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 The landscape of programming has long been challenged by the task of 

transforming pseudo code into executable Python code, a process 

traditionally marred by its labor-intensive nature and the necessity for a deep 

understanding of both logical frameworks and programming languages. 

Existing methodologies often grapple with limitations in handling variable-

length sequences and maintaining context over extended textual data. 

Addressing these challenges, this study introduces an innovative approach 

utilizing the Transformer-XL model, a significant advancement in the 

domain of deep learning. The Transformer-XL architecture, an evolution of 

the standard Transformer, adeptly processes variable-length sequences and 

captures extensive contextual dependencies, thereby surpassing its 

predecessors in handling natural language processing (NLP) and code 

synthesis tasks. The proposed model employs a comprehensive process 

involving data preprocessing, model input encoding, a self-attention 

mechanism, contextual encoding, language modeling, and a meticulous 

decoding process, followed by post-processing. The implications of this 

work are far-reaching, offering a substantial leap in the automation of code 

conversion. As the field of NLP and deep learning continues to evolve, the 

Transformer-XL based model is poised to become an indispensable tool in 

the realm of programming, setting a new benchmark for automated code 

synthesis. 
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1. INTRODUCTION 

The advent of advanced computational models has ushered in a new era in the realm of 

programming, particularly in the conversion of pseudo code into executable programming languages like 

Python. This conversion is pivotal, bridging the gap between conceptual algorithms and their practical 

implementation. Traditional approaches to this conversion have been predominantly manual, requiring a 

profound understanding of programming logic and syntax. Such methods are often time-consuming and 

prone to errors, underscoring the need for more efficient, automated solutions. In recent years, the field of 

natural language processing (NLP) has witnessed remarkable advancements, primarily attributed to the 

evolution of deep learning architectures. Among these, the transformer model has emerged as a 

groundbreaking development, significantly enhancing the processing of sequential data. However, the 

standard transformer architecture exhibits limitations, particularly in handling long-range dependencies and 

variable-length sequences, which are common in pseudo code. 

https://creativecommons.org/licenses/by-sa/4.0/
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The introduction of the Transformer-XL model marks a substantial leap forward in this conte-xt. 

The proposed study leverages the Transformer-XL model to automate the conversion of pseudo code into 

Python code. This process involves several intricate steps: data preprocessing, input encoding, self-attention 

mechanism application, contextual encoding, language modeling, and a subsequent decoding process, all 

culminating in a post-processing phase to ensure syntactical and logical correctness in the output Python 

code. The introduction of an automated pseudo code to Python code conversion using the Transformer-XL 

model addresses several critical challenges faced by conventional methods. Firstly, it significantly reduces 

the time and effort involved in manual coding, thereby enhancing productivity. Secondly, by capturing and 

interpreting the context more accurately, the model minimizes errors that commonly arise from 

misinterpretations of pseudo code. Finally, this model adapts to various coding styles and pseudo code 

syntaxes, showcasing versatility and robustness in handling diverse coding scenarios. 

The impetus for the present study stems from the inherent complexities and inefficiencies associated 

with the traditional methods of converting pseudo code into executable Python code. This conversion is a 

critical step in the software development process, serving as a bridge between theoretical algorithm design 

and practical application. The utilization of the Transformer-XL model in this context presents a novel 

solution, harnessing the power of deep learning to automate and refine the conversion of pseudo code into 

Python. This approach is particularly advantageous given the model's proficiency in handling long-range 

dependencies and contextual nuances, which are crucial in interpreting the varied and complex structures of 

pseudo code. 

The contributions of this study are manifold, offering significant advancements in the field of 

automated code conversion and NLP: 

− Innovative application of Transformer-XL: This paper introduces a pioneering application of the 

Transformer-XL model for converting pseudo code into Python code. By adapting a model typically 

used in NLP tasks to a programming context, this study expands the boundaries of deep learning 

applications in software development. 

− Enhanced conversion accuracy: Through a series of rigorous tests and evaluations, this research 

demonstrates the superior accuracy of the Transformer-XL model in converting pseudo code to Python. 

This improved accuracy is vital for reducing debugging time and enhancing the overall quality of the 

code. 

− Handling of complex code structures: The model's ability to process long-range dependencies and 

maintain context over extended sequences enables it to adeptly handle complex code structures.  

− Reduction in conversion time: This reduction in turnaround time is a critical factor in fast-paced 

development environments, allowing for quicker iteration and deployment of software projects. 

− Versatility and scalability: The study highlights the model's versatility in adapting to various pseudo 

code styles and syntaxes. This flexibility, coupled with its scalability, positions the Transformer-XL 

model as a robust tool suitable for a wide range of programming scenarios. 

In summary, this research not only addresses a significant gap in the realm of automated code conversion but 

also sets a precedent for future innovations in applying deep learning techniques to software development 

and programming challenges.  

 

 

2. LITERATURE REVIEW 

The burgeoning interest in automated code generation, specifically the translation of pseudo-code to 

executable programming languages, has seen significant advancements in recent years. Zhang et al. [1] delve 

into the potential of pseudo-code for binary code similarity analysis, underscoring its utility in software 

engineering, particularly in the cybersecurity domain. On the other hand, Amal et al. [2] focus on the direct 

application of translating pseudo-code into a programming language through a software tool.  

Alokla et al. [3] on pseudo-code generation from source code using the BART model provides a 

reverse perspective on this translation process. Similarly, Din and Adnan [4] explore pseudo-code generation, 

highlighting its importance in the educational sector, where it can aid in teaching programming concepts and 

logic. In another significant contribution, Alokla et al. [5] discuss retrieval-based Transformer pseudo-code 

generation. The development of web-based process management systems with automatic code generation, as 

researched by Uyanık and Sayar [6], demonstrates the practical implementation of these concepts in real-

world applications. Alokla et al. [7] and Da Silva et al. [8] introduce OWL-Sharp, a source code semantic 

generator, further expanding the horizons of automated code generation. In the context of design and user 

interface, Pereira et al. [9] explore a code generator from mockups, bridging the gap between graphical 

interface design and functional code.  
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Ciniselli et al. [10] bring a unique perspective with their exploration of source code recommender 

systems, focusing on the practicality and application of these systems from the viewpoint of practicing 

software engineers. In a niche application, Yusuf et al. [11] discuss automating Arduino programming, 

showcasing how concepts of automated code generation can be applied to hardware and embedded systems. 

Brkić et al. [12] investigate test environment code and test-case generators, highlighting the importance of 

automated code generation in software testing. Khan and Uddin et al. [13] explored the generation of 

documentation-specific code examples by combining contexts from multiple sources.  

Acharjee et al. [14] delved into the sequence-to-sequence learning-based conversion of pseudo-code 

to source code using a neural translation approach. Other studies focus on using natural language processing 

for converting pseudo-code to C# code [15]-[20]. Tiwari, Prasad, and Thushara (2023) provided a 

comprehensive review of machine learning techniques for translating pseudo-code to Python [16]. Shan-shan 

and Zhi-li (2021) and Aggarwal et al. (2022) contributed to the formalization of pseudo-code and its 

translation into specific programming languages like Java and C [17], [18].  

Dirgahayu et al. [21] took a conceptual-metamodel approach to the automatic translation from 

pseudo-code to source code, offering a unique perspective that combines theoretical modeling with practical 

application. Sufi et al. [22] review on algorithms in low-code-no-code environments emphasizes the growing 

trend towards simplifying the code development process. Karanikiotis et al. [23] investigated employing 

source code quality analytics for enriching code snippets data samples. Zhang et al. [24] conducted a survey 

on automatic source code summarization, providing insights into the techniques used for summarizing 

complex code bases into understandable segments.  

Lastly, Arasteh et al. [25] explored program source-code re-modularization using a discretized and 

modified sand cat swarm optimization algorithm. In summary, the literature in this field reflects a dynamic 

and rapidly evolving research area.  

 

 

3. DESIGN OF THE PROPOSED MODEL FOR PSEUDO CODE TO SOURCE CODE 

CONVERSIONS 

To overcome issues of low efficiency, low scalability and high complexity, which are present with 

existing models, this section discusses design of Transformer XL, which enhances efficiency of code 

generation process. As per Figure 1, the proposed model works in multiple stages. The preprocessing stage of 

the Transformer XL model, designed for analyzing pseudo code, is a critical process that transforms raw 

pseudo code into a format amenable to deep learning analysis.  

Initially, the raw pseudo code is subjected to tokenization via (1), a process where the pseudo code 

is segmented into a sequence of tokens.  

 

𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} (1) 

 

Each token ti represents an atomic element of the pseudo code, such as a keyword, operator, or variable sets. 

Code to Executable Codes: Subsequently, each token 𝑡𝑖 is mapped to a unique integer ID through a lookup 

process. This process is defined via (2). 

 

𝐼𝐷(𝑡𝑖) = 𝑖𝑑𝑖  (2) 

 

Where, idi is the unique integer representing the token tisets. The next operation involves converting these 

integer IDs into dense vector representations using embeddings. The embedding process is represented via 

(3). 

 

𝐸(𝑖𝑑𝑖) = 𝑒𝑖 (3) 

 

Where, ei is the embedding vector corresponding to the integer ID idisets. The positional encoding for the ith 

token is calculated as 𝑃(𝑖) = 𝑝𝑖, and the final encoded vector for each token is obtained by combining the 

embedding and positional encoding via (4). 

 

𝑉(𝑡𝑖) = 𝑒𝑖 + 𝑝𝑖 (4) 

 

Normalization is performed via (5). 

 

𝑁(𝑉(𝑡𝑖)) = 𝜎𝑉(𝑡𝑖) − 𝜇  (5) 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 13, No. 2, August 2024: 223-230 

226 

Where, μ and σ are the mean and standard deviation of the vectors, respectively. The preprocessed tokens are 

then batched into fixed-size sequences for processing by the Transformer XL model process. The batching 

process is represented via (6). 

 

𝐵(𝑇) = {𝑏1, 𝑏2, . . . , 𝑏𝑚}  (6) 

 

Where, bi represents a batch of tokens. After this process, the Model Input Encoding phase is activated, 

which is a crucial step that further processes the pre-processed pseudo code, converting it into a format that is 

suitable for deep learning analysis. The combined embedding for each token, which includes both the token 

embedding and its positional encoding, is calculated via (7). 

 

𝑉(𝑡𝑖) = 𝑒𝑖 + 𝑝𝑖   (7) 

 

This combination ensures that the model not only understands the individual tokens but also their position in 

the sequences. To further refine the input, a dropout layer is applied to the normalized vectors to prevent 

overfitting scenarios. The dropout process is represented via (8). 

 

𝐷 (𝑁(𝑉(𝑡𝑖))) = 𝑑𝑖  (8) 

 

Where, di is the dropout vector for the normalized vector N(V(ti)) sets. The model then utilizes a series of 

transformation layers to process these vectors for different tokens. For each token ti in the sequence, the 

output of the FFN is given via (9). 

 

𝐹𝐹𝑁(𝑡𝑖) = 𝑚𝑎𝑥(0, 𝑊1 ⋅ 𝑡𝑖 + 𝑏1)𝑊2 + 𝑏2  (9) 

 

Where, W1 and W2 are the weights of the first and second linear transformations, respectively, whileb1 and 

b2 are the biases. This normalization, applied to each token's output, and is estimated via (10). 

 

𝑁(𝐹𝐹𝑁(𝑡𝑖)) =  
𝐹𝐹𝑁(𝑡𝑖)−𝜇(𝐹𝐹𝑁)

𝜎(𝐹𝐹𝑁)
  (10) 

 

Where, μ(FFN) and σ(FFN) are the mean and standard deviation of the FFN outputs, respectively. The 

segment recurrence for a given token ti in segment S is represented via (11). 

 

𝑆𝑅(𝑡𝑖, 𝑆) = 𝐻(𝑆 − 1) ⋅ 𝑡𝑖 (11) 

 

Where, 𝐻(𝑆 − 1) is the hidden state of the previous segments. Following the segment recurrence mechanism, 

a layer normalization is again applied to the combined outputs to ensure they are on a similar scale, which is 

crucial for stable training operations via (12). 

 

𝐿𝑁(𝑆𝑅(𝑡𝑖, 𝑆)) =
𝑆𝑅(𝑡𝑖,𝑆)−𝜇(𝑆𝑅)

𝜎(𝑆𝑅)
  (12) 

 

Where, μ(SR) and σ(SR) represent the mean and standard deviation of the segment recurrence outputs. The 

model then incorporates a gating mechanism to control the flow of information through the network via (13). 

 

𝐺(𝑡𝑖) = 𝜎(𝑊𝑔 ⋅ 𝐿𝑁(𝑆𝑅(𝑡𝑖, 𝑆)) + 𝑏𝑔)  (13) 

 

This process uses a sigmoid activation function σ to compute the gate values, where Wg is the weight matrix 

and bg is the bias vector for the gating mechanisms. The outputs of the gating mechanism are then element-

wise multiplied with the normalized segment recurrence outputs to yield gated contextual representations for 

each token via (14). 

 

𝐺𝐶(𝑡𝑖) = 𝐺(𝑡𝑖) ⊙ 𝐿𝑁(𝑆𝑅(𝑡𝑖, 𝑆))  (14) 

 

To further enhance the contextual representations, a residual connection is added from the input of the layer 

to the output of the gating mechanisms. This connection is represented via (15). 
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𝑅(𝑡𝑖) = 𝐺𝐶(𝑡𝑖) + 𝑡𝑖  (15) 

 

Where, R(ti) is the residual output for token tisets. The residual outputs are then passed through another layer 

normalization to ensure consistency in scaling via (16). 

 

𝐿𝑁(𝑅(𝑡𝑖)) =
𝑅(𝑡𝑖)−𝜇(𝑅)

𝜎(𝑅)
      (16) 

 

Where, μ(R) and σ(R) are the mean and standard deviation of the residual outputs. Finally, a dropout layer is 

applied to the normalized residual outputs to prevent overfitting and enhance the model's generalization 

capabilities. This process is defined via (17). 

 

𝐷 (𝐿𝑁(𝑅(𝑡𝑖))) = 𝑑𝑖   (17) 

 

Where, di is the dropout vector for LN(R(ti)) sets.  

 

 

 
 

Figure 1. Overall architecture of the proposed model for conversion of pseudo 

 

 

 

 

 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 13, No. 2, August 2024: 223-230 

228 

4. RESULT ANALYSIS 

In this section, we initially discuss the experimental setup for evaluating the Transformer XL 

model's performance in converting pseudo code to Python code, which was meticulously designed to ensure 

rigor and reproducibility levels. The implementation was carried out using Python, a widely adopted 

programming language known for its robustness and extensive library support. The following subsections 

detail the specific components of the experimental setup operations. 

Dataset Preparation: The dataset comprised a diverse collection of pseudo code samples, 

encompassing various programming constructs and complexities. Each sample in the dataset was paired with 

its corresponding Python code equivalent. The dataset was divided into training, validation, and test sets with 

a distribution of 70%, 15%, and 15% respectively. 

Test Procedure: The model was tested by inputting pseudo code samples and evaluating the 

generated Python code for correctness, efficiency, and adherence to Python syntax. The results were 

compared with the expected outcomes and baseline methods. 

This experimental setup aimed to provide a comprehensive and fair assessment of the Transformer 

XL model's capabilities in converting pseudo code to Python. The use of standard Python libraries and tools 

ensured that the experiments could be replicated and validated by other researchers in the field. Table 1 

demonstrates a sample conversion process from pseudo code to Python code, illustrating how the proposed 

Transformer XL model translates common algorithmic instructions into executable Python syntax. 

 

 

Table 1. Pseudo code and python code conversion process 
Pseudo Code Python Code 

Initialize sum as zero sum = 0 

For each number from 1 to 100 for number in range (1, 101): 

If number is even if number % 2 == 0: 
Add number to sum sum += number 

End If 
 

End For 
 

Print sum print(sum) 

 

 

In this case, the pseudo code for calculating the sum of even numbers from 1 to 100 is effectively 

translated into Python codes. The model accurately interprets control structures like loops and conditional 

statements, converting them into their corresponding Python constructs.  

 

 

5. CONCLUSION AND FUTURE SCOPE 

The study successfully demonstrated the efficacy of the Transformer XL model in automating the 

conversion of pseudo code into Python code. This research marks a significant leap forward in the realm of 

code synthesis, as evidenced by the comprehensive evaluation against existing methods. The proposed model 

exhibited superior performance in key metrics including accuracy, precision, recall, F1-score, execution time, 

and resource utilization. The findings illustrate the model's advanced capabilities in not only accurately 

interpreting and converting pseudo code but also in doing so with remarkable efficiency and reliability. The 

specificity and AUC metrics reinforce the model's robustness, showcasing its ability to handle a wide array of 

pseudo code structures and complexities. Such versatility is critical in adapting to the evolving needs of 

software development, where the interpretation of varied pseudo code styles and logical constructs is a 

common challenge. 

Future scope: Looking ahead, several avenues for future research and development emerge from this 

study. One key area involves enhancing the model's adaptability to different programming languages beyond 

Python. Exploring the model's application to languages like Java, C++, or even newer languages could vastly 

broaden its utility in software development. 
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