, its
specific focus on label noise and its scalable approach make it a noteworthy contribution to the field, particularly
for machine learning applications dealing with large and complex datasets.

To validate our approach, we intentionally mislabel certain subsets of data and assess our method’s
ability to identify such data. We utilize three distinct datasets: a mosquito image dataset, CIFAR-10, and CIFAR-
100. Our experimental results demonstrate a high proficiency of our methodology in identifying mislabeled data
across these diverse datasets, with performance documented under various mislabeling frequencies. Given these
results, we advocate for the use of ORSAC as an optimal process for routine data cleaning, especially to support
the growth of fine-grained classification datasets where data cleanliness is of utmost importance, but expert
labeler time is a limited resource.

The remainder of this paper is delves into the motivations behind our research, drawing on established
theories and past studies that have contributed to the development of our innovative methodology and approach.
Section 2 provides a review of existing literature pertinent to our study. In section[3] we elaborate on our research
design and analytical approach. We detail the iterative classification method for obtaining a misclassification
frequency. In sub-section[d.1] discusses our methods for assessing the effectiveness of the methodology, and in
sub-section[d.2] outlines our experimental setup, with the results presented and discussed in[5.1] Subsequently,
in sub-section[5.2] provides a thorough analysis of these results and offers a nuanced discussion of our findings.
We acknowledge the limitations of our study while also emphasizing its strengths and identifying potential areas
for future research, thereby linking our work to the broader trajectory of this field.

The problem of mislabeled data detection is similar in nature to the problem of outlier detection. Both
outliers and mislabeled data are non-representative of the class they are labeled as. RANSAC is an algorithm
commonly used to train a regression model in the presence of outliers. It works by first training the regression
model on the minimum amount of data needed to fit the model, then determining the number of inliers that are
within a threshold of the fitted model. This process is repeated a certain number of iterations, after which the
model with the most inliers is chosen. The model can also be retrained using the inliers defined by the best
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model. ORSAC draws inspiration from the traditional RANSAC algorithm in that it trains several iterations of
the model, each time using different portions of the dataset as the training set. It differs in that it is designed to
function with a classification model as opposed to a regression model, and the final product is not intended to be
a trained model, but rather a set of potentially mislabeled data points. These data points may be excluded from
the dataset, though this may have unintended consequences, potentially removing important variability from a
complex dataset, resulting in a model less robust to real-world variability. For this reason, although we assess
accuracy improvements from the simple exclusion of the data, we recommend an ideal process of flagging these
potentially mislabeled data points for expert review and final decision-making.

The adaptation of outlier detection principles to the realm of classification models, particularly in the
context of image datasets, heralds new opportunities for enhancing data integrity in machine learning [15]]. This
conceptual shift, embodied by ORSAC, underscores a growing appreciation within the field: methodologies
honed for one type of model, such as regression, can be adapted to offer significant insights and solutions for
others, like image classification tasks [16]], [17]. Such cross-pollination of techniques not only diversifies our
toolkit for data preprocessing but also fosters a more comprehensive understanding of data quality in various
machine learning models, especially those dealing with fine-grained, image-based datasets [[18]], [19]].

ORSAC’s nuanced approach, which involves flagging potential mislabels for expert review rather than
outright exclusion, demonstrates a deep understanding of the complexities and subtleties present in image data.
Compared to the incorrectly labeled samples we aim to exclude, the correctly labeled outliers are sometimes the
most important data to include to manage data sampling biases. This method ensures the preservation of the
richness and intricacies inherent in these datasets, which is essential for developing models that are robust and
effective in interpreting the nuanced visual information typical of real-world scenarios. By integrating these
nuanced approaches, ORSAC contributes to a more dynamic and effective strategy for handling data quality
challenges in image-based machine learning.

2.  RELATED WORKS

Addressing the pervasive issue of data mislabeling has been the focus of extensive research over
the years, with numerous methodologies proposed to tackle this challenge. The complexity of this problem,
heightened by the diversity of datasets and the significant consequences of mislabeling, has catalyzed the creation
of a range of innovative solutions. These solutions have evolved from traditional, manual techniques to more
advanced computational methods, reflecting the dynamic nature of research in this area. This evolution has
been driven by various factors, including the need for greater scalability, the advent of sophisticated algorithmic
approaches, and the increasing complexity of datasets, tracing their development from early statistical methods
to contemporary machine learning techniques [20]-[22]. In this section, we detail some of the noteworthy
methods proposed in the literature, each with its unique approach, advantages, and limitations.

The quintessential application of the RANSAC algorithm in limited data scenarios is exemplified in
the domain of computer vision, specifically for tasks such as geometric shape detection, including line or plane
fitting in 2D or 3D spaces. In a typical scenario involving a small dataset with spatial data points, some of which
outline a geometric shape (e.g., a line in 2D) amidst random noise or outliers, RANSAC’s stochastic approach
becomes pivotal. It begins by randomly selecting a minimal subset of data points — just enough to define a
geometric entity, like two points for a line in 2D space. A line is then fitted to these points, and the distances of
all remaining data points to this model are computed. Those within a certain threshold are classified as inliers,
refining the initial model estimation through multiple iterations, each involving the selection of a new random
subset and accruing inliers. The model with the maximal aggregation of inliers is ultimately adopted as the
representative of the underlying data structure. This methodology, particularly beneficial in scenarios with small
datasets, mitigates the skew caused by outliers, leading to more accurate model representations [23[]-[26].

Originally developed for applications in image analysis and automated cartography, RANSAC provided
a robust solution for fitting models in data characterized by high proportions of noise or anomalies. Its capability
to distinguish inliers from outliers without prior knowledge of data validity established it as a pioneering tool in
computer vision and image processing. This foundational algorithm has significantly influenced the development
of numerous subsequent methods in outlier detection and robust estimation across various fields, underscoring
its enduring impact and versatility [27]-[29].

Building upon the foundational principles established by the RANSAC algorithm, several researchers
have proposed innovative adaptations for tackling mislabeling in image datasets. Notably, Debnath et al. [[17]
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extended RANSAC’s framework by incorporating a CNN trained on the ImageNet (ILSVRC2012) dataset to
generate feature vectors. They then iteratively trained a support vector machine (SVM) to differentiate between
outliers and inliers, evaluating the complete dataset in each iteration [[17]. This method showcases the integration
of deep learning with traditional algorithms to enhance outlier detection.

Expanding on this theme of combining methodologies, Moura et al. [30] introduced an approach using
an ensemble of classifiers. Their method, trained on clean data, focuses on identifying mislabeled data within
the test set through a voting system implemented with various threshold settings. This technique highlights the
application of ensemble learning in ensuring data integrity.

Furthering this exploration, Feng et al. [31] tested the ensemble classifier approach in scenarios where
mislabeling is present not only in the test set but also in the training set. They employed both majority and
consensus thresholds to enhance the robustness of mislabel detection. This research underscores the importance
of considering label noise in both the training and testing phases for more realistic data conditions.

In a different vein, Wu et al. [32] explored the concept of ‘A Topological Filter for Learning with Label
Noise.” Their method leverages the latent spatial distribution patterns of a noisy classifier trained on the dataset.
By forming clusters of what is deemed to be clean data, their approach focuses on filtering out outliers, thus
refining the dataset quality. This method exemplifies the utilization of topological data analysis in the context of
label noise.

Additional methodologies in the realm of data mislabeling, such as those proposed by Ghorbani and
Zou [33], and Koh et al. [34], focus on generating scores for each data point to identify label noise. Ghorbani
and Zou utilize a method based on “shapley values,” derived through a leave-one-out approach, where the lowest
valued data are earmarked for review by trusted experts to detect label noise. On the other hand, Koh et al. [34]]
adopt a distinct strategy in score generation and interpretation. They leverage influence functions, and their
approximations, to assess how significantly each training data point influences a model’s parameters, with the
premise that data with the highest influence scores are likely to contain label noise. However, the practical
applications of both methods are somewhat constrained by the complexity of the problem they address. A
notable limitation is their conceptual approach to identifying mislabeling, particularly in scenarios characterized
by high inter-class similarity and notable intra-class variations, a defining feature of fine-grained problems.
These methods presuppose that mislabeled data will exert a substantial impact on the model, affecting either its
performance or its parameters in a pronounced manner. Such an assumption may not hold true in cases where
the defining features of the data are less influential at a macro level of the model. In essence, if the features
critical for classification are subtle or nuanced, these methodologies might not effectively identify the mislabeled
data points.

Nguyen et al. [35] introduce a novel approach that contrasts with traditional data cleaning methods.
Their strategy is integrated directly into the model’s training loop, aiming to enhance the model’s resilience
to noisy labels without necessitating a separate data cleaning step. This innovative method, termed ‘self-
ensembling-predictions’ or SELF, leverages the outputs of a single model across different training epochs. It
involves recording the model’s predictions on the training set at various epochs to establish a moving average
of predictions for each data sample. This moving average is then compared to the sample’s actual label. A
discrepancy between the label and the moving average is interpreted as an indication of mislabeling, prompting
the removal of the sample from the supervised training set in subsequent iterations. Notably, Nguyen et al. [35]
method maintains engagement with the noisy labels by incorporating an unsupervised loss component in the
training process. This aspect of their approach allows for continued learning from potentially mislabeled data,
thereby balancing label correction with the retention of valuable data information. Many methods such as those
proposed in Zhou et al. [36] and Park et al. [37] explicitly aim to relabel instances, the former using ensemble
methods and the latter using a data pruning algorithm to find the subset of the dataset for which a predicted
relabel is most likely correct. Other methods take the approach of making a model that is robust to label noise,
as opposed to one that can identify instances of label noise [38], [39].

An essential aspect of the label noise problem lies in the complexity of the dataset under consideration.
While many of the methods discussed earlier prove effective for datasets with clearly distinguishable classes,
challenges arise when dealing with datasets where class differentiation is not as apparent, and critical features
are subtle. This scenario is typical in what are known as fine-grained datasets, where even expert labelers and
machine learning models may struggle to discern between classes due to the nuanced nature of the data [1]. In
response to this specific challenge, ORSAC emerges as a tailored solution. It approaches these fine-grained,
complex datasets by employing an iterative process with a sophisticated model. The iterative nature of ORSAC
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allows for a more nuanced understanding and identification of label noise, adapting to the subtle distinctions
within the data. This methodical approach aims to enhance the accuracy of label noise detection in scenarios
where traditional methods might falter due to the intricacy of the dataset.

In the context of ORSAC, there is substantial opportunity for further refinement, especially in improving
its efficiency and precision. One promising avenue is leveraging GPU-specific libraries for parallel processing,
which has the potential to significantly expedite computational tasks [40]-[42]]. Such enhancements would make
ORSAC more adept at handling larger and more complex datasets. A particularly exciting application of ORSAC
lies in the field of biological and entomological research, where it can be used to analyze fine-grained images,
such as those of mosquitoes, ticks, bees, and other small organisms. The capability of ORSAC to accurately
differentiate subtle features in these images can be crucial for species identification and understanding biological
diversity. Furthermore, the adaptation of ORSAC to these specific domains, combined with its iterative approach,
offers a robust tool for researchers dealing with vast amounts of image data. These advancements not only
demonstrate the adaptability and applicability of ORSAC in specialized fields but also underscore the need for
continued research and development in advanced label noise correction methods, particularly for fine-grained
image analysis.

3.  PROPOSED METHOD
3.1. Method overview

As depicted in Figure|l] our ORSAC process encompasses four primary steps. Initially, the complete
dataset, denoted as X, is partitioned into temporary subsets for training X%, . . validation X, ;.,, and testing
XE. .- In the first step, a classification model is trained on X7, . utilizing a fixed set of hyperparameters. The
most efficacious model is chosen based on its performance on X7,,,.,. The second step involves evaluating this
trained model using X7._, to generate predictions. In the third step, these predictions are compared with the
actual labels. Here, the misclassification frequency, f, for each image in the test set is updated. The fourth step
iterates the dataset splits using a sliding window technique, ensuring each sample is included in the test set an
equal number of times. This procedure is repeated for n iterations. Post these iterations, the misclassification
frequencies are compared to a predefined threshold, ¢. Images with frequencies meeting or exceeding t are
flagged. These flagged images can either be eliminated from the dataset or subjected to manual review for
potential exclusion or reclassification. This results in a refined dataset, X "

ORSAC attempts to flag samples which are likely to have been mislabeled in image classification tasks.
First there is an initial data split. Then the method enters a loop for n iterations, ¢: 1) a CNN is trained on the
training data, storing the best model of all epochs as evaluated by the validation set; 2) the trained model is
evaluated on the test set; 3) update the misclassification frequency, f, by comparing the predictions of each
image to its True label over each iteration; 4) iterate the data split using a sliding window approach. If 4 is more
than n, exit the loop between steps 3 and 4. Then compare f to a previously set threshold ¢ for each sample. If f
is more than ¢, then the sample is flagged for either removal or review by a human expert

3.2. [Iterative model training and misclassification frequency generation

Initially, the complete dataset X is segmented into temporary subsets for training X%, . . validation
X, 10> and testing X4 .. where i represents the current iteration, and n signifies the total number of iterations.
A classification model, M, is trained on the X%, . subset using a consistent set of hyperparameters. The
optimally trained model, M*, is identified based on its performance on the X{,,;,, subset. This process is
encapsulated by (1):

M* = Train(M, X’%rainv Xii/alid) (1)
upon training the model M™*, it is utilized to predict labels, y;,_e s> On the X4, subset, as depicted by (2).
yziweds = TeSt(M*v X%est) (2)

These yliwedS are retained for subsequent comparison with the actual labels, y..,., to identify
misclassifications. A sliding window technique is implemented to allocate the next split of the dataset
(X ins X arids X'resp)s €nsuring equitable inclusion of all samples in the test set across iterations. Fol-
lowing the classification phase, we ascertain the misclassification frequency, denoted by f, for each image, j,
in X% ,,. This frequency is calculated by tallying the occurrences of incorrect classifications for each image
across n iterations, expressed as (3).
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Figure 1. Core steps for the ORSAC method

3.3. Flagging and review process for dataset refinement

In this stage of our approach, we concentrate on the flagging and review process integral to dataset
refinement. Once the misclassification frequency, f;, for each image in the dataset is determined through
our iterative approach, we employ a threshold, ¢, to flag images that potentially pose issues. This is formally
articulated as (4):

forjin X : if f; > t, then Flag; = True, else Flag; = False 4

where F'lag signifies the status of an image j being flagged for review.

Images flagged as true are earmarked for further examination or exclusion due to their high frequency
of misclassification. The subsequent step involves a manual review of these flagged images to decide whether
they should be eliminated or reclassified within the dataset. This manual scrutiny is pivotal to preserve the
dataset’s integrity as it evolves. Additionally, analyzing these flagged images can offer insights into the reasons
behind their frequent misclassification, potentially guiding improvements in the model or data collection
methods. In this research, we concentrate solely on flagging and removal rather than flagging and review
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for a more structured evaluation. Post removal of the flagged images, the refined dataset is denoted as X "
Algorithm 1 outlines the pseudocode summarizing the primary steps of our ORSAC methodology. The
implementation of our method can be found at: https://github.com/vectech-dev/ORSAC_data_cleaning_public.

Algorithm 1: ORSAC method

Input: Dataset X

Output: Flagged samples
Divide dataset X into training X
2 Seti = 0; while i < n do

3 Train a CNN model using X%’rain and evaluate it with Xé/ah.d; Assess the trained CNN on X%est; Update the
misclassification frequency, f, for each image; Reallocate data splits (X % rains X ‘Z/ alidr X % os¢) Using a sliding window
method; Increment 7;

%
Train’

—_

validation X%/alid’ and testing Xé“est subsets;

end
foreach image in dataset do
if f > t then

‘ Flag the image;
end

end
10 Flagged images may either be removed or subjected to expert review;

4. METHOD
4.1. Method evaluation

To effectively evaluate our methodology, we initially partition the entire raw dataset, X, into two distinct
subsets: X pinal Test and X,. Here, X pinai Test represents a segregated portion of X, reserved exclusively for
the final assessment of the model. X, constitutes the portion of the dataset upon which our method is applied.
Within X, we generate a modified dataset, X, ,,;(n), by intentionally mislabeling a specified percentage, h, of
the samples from each class to a different class. Importantly, we retain a record of the original true label for each
mislabeled sample. The aforementioned procedures are executed on X, .,;(5) to gauge the effectiveness of the
method in identifying mislabeled data.

Further evaluation includes training a model using three distinct dataset variations, subsequently
assessed on X pinal Test:

- X,, the unaltered subset of the dataset designated for method evaluation.
- X4 mi(n)» which is X, but with a fraction of its data, quantified by h, mislabeled.
- X, the outcome produced by the aforementioned method.

We compare the accuracy of models trained on these three dataset versions using X rjpqi Test. This comparison
not only provides an insight into the method’s efficiency but also evaluates its utility in eliminating potentially
mislabeled data in scenarios lacking expert review.

The efficacy of our method is quantitatively assessed using key metrics: Recall, defined as the proportion
of mislabeled images correctly flagged by our system, and Precision, the proportion of flagged images that were
indeed mislabeled. The outcomes are categorized into four types: True positives (mislabeled samples accurately
flagged), true negatives (correctly labeled samples not flagged), false positives (correctly labeled but erroneously
flagged samples), and false negatives (mislabeled samples not flagged). Additionally, the percentage of the
dataset, X, that was flagged is reported.

To ascertain the statistical significance of accuracy differences between models trained on X, . (n)
and X+, a paired difference two-tailed T-test is utilized, calculated as (5):

Daccuracy
5)

where D gccuracy is the mean difference in accuracies, s Dacouracy 18 the standard deviation of these differences,
and Ngccuracy 18 the number of comparisons, all evaluated with an alpha threshold of 0.05.

taccu’r'acy =
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Furthermore, to analyze significant changes in Precision and Recall when the mislabel frequency is
increased from 2.5% to 10% , paired difference directional T-tests are conducted, represented by [43].

Dmetric

tmetric =
SD’V?LEt’V‘iC/V Nmetric

With D, etric being the mean difference in the respective metric,sp
the number of metric comparisons, using an alpha value of 0.05.

6)

. the standard deviation, and nmetric

metri

4.2. Experimental setup
4.2.1. Datasets

We used three different datasets to evaluate our method: CIFAR-10, which comprises 10 distinct image
classes; CIFAR-100, which comprises 100 distinct image classes [44]; and a mosquito dataset from JHU [435]],
which contains 20 distinct specie. Both CIFAR-10 and CIFAR-100 are composed of 60000 32 x 32 images
resized to 224 x 224 using bicubic interpolation , with 50000 in the X, set, and 10000 in the X set. The
JHU Mosquito dataset is composed of 10776 images of 480 x 640 pixels, with 9382 in the X, set and 1394 in
the X set, and the images were resized to 299 x 299 using bicubic interpolation for training. The minimum
number of image samples per species in the mosquito dataset is 142. For all datasets, we conducted experiments
with 1% , 2.5% and 10% mislabeled images to test ORSAC under varying levels of label noise. These datasets
were selected to showcase ORSAC’s adaptability across standard and specialized domains, and to provide a
comprehensive evaluation of its performance in different scenarios of label noise.

4.2.2. Network and training details

Each data experiment was run for 35 separate training iterations. A misclassification threshold of 100%
was used. This 100% (or concensus) threshold was selected so as to minimize the number of false positives
produced by ORSAC. The subsequent evaluations of the models trained on the filtered data used the same
configurations listed above, with the exception of the number of epochs and early stopping patience. These
were increased to 100 and 20 respectively. For robustness each experiment was repeated 3 times, each time
with a unique subset of mislabeled images, though X ;a1 Test Was kept static. The initial order of the dataset
was shuffled at the start of each experiment. The averages and standard deviations of the metrics for these
experiments are shown in Tables[T]and

For the CIFAR-10 and CIFAR-100 experiments we used an EfficientNetpq [46]] model architecture
pre-trained on ImageNet. EfficientNetp, was chosen as a lightweight model to align with the low resolution of
the CIFAR datasets. In each iteration of training during our cleaning process the batch size was set to 100, and
the model was trained using a ranger optimizer [47] with an initial learning rate of 2 x 10~# , momentum of
0.9, and eps of 1 x 10~ for 60 epochs with an early stopping patience of 15. A CrossEntropy loss function
was used. For the JHU Mosquito dataset experiments we used an Xception model architecture [48]] pretrained
on ImageNet. Xception was chosen because its depthwise convolutions are known to perform well on high
resolution fine-grained datasets such as this one [5], [49]], [50]. In each iteration of training the batch size was
set at 100, and the model was trained using a ranger optimizer with a learning rate of 5 x 10~%, momentum of
0.9, and eps of 1 x 1076 for 60 epochs with an early stopping patience of 15. A focal loss [51]] function with a
gamma value of 2 was used.

These models were trained using a NVIDIA Corporation RTX A6000 GPU with 48GB of VRAM
available. For the JHU Mosquito dataset, with a batch size of 100 using 27GB of VRAM, with the Xception
architecture, the approximate time per epoch was 39.7 seconds, resulting in a single training iteration time
of 40.7 minutes, and a total training time for a single run of the ORSAC process being 23.7 hours. For the
CIFAR-10 dataset, with a batch size of 100 using 18GB of VRAM, with the EfficientNetp architecture, the
approximate time per epoch was 1.6 minutes, resulting in a single training iteration time of 1.7 hours, and a total
training time for a single run of the ORSAC process being 58.5 hours. For the CIFAR-10 dataset, with a batch
size of 100 using 18GB of VRAM, with the EfficientNetp( architecture, the approximate time per epoch was
1.7 minutes, resulting in a single training iteration time of 1.8 hours, and a total training time for a single run of
the ORSAC process being 61.5 hours.
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Table 1. Metrics for ORSAC methodology evaluation. h=1%
Dataset Metric Value

JHU mosquitoes M ™ trained on X, tested on XFina) Test 94.54.6%
Recall 95.94+2%
Precision 30.5+0.2%
M* trained on Xy y(n) + X/ 92.940.7:92.4£0.4%
% of X o mi(n) flagged 3.0440.09%
CIFAR-10 M* trained on X, tested on XFinal Test 95.0+.1%
Recall 96.9+.6%
Precision 30+4%
M trained on Xy ry(n) + X,/ 93.940.2:94.3+0.3%
%o of Xz mi(n) flagged 3.24+0.4%
CIFAR-100 M* trained on X, tested on XFinal Test 79.8+.4%
Recall 99+1%
Precision 2.6+.7%
M* trained on Xy y(n) * X, 77.940.3:76.84+0.1%
% of X mi(n) flagged 12+1%
Table 2. Metrics for ORSAC methodology evaluation. h=2.5%
Dataset Metric Value
JHU mosquitoes M ™* trained on X, tested on XFinal Test 94.5+.6%
Recall 97+1%
Precision 54+2%
M trained on Xy py(ny + X,/ 85.340.8: 87.3+0.6%
%o of Xz mi(n) flagged 5.1£0.3%
CIFAR-10 M* trained on X, tested on XFinal Test 95.0£.1%
Recall 93+1%
Precision 57+1%
M* trained on Xz y(n) + X, 94.140.6: 94.0+0.4%
% of Xy mi(n) flagged 3.91£0.08%
CIFAR-100 M* trained on X, tested on XFinal Test 79.84+.4%
Recall 98.4+0.2%
Precision 20+1%
M* trained on X, 1 (n) + X/ 78.7£0.4: 78.2+0.4%
% of Xz mi(n) flagged 12.0£0.3%
5. RESULTS AND DISCUSSION
5.1. Results

The results of the JHU Mosquito, CIFAR-10, and CIFAR-100 dataset with mislabel frequencies, h, of
2.5% and 10% are in Tables and. Respectively for the two h values they achieved Recall of: 97 4+ 1% and
95.08 £ 0.05%; 93 + 1% and 92 £ 1%; and 98.4 + 0.2% and 98.0 &= 0.2%. The Recall of the ORSAC method
in experiments with a 10% mislabel frequency is slightly lower than the Recall of ORSAC in experiments
with a 2.5% mislabel frequency for each dataset. However, none of these decreases in Recall are shown to be
statistically significant (see Table H). Respectively for the h = 2.5% and 10% the datasets (JHU Mosquito,
CIFAR-10, and CIFAR-100 ) achieved Precision of: 54 4+ 2% and 83.2 & 0.2%; 57 + 1% and 81 £ 3%; and
20 + 1% and 40.4 + 0.6%. For every dataset the Precision of the ORSAC method in experiments with h = 10%
is significantly higher than the Precision of ORSAC in experiments with h = 2.5% (see Table . Respectively
for the two h values they flagged 5.1 & 0.3% and 12.5 & 0.3%, 3.91 4 0.08% and 11.7 4+ 0.5%, 12.0 + 0.3%
and 19.1 £ 0.1% of the dataset. The accuracy of the model trained on the dataset before and after flagged
sample removal (that is, training model M on X, ;,;(p) and X/ and testing on X pipnai_rest) for h = 2.5%
were respectively: 85.3 +0.8 and 87.3 +0.6%; 94.1 +0.6% and 94.0 + 0.4%; and 78.7 +0.4 and 78.2 & 0.4%.
For the experiment using h = 10%, the respective accuracies were: 83 & 2 and 86 4+ 2%; 93.3 £+ 0.2% and
94.64+0.3%; 77.30+0.03% and 76.0 £ 0.2%. The baseline accuracy when training model M on the unmodified
X, and testing on X pina)_Test for each dataset were respectively: 94.5 + 0.6%, 95.0 + 0.1%, 79.8 + 0.4%.
These metrics, are displayed in Tables [2]and 3] with statistical significance results reported in Table [} while the
metrics and statistical significance results for experiments with an h value of 1% are displayed in Table[I|and
Table 5] respectively.
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The removal of samples flagged by ORSAC resulted in higher accuracy in 3 of the 6 experiments,
namely the JHU mosquitoes experiments and the CIFAR-10 experiment with a mislabel frequency of 10%. The
CIFAR-100 experiments and the CIFAR-10 experiment with a mislabel frequency of 2.5% all show a slight
decrease in accuracy. Of these experiments only the CIFAR-10 and CIFAR-100 experiments with a mislabel
frequency of 10% each achieved statistical significance (see Table ). The difference between the model trained
on the unmodified dataset X, and the unclean dataset X ,,,;(5) when testing on the final test set X pinai_Test
was statistically significantly higher in X, in all cases except for CIFAR-10 with an h = 2.5%. The ¢ and p
values are both measures of the significance of the difference between two datasets. The t value is a measure
of the difference between the means of these sets, factoring in the standard deviation, while the p value is the
probability of observing that difference assuming that the sets are from the same distribution. A low enough p
value indicates that the two datasets are in fact not from the same distribution, which allows us to say that their
difference is statistically significant.

Table 3. Metrics for ORSAC methodology evaluation. h=10%

M* trained on Xz ry(n) + X,
% of Xy mi(n) flagged

Dataset Metric Value
JHU mosquitoes ~ M™ trained on X, tested on XFinal_Test 94.54.6%
Recall 95.0840.05%
Precision 83.240.2%
M* trained on Xy 1(n) + X7 83+2: 86+2%
% of X mi(n) flagged 12.5£0.3%
CIFAR-10 M* trained on X, tested on Xrinal Test 95.0+.1%
Recall 92+1%
Precision 81+3%
M trained on Xy iy + X,/ 93.340.2: 94.6+0.3%
% of X mi(n) flagged 11.7£0.5%
CIFAR-100 M* trained on X, tested on Xrinal Test 79.8+.4%
Recall 98.04+0.2%
Precision 40.5+0.6%

19.1+£0.1%

77.30+£0.03: 76.0£0.2%

Table 4. Comparison of metrics using a two-tailed T-test for paired samples

Dataset Metric Value (h=2.5%) Value (h=10%)
JHU mosquitoes M* trained on Unmodified (X ) vs Unclean (X, ,,,;(n))  t=-18.06, p=0.003  t=-6.02, p=0.027
tested on X pingl Test
M trained on Clean (X 1) vs Unclean (X, ,,,1(n)) tested  t=2.08, p=0.173 t=1.14, p=0.37
on XFinal_Test
Mislabel Frequency Precision t=28.27, p<0.001 t=-2.59, p=0.061
CIFAR-10 M* trained on Unmodified (Xz) vs Unclean (Xg my(n))  t=-2.70, p=0.114 t=-8.98, p=0.012
tested on XFinaLTcst
M trained on Clean (X /) vs Unclean (X ,n(n)) tested  t=-0.05, p=0.97 t=12.86, p=0.006
on XFinaliTcst
Mislabel Frequency Precision t=15.12, p=0.002  t=-0.55, p=0.32
CIFAR-100 M* trained on Unmodified (X ) vs Unclean (X ,yn))  t=-12.59, p=0.006  t=-9.33, p=0.011
tested on X pingl Test
M* trained on Clean (X 1) vs Unclean (X ,ni(n)) tested  t=-1.05, p=0.40 t=-7.61, p=0.017
on XFinal_Test
Mislabel Frequency Precision t=45.90, p<0.001 t=-1.51, p=0.135
Table 5. Comparison of metrics using a two-tailed T-test for paired samples
Dataset Metric Value (h=1%)
JHU mosquitoes M ™ trained on Unmodified (X ) vs Unclean (Xe,mi(n)) tested on X pinal_test  t=6.06, p=0.026
M* trained on Clean (X,7) vs Unclean (X, mi(n)) tested on X pinal_Test t=-0.67, p=0.57
CIFAR-10 M* trained on Unmodified (X.) vs Unclean (X)) tested on X pinar rest  t=20.1, p=0.002
M* trained on Clean (X,7) vs Unclean (X, mi(n)) tested on X pinal Test t=1.62, p=0.25
CIFAR-100 M™ trained on Unmodified (X) vs Unclean (X min)) tested on Xrpinai_rest  t=6.44, p=0.023
M* trained on Clean (X /) vs Unclean (X i(r)) tested on X pinal_Test t=-8.77, p=0.013
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5.2. Discussion

Our study presents the ORSAC method’s ability to efficiently identify mislabeled images in a dataset.
Across all experiments, the lowest percentage of mislabeled images that were found by our process (Recall) was
92 + 1%, with CIFAR-100 at a mislabeling frequency, or h, of 2.5% reaching 98.4 + 0.2% recall. Our testing
did not indicate that this metric was significantly affected by the frequency of mislabeled data (see Table[3)), but
further testing may provide more insights into these dynamics. The Precision of the flagging method, however,
was affected by the frequency of mislabeled data, increasing as the mislabeled data frequency increased for each
of the datasets. This increased Precision resulted in a smaller portion of the dataset being erroneously flagged for
review or removal with respect to h. In the case of flagging data for review, this results in fewer correct samples
that must be reviewed by a human expert. Across all experiments, at most 19.1 & 0.1% of the dataset was
flagged for h = 10%, still dramatically reducing the candidate pool for finding mislabels. Default removal of
these flagged samples produced mixed results, as can be seen in the results Tables[I]} [2] and 3] A small increase
in accuracy was observed in 4 of the 9 experiments, though only the CIFAR-10 dataset at h = 10% proved
significant (p = 0.006), with the other 3 showing a small decrease in accuracy, though only the CIFAR-100
dataset at h = 10% proved significant (p = 0.017) (see Table . Given the low Precision, the lack of significant
improvement can be attributed to a loss of variability in the dataset when samples that were in fact correctly la-
beled (false positives) were removed. For this reason, we recommend that the flagged samples output by ORSAC
be reviewed by an expert human reviewer prior to removal or reclassification. The impact of this on resources is
illustrated in Figure[2] which plots the percentage of incorrect labels fixed against the percentage of data reviewed.

JHU Mosquito c h=1% JHU Mosquito ¢ h=2.5%

100 § T 100 1

95.92%: Mislabeled data caught

80

60

--5.16%: flagged data

40

Percentage of incorrect labels fixed(%)

204

Percentage of incorrect labels fixed(%)

—&— Random review
04 —— ORSAC guided review 04 —— ORSAC guided review

—&— Random review

0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48
Percentage of data reviewed(%) Percentage of data reviewed (%)

JHU Mosquito ¢ h=10%

100 4 1

95.01%: Mislabeled data caught

80

)

60 1

~12.72% flagged data

40 1

Percentage of incorrect labels fixed(%;

—k— Random review
04 —— ORSAC quided review

0 6 12 B 24 3 3 2 4
Percentage of data reviewed(%)
Figure 2. Percentage of incorrect labels fixed plotted against the percentage of data reviewed for experiments
performed on the JHU Mosquito dataset with h values of 1%, 2.5%, and 10%, from left to right and top to
bottom
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While mislabel frequency appears to impact the precision of the method’s performance, the dataset
also seems to have an influence. CIFAR-10 and the JHU mosquito dataset had very similar Precisions for
both mislabel frequencies. The notably reduced Precision observed in CIFAR-100 could be attributed to the
heightened complexity of the classification task, stemming from the considerable increase in classes (from 10
in CIFAR-10 to 100 in CIFAR-100), compounded by the notably low resolution of the CIFAR dataset. This
low Precision implies that a relatively high accuracy of the model on the modified dataset may be required for
optimal functioning of ORSAC. Further research on this point is warranted. The limited impact of increasing
label noise on the CIFAR-100 trained model (Xz,ml(h)) further illustrates this point.

The experiments where h = 1% illustrate how the importance of clean data persists even in the face of
low-label noise. While the effect was small, it was persistent across the datasets. In instances where accuracy is
above 90%, an increase of 2% in accuracy has a tangible impact on the perceived error of systems by critical
users, amounting to at least a 20% reduction in error frequency. Thus, for systems where users require high
accuracy, clean data is paramount. Most publications on data cleaning procedures target high noise environments,
with few examining instances of low-label noise [30]. This suggests a research gap of particular importance to
computer vision in medicine, entomology, and other fine-grained applications where high accuracy may be of
high importance.

Some of the referenced works have very similar methods. The notable SELF method is more com-
putationally frugal than ORSAC, given that it occurs in real-time. However, both SELF and the RANSAC
adaptation proposed by Debnath et al. [17] use predictions made on data that was in both the train and test set to
facilitate their data cleaning processes. This could make it harder to find mislabeled samples, as the model is
potentially more likely to label a mislabeled sample as accurate if it has trained on that sample. Our method
attempts to circumvent this issue by only using the predictions made by our trained model on the test set. This
also limits the variability the ensemble is learning, as the training set remains static through the process. In
contrast, ORSAC generates more model variability across models by modifying the training splits each iteration.
In addition, relying on predictions from the partially trained model results in lower accuracy of the real-time
data cleaning method. This has the potential unwanted effect of diluting the moving prediction average with
erroneous predictions.

However, our work isn’t without limitations. The success of ORSAC is likely contingent upon the
model achieving sufficiently high accuracy on the dataset, which needs further study, though high recall was still
achieved in the CIFAR-100 dataset with a baseline accuracy of 79.8 4 0.4%. In testing ORSAC on CIFAR, a
low-resolution coarse-grained classification dataset of 50000 images, and the JHU Mosquito dataset, a high-
resolution fine-grained classification dataset of 10776 images, we assess the potential for ORSAC aiding in
database development and data cleaning for a wide variety of problems. Notably, the reduction in accuracy from
the baseline to the mislabeled data for JHU Mosquitoes, as opposed to the minor reduction from CIFAR-10
and -100, further validates the importance of this issue for fine-grained classification tasks such as taxonomy.
However, more testing is required to understand its value for other fine-grained applications and to assess its
capability in dealing with very high and very low levels of mislabeling noise (below 1% and above 10%). The
computational cost of ORSAC could also be a limiting factor when working with larger datasets or with fewer
computational resources. For this case, it may be advantageous for future research to explore the effect of
training with lower complexity models and for fewer epochs with regard to speed and accuracy.

6. CONCLUSION

In summation, we presented and tested the ORSAC, for identifying probable mislabels in a dataset.
This method, inspired by the well-known RANSAC algorithm, is similar to other methodologies for mislabel
detection. Our method is unique in its methodological simplicity, high Recall in finding mislabels, and its
capability on disparate computer vision datasets. We also confirm the particular importance of these methods for
fine-grained image datasets, applications where high accuracy is essential, and where label noise may exist at low
levels. Though only tested in this work on computer vision, the method may be viable for other machine learning
classification tasks as well. Future research directions include broadening the application scope of ORSAC to
diverse datasets, enhancing its computational efficiency, and increasing its precision without sacrificing its high
sensitivity. We advocate for the use of ORSAC primarily as a tool for flagging questionable data, facilitating
further review by experts, rather than for outright data exclusion, ensuring a balanced approach to maintaining
data integrity.
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