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 In the realm of modern communication systems, antennas are crucial 

components, with the microstrip patch antenna being particularly notable for 

its low profile and seamless integration. Despite its widespread use, 

designing this antenna involves complex simulations to optimize parameters, 

requiring significant expertise and consuming considerable time and energy. 

To streamline this process, machine learning (ML) algorithms are being 

utilized. This paper introduces an innovative approach that employs ML 

techniques to design a rectangular microstrip patch antenna operating within 

the sub-6 GHz frequency range (1-6 GHz) and the millimeter frequency 

range (28-40 GHz). The antenna design maintains consistent patch 

dimensions positioned strategically at the center, with a thorough 

examination of patch length and width to enhance performance. Datasets are 

meticulously prepared, covering output parameters such as beam area, 

directivity, gain, and radiation efficiency across the specified frequency 

ranges. By employing various ML algorithms, this study conducts a 

comprehensive analysis to identify the most effective algorithm for 

accurately predicting antenna characteristics. The K-nearest neighbor (KNN) 

algorithm achieved high accuracy across all parameters: gain at 94.23% 

under sub-6 GHz and 95.93% under millimeter frequency range, directivity 

at 99.02% and 98.59%, radiation efficiency at 93.94% and 94.28%, and 

beam area at 99.07% and 98.59% respectively. These results optimize 

microstrip antenna designs and enhance understanding of the relationship 

between design parameters and performance outcomes with ML. 
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1. INTRODUCTION 

In the domain of computer science and artificial intelligence (AI), a hierarchical structure exists 

among AI, machine learning (ML) [1], and deep learning (DL). AI is a broad concept focused on developing 

intelligent systems that replicate human cognitive functions. ML, a subset of AI, focuses on developing 

algorithms that enable machines to learn and improve from data without explicit programming. Within ML, 

DL emerges as a specialized field that utilizes deep neural networks, inspired by the structure of the human 

brain, to automatically learn complex patterns and representations from data. DL, thus, falls under the 

umbrella of ML, which itself is a subset of the broader AI domain [2]. This hierarchical arrangement 

illustrates the progressive specialization and advancement in leveraging data for the development of 

intelligent systems, with DL representing a particularly potent approach within the larger realms of ML and 
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AI [3]. ML techniques are revolutionizing the field of antennas, introducing innovative methods for design 

optimization, performance prediction, fault detection, adaptive beamforming, and channel modeling in 

communication technology [4], particularly in antenna selection for wireless communications [5]. Engineers 

can efficiently address design challenges, anticipate performance metrics, detect issues, dynamically optimize 

antenna arrays [6], and enhance the accuracy of channel models through ML. Leveraging ML accelerates 

antenna development to meet the rigorous demands of modern communication systems, driving 

advancements in wireless technology. 

Many studies explore ML applications in antenna design to streamline the process while maintaining 

accuracy. ML’s ability to minimize errors, predict antenna behavior, and enhance computational efficiency 

positions it as a transformative tool in antenna engineering [7]. By conducting multiple simulations to gather 

electromagnetic characteristics and creating a dataset for training ML algorithms, designers can efficiently 

predict and design antennas that meet desired specifications. This iterative approach offers a faster and more 

intelligent way to design antennas [8], departing from traditional methods. 

Microstrip antennas are compact and lightweight, making them popular choices in communication 

systems due to their seamless integration with circuit boards. They consist of a metallic patch positioned on a 

dielectric substrate, allowing for design adjustments to meet specific requirements like frequency, bandwidth, 

and polarization. Widely utilized across various sectors, microstrip antennas serve diverse applications in 

wireless communication, radar, remote sensing, radio frequency identification (RFID), medical, automotive, 

and military fields. They offer efficient signal transmission and reception in diverse environments. However, 

microstrip antennas face challenges such as limited bandwidth and efficiency, prompting ongoing efforts by 

researchers to overcome these limitations. Advancements in materials, manufacturing techniques, and signal 

processing, including ML [9], are driving improvements in microstrip antenna capabilities, ensuring their 

continued relevance in modern communication technologies. 

Analysis of various papers reveals that manual antenna design is both time-consuming and resource-

intensive. To address this challenge, the application of ML in antenna design is proposed. The integration of 

ML techniques into microstrip antenna design holds promise for simplifying workflows, improving 

performance prediction accuracy, and speeding up optimization tasks [10]-[12]. With ongoing advancements 

in ML, its fusion with antenna design is anticipated to spur further innovations in wireless communication 

technologies. Present research initiatives are centered on enhancing the efficiency and capabilities of 

microstrip antennas in communication systems through the incorporation of ML into antenna design  

theory [13]. 

The reaearch approach aims to streamline the design process, with a particular focus on microstrip 

antennas. The research objective is to optimize the antenna design process by determining the ML algorithm 

that provides the most accurate predictions for antenna parameters. By identifying the algorithm with the 

highest precision, our aim is to minimize the necessity for multiple simulations and decrease the time and 

energy expended in creating top-quality antennas. This method allows us to develop antennas with optimal 

dimensions in just one iteration, thus improving efficiency and productivity in antenna design. 

 

 

2. METHOD 

A microstrip antenna is composed of essential elements including the patch, substrate, ground plane, 

feedline, and optionally a matching network as shown in Figure 1. The patch, typically constructed from 

metal, is positioned on top of a dielectric substrate, with the ground plane situated beneath it. The feedline 

links the patch to the transmitter or receiver. Optionally, a matching network can be incorporated to enhance 

impedance matching. 
 

 

 
 

Figure 1. Microstrip antenna [14] 
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The structure of the antenna governs its radiation pattern, impedance characteristics, and bandwidth. 

Through meticulous design of these components, microstrip antennas can effectively transmit or receive 

electromagnetic waves across designated frequency spectrums, catering to diverse application needs [15]. 

The process of designing microstrip antennas using ansys HFSS [16], [17] encompasses several crucial 

stages. It starts by creating elements such as the patch, ground substrate, and radiation box, followed by 

conducting simulations with frequency sweeping. The procedure entails initial geometry setup and material 

property specification, along with defining excitation sources and meshing the structure. Simulation 

parameters are configured, and analyses are performed to evaluate antenna performance, including factors 

like return loss and radiation pattern. Optimization methods may be utilized to enhance performance, and 

post-simulation tools aid in result analysis. Ultimately, the design undergoes validation and refinement as 

needed. Ansys HFSS offers a comprehensive platform for microstrip antenna design and optimization across 

various applications. 

 

2.1.  EMtalk patch calculator 

The EMtalk patch calculator is a valuable tool in the design process of microstrip antennas.  

Its primary function is to determine the ideal dimensions for the patch, which is crucial in microstrip antenna 

construction. By entering parameters such as resonant frequency, dielectric constant, and dielectric height, 

the calculator provides accurate length and width measurements for the patch [18]. For this specific case, the 

dielectric constant is 6, the dielectric height is 1.5 mm, and the input impedance is 315 ohms. The calculator 

finds the values of the length (𝐿𝑝) and width (𝑊𝑝) of the patch using the formulas given by (1) and (2), 

respectively. This data is instrumental in ensuring the precise fabrication of microstrip antennas, thus 

guaranteeing their performance aligns with specific requirements [19]. 

 

𝑊𝑝 = 
𝐶

2𝑓0
√

2

𝜀𝑟+1
 (1) 

 

where, 

− C is velocity of light,  

− 𝑓0 is desired resonant frequency and, 

− 𝜀𝑟 is the relative permittivity of the substrate. 

 

𝐿𝑝 = 
𝐶

2𝑓0√𝜀𝑒𝑓𝑓
 – 2 ΔL (2) 

 

where, 

− 𝜀𝑒𝑓𝑓 is effective dielectric constant of an antenna. 

− ΔL is patch length extension. 

To calculate the patch length, the effective dielectric constant of an antenna and the patch length 

extension need to be determined. These values are calculated using the formulas provided in (3) and (4). 
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2
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where, 

− h is substrate thickness and 𝑤𝑝 is patch width 

 

ΔL = h*0.412[
(𝜀𝑒𝑓𝑓+0.3) ((

𝑊𝑝

ℎ
)+0.264)

(𝜀𝑒𝑓𝑓−0.258) ((
𝑊𝑝

ℎ
)−0.8)

]  (4) 

 

In the sub-6 GHz frequency range, a dielectric constant of 6 and a height of 1.5 mm are chosen. 

Conversely, for the millimeter wave frequency range, the dielectric constant remains constant while the 

height is reduced to 0.5 mm. These parameters play a crucial role in determining the dimensions of the 

microstrip antenna, which are documented in a table. With the obtained patch dimensions, the microstrip 

antenna is then designed accordingly. 
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2.2.  Antenna design and created data sets 

The Microstrip antenna is designed with specified operating frequency, height, length, and width 

values, followed by simulations using ansys HFSS. The sweep frequency technique is employed to vary the 

frequency and observe the antenna’s performance across the specified ranges of 1-6 GHz and 28-40 GHz. 

The flowchart for the research work is as shown in Figure 2. 

The designed antenna undergoes simulation to record results, which include gain, beam area, 

directivity, and radiation efficiency, for each frequency variation. This process results in two datasets: one for 

the 1-6 GHz range and another for the 28-40 GHz range, capturing the antenna’s behavior under different 

operational conditions. By iterating through various combinations of dimensions, a dataset is generated to 

serve as the foundation for analysis. ML algorithms are then utilized on this dataset to determine the most 

accurate algorithm for predicting antenna parameters such as gain, directivity, beam area, and radiation 

efficiency. 

In the careful construction of datasets for microstrip antenna design, two specific frequency ranges 

were taken into account: 1-6 GHz and 28-40 GHz. For the dataset covering the 1-6 GHz range, each set of 

antenna parameters is documented in 81 rows, capturing details such as operating frequency, length, width, 

sweep frequency, gain, beam area, directivity, and radiation efficiency. This meticulous dataset consists of a 

total of 486 rows, ensuring thorough exploration of the antenna’s performance across a range of frequencies 

within the specified range. The sample dataset for sub-6 GHz frequency range is as shown below in Table 1. 

Likewise, in the dataset focusing on the 28-40 GHz frequency range, a consistent structure is upheld 

with the same eight columns: operating frequency, length, width, sweep frequency, gain, beam area, 

directivity, and radiation efficiency. Yet, for this elevated frequency band, each operating frequency 

corresponds to 100 rows of data. Consequently, the dataset for the 28-40 GHz range comprises a total of 

1,300 rows, offering a comprehensive and detailed perspective on the microstrip antenna’s performance 

within this particular frequency spectrum. The sample data set createdfor millimeter frequency range is 

ashown below in Table 2. 

This dual-dataset approach not only captures the variability of antenna parameters under different 

operating conditions but also facilitates a comprehensive analysis that can uncover patterns, trends, and 

optimal design configurations for both the 1-6 GHz and 28-40 GHz frequency bands. The generated dataset 

undergoes training with various ML algorithms [20]-[22], including multiple linear regression (MLR), 

ordinary least squares regression (OLSR), DT, random forest (RF), ANN, ridge regression (RR),  

lasso regression (LR), support vector regression (SVR), K-neighbors regression (KNR), gradient boosting 

regression (GBR), elasticnet regression (ER), gaussian progress regression (GPR), RANSAC regression, 

quantile regression (QR), and isotonic regression (IR) [23]-[25]. Subsequently, the dataset is tested to 

evaluate accuracy. 
 

 

 
 

Figure 2. Flow chart for the research work 
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Table 1. Created data set for sub-6 GHz frequency range 
Operating 

frequency 
(GHz) 

Patch 

length 
(mm) 

Patch 

width 
(mm) 

Sweep 

frequency 
(GHz) 

Gain (dBi) Directivity 

(dB) 

Beam area 

(sr) 

Radiation efficiency 

(dB) 

1 61 80 1 -19.5844 -14.895486 25.887687 -4.68889186 

1 61 80 1.05 -19.002 -14.280274 25.272475 -4.72167899 
1 61 80 1.1 -17.7891 -13.647015 24.639216 -4.14203685 

- . . . . . . . 

2 30 40 1 -14.4286 -12.244204 23.236405 -2.18443448 
2 30 40 1.05 -12.5459 -12.111328 23.103529 -0.43454912 

2 30 40 1.1 -10.9552 -11.954492 22.946693 0.999326339 

- . . . . . . . 
3 20 26 1.55 4.90961 -4.7269819 15.719183 9.636592233 

3 20 26 1.6 5.748265 -4.6999294 15.69213 10.44819486 

3 20 26 1.65 6.482228 -4.6736093 15.66581 11.1558378 
- . . . . . . . 

- . . . . . . . 

6 9 13 4.9 7.459077 2.80373265 6.514835 2.981710766 
6 9 13 4.95 4.448389 2.34830692 7.2846524 0.740840226 

6 9 13 5 0.330948 1.33122692 9.7496801 -0.91157242 

 

 

Table 2. Created data set for millimeter wave frequency range 
Operating 

frequency 

(GHz) 

Patch 

length 

(mm) 

Patch 

width 

(mm) 

Sweep 

frequency 

(GHz) 

Gain 

(dBi) 

Directivity 

(dB) 

Beam area 

(sr) 

Radiation efficiency 

(dB) 

28 1.42 2.86 0.5 -30.3033 -20.830124 31.822325 -9.47321537 
28 1.42 2.86 1 -28.9345 -16.048049 27.040249 -12.8864743 

. . . . . . . . 

30 1.27 2.67 6 3.983061 -4.8609104 15.853111 8.843971301 
30 1.27 2.67 6.5 8.66179 -4.8328075 15.825008 13.49459766 

. . . . . . . . 

33 1.08 2.42 2.5 -11.0531 -19.08442 30.076621 8.031369335 
33 1.08 2.42 3 -14.3641 -16.937237 27.929438 2.573183315 

. . . . . . . . 

36 0.93 2.22 30 15.45909 3.06287665 7.9293243 12.39621572 
36 0.93 2.22 30.5 15.79713 3.44060076 7.5516002 12.35652954 

. . . . . . . . 

38 0.84 2.1 47.5 7.100958 6.18431047 4.8078905 0.916647801 
38 0.84 2.1 48 6.717097 6.07152646 4.9206745 0.645570824 

. . . . . . . . 

40 0.76 2 50 5.144772 5.43579453 5.5564064 0.62562502 

 

 

3. RESULTS AND DISCUSSIONS 

The datasets resulting from the design process of microstrip antennas across the sub-6 GHz and 

millimeter wave frequency spectrums serve as training inputs for various ML algorithms, aimed at assessing 

their accuracy. Table 3 provides a detailed examination of the predictive performance of various ML 

algorithms applied to microstrip antenna design across the frequency ranges of 1-6 GHz and 28-40 GHz. 

These algorithms are tasked with predicting essential parameters such as gain, directivity, radiation 

efficiency, and beam area. 

Within the 1-6 GHz frequency range, MLR provides moderate predictions for gain (0.2316) and 

directivity (0.6987), while yielding lower values for radiation efficiency (0.1000) and beam area (0.8157). 

OLSR improves upon MLR, offering higher predictions for gain (0.3487) and directivity (0.7140), along with 

enhanced radiation efficiency (0.2621) and beam area (0.8243). DT stands out with high predictions across 

all parameters, excelling in gain (0.8970), directivity (0.9845), radiation efficiency (0.9271), and beam area 

(0.9878). Similarly, RF demonstrates superior predictive capabilities, yielding high values for gain (0.9421), 

directivity (0.9820), radiation efficiency (0.9414), and beam area (0.9846). Artificial neural network (ANN) 

showcases excellent predictive power, particularly in directivity (0.9922) and beam area (0.9892),  

with competitive values for gain (0.8979) and radiation efficiency (0.8791). 

In the 28-40 GHz frequency range, MLR offers moderate predictions for gain (0.2348) and 

directivity (0.7836), though with lower values for radiation efficiency (0.0444) and beam area (0.7836). 

OLSR improves upon MLR, providing higher predictions for gain (0.3487) and directivity (0.8186),  

with enhanced radiation efficiency (0.0372) and beam area (0.8186). DT stands out, excelling across all 

parameters, especially in gain (0.9118), directivity (0.9664), radiation efficiency (0.8989), and beam area 

(0.9660). RF mirrors DT’s strong predictive capabilities, offering high values for gain (0.9539), directivity 
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(0.9790), radiation efficiency (0.9353), and beam area (0.9805). ANN shows impressive predictive power, 

particularly in directivity (0.9706) and beam area (0.9644), with competitive values for gain (0.9125) and 

radiation efficiency (0.8572). KNR excels with high predictions in gain (0.9593), directivity (0.9859), 

radiation efficiency (0.9428), and beam area (0.9859). GBR performs exceptionally well, especially in gain 

(0.9344) and directivity (0.9762), with competitive values for radiation efficiency (0.9026) and beam area 

(0.976). 

Our study identified significant variations in the performance of ML algorithms for forecasting 

antenna properties. Notably, RF, KNR, GBR, and DT algorithms consistently exhibited superior accuracy. 

This could be attributed to their ability to capture intricate nonlinear relationships in the dataset. For instance, 

RF constructs multiple DT and aggregates their predictions, enhancing resilience to overfitting. Similarly, 

KNR leverages the similarity principle among data points, making it adept at handling localized patterns. 

GBR sequentially fits numerous weak learners to minimize prediction errors, leading to enhanced accuracy. 

DT algorithms offer transparency and interpretability, aiding in understanding underlying patterns in antenna 

design data. Further research is needed to explore these algorithms’ unique characteristics and suitability for 

microstrip antenna design applications. 

 

 

Table 3. Predicted accuracy values of different algorithms for different parameters 
ML algorithms Gain Directivity Radiation efficiency Beam area 

1-6 GHz 28-40 GHz 1-6 GHz 28-40 GHz 1-6 GHz 28-40 GHZ 1-6 GHz 28-40 GHz 

MLR 0.2316 0.2348 0.6987 0.7836 0.1000 0.0444 0.8157 0.7836 

OLSR 0.3487 0.3487 0.7140 0.8186 0.2621 0.0372 0.8243 0.8186 

DT 0.8970 0.9118 0.9845 0.9664 0.9271 0.8989 0.9878 0.9660 
RF 0.9421 0.9539 0.9820 0.9790 0.9414 0.9353 0.9846 0.9805 

ANN 0.8979 0.9125 0.9922 0.9706 0.8791 0.8572 0.9892 0.9644 

RR 0.3680 0.2458 0.7297 0.807 0.2371 0.0137 0.8398 0.807 
LR 0.2844 0.2424 0.62 0.802 0.1991 -0.00415 0.77 0.8 

SVR 0.39 0.24 0.72 0.797 0.2527 0.0088 0.82 0.79 

KNR 0.9423 0.9593 0.9902 0.9859 0.9394 0.9428 0.9907 0.9859 
GBR 0.9466 0.9344 0.9859 0.9762 0.9053 0.9026 0.989 0.976 

ER 0.37 0.34 0.7300 0.8048 0.2372 0.014 0.838 0.8048 

GPR 0.7877 0.8994 0.9193 0.9399 0.7803 0.8678 0.8945 0.8909 

RANSAC regression 0.3691 0.2695 0.7300 0.8101 0.237 0.050 0.839 0.8101 

QR 0.4098 0.3185 0.5468 0.5998 0.3748 0.2798 0.6580 0.5999 

IR 0.2088 0.1860 0.2026 0.2281 0.2284 0.03919 0.2194 0.2281 

 

 

4. CONCLUSION 

This study emphasizes the significant impact of ML algorithms on the design process of microstrip 

patch antennas. It involves crafting microstrip antennas within the frequency ranges of 1-6 GHz and  

28-40 GHz using ansys HFSS. Datasets containing various combinations of heights and widths are generated 

for analysis with different ML algorithms, offering insights into their effectiveness in accurately predicting 

antenna characteristics. 

The outstanding performance of the DT algorithm is evident, with a notable correlation coefficient 

of 0.9878 in the 1-6 GHz band. Following closely is the RF algorithm, boasting a substantial coefficient of 

0.9846, highlighting its reliability. Extending the evaluation to the 28-40 GHz frequency band reaffirms the 

consistent efficacy of DT, RF, and KNR, while the ANN emerges as a potent predictor. 

These findings underscore the critical importance of selecting the appropriate ML algorithm,  

with DT and RF emerging as robust choices for accurate predictions across diverse frequency bands and 

antenna parameters. This innovative approach not only enhances the optimization of microstrip antenna 

designs but also deepens our understanding of the intricate relationship between design parameters and 

performance outcomes. By seamlessly integrating traditional antenna design with advanced ML capabilities, 

this research propels the field of modern communication systems towards unprecedented efficiency and 

informed processes. 

 

 

REFERENCES 
[1] A. V. Joshi, “Essential concepts in artificial intelligence and machine learning,” Machine Learning and Artificial Intelligence,  

pp. 9–20, 2020, doi: 10.1007/978-3-030-26622-6_2. 

[2] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: A Modern Approach, 3rd editio, vol. 3. 2020. 

[3] S. Shalev-Shwartz and S. Ben-David, “Understanding machine learning: from theory to algorithms,” Understanding Machine 
Learning: From Theory To Algorithms, vol. 9781107057135, pp. 1–397, 2013, doi: 10.1017/cbo9781107298019. 

[4] W. Samek, S. Stanczak, and T. Wiegand, “The convergence of machine learning and communications,” Arxiv, 2017, [online]. 

available: http://arxiv.org/abs/1708.08299. 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 13, No. 3, December 2024: 462-469 

468 

[5] J. Joung, “Machine learning-based antenna selection in wireless communications,” IEEE Communications Letters, vol. 20, no. 11, 

pp. 2241–2244, 2016, doi: 10.1109/lcomm.2016.2594776. 
[6] K. C. S. Kavya, S. K. Kotamraju, M. Sreevalli, M. P. Priyamvada, K. R. Teja, and M. Asma, “Design and optimization of array 

antennas using artificial intelligence,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 7, 

pp. 921–926, 2019. 
[7] Saifullah and B. Ahmed, “Machine learning for isotropic antenna design,” Mikon 2018 - 22nd International Microwave and 

Radar Conference, pp. 683–687, 2018, doi: 10.23919/mikon.2018.8405325. 

[8] N. Sarker, P. Podder, M. R. H. Mondal, S. S. Shafin, and J. Kamruzzaman, “Applications of machine learning and deep learning 
in antenna design, optimization, and selection: a review,” IEEE Access, vol. 11, pp. 103890–103915, 2023,  

doi: 10.1109/access.2023.3317371. 

[9] Q. Wu, Y. Cao, H. Wang, and W. Hong, “Machine-learning-assisted optimization and its application to antenna designs: 
opportunities and challenges,” China Communications, vol. 17, no. 4, pp. 152–164, 2020, doi: 10.23919/jcc.2020.04.014. 

[10] M. O. Akinsolu, K. K. Mistry, B. Liu, P. I. Lazaridis, and P. Excell, “Machine learning-assisted antenna design optimization:  

a review and the state-of-the-art,” 14th European Conference on Antennas and Propagation, EUCAP 2020, 2020,  
doi: 10.23919/eucap48036.2020.9135936. 

[11] H. M. El Misilmani, T. Naous, and S. K. Al Khatib, “A Review on the design and optimization of antennas using machine 

learning algorithms and techniques,” International Journal of Rf and Microwave Computer-Aided Engineering, vol. 30, no. 10, 
2020, doi: 10.1002/mmce.22356. 

[12] N. S. Kumar and U. D. Yalavarthi, “A comprehensive review on machine learning based optimization algorithms for antenna 

design,” Journal of Physics: Conference Series, vol. 1964, no. 6, 2021, doi: 10.1088/1742-6596/1964/6/062098. 
[13] R. Jain, P. K. Singhal, and V. V. Thakare, “An effective approach for optimizing antenna design based on machine learning 

models,” Artificial Intelligence and Sustainable Computing Algorithms for Intelligent Systems, pp. 309–320, 2023,  

doi: 10.1007/978-981-99-1431-9_24. 
[14] P. P. Gundewar et al., “Design of a microstrip patch antenna as a moisture sensor,” 2019 IEEE Pune Section International 

Conference, Punecon 2019, 2019, doi: 10.1109/punecon46936.2019.9105732. 
[15] R. Bancroft, “Microstrip and printed antenna design,” Microstrip and Printed Antenna Design, 2019, doi: 10.1049/pbte083e. 

[16] D. Prabhakar, P. Mallikarjuna Rao, and M. Satyanarayana, “Design and performance analysis of microstrip antenna using 

different ground plane techniques for wlan application,” International Journal of Wireless and Microwave Technologies, vol. 6, 
no. 4, pp. 48–58, 2016, doi: 10.5815/ijwmt.2016.04.05. 

[17] M. S. Rana and M. M. R. Smieee, “Design and analysis of microstrip patch antenna for 5G wireless communication systems,” 

Bulletin of Electrical Engineering and Informatics (BEEI), vol. 11, no. 6, pp. 3329–3337, 2022, doi: 10.11591/eei.v11i6.3955. 
[18] “microstrip patch,” IEEE, 2011. https://www.emtalk.com/mpacalc.php. 

[19] N. Kurniawati, A. Fahmi, and S. Alam, “Predicting rectangular patch microstrip antenna dimension using machine learning,” 

Journal of Communications, vol. 16, no. 9, pp. 394–399, 2021, doi: 10.12720/jcm.16.9.394-399. 
[20] Y. Chen, A. Z. Elsherbeni, and V. Demir, “Machine learning for microstrip patch antenna design: observations and 

recommendations,” 2022 United States National Committee of Ursi National Radio Science Meeting, USNC-URSI NRSM 2022 - 

Proceedings, pp. 256–257, 2022, doi: 10.23919/usnc-ursinrsm57467.2022.9881476. 
[21] X. Wang, P. Wang, And X. Wang, “Adaptive sparse array reconfiguration based on machine learning algorithms,” ICASSP, IEEE 

International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2018-april, pp. 1159–1163, 2018,  

doi: 10.1109/icassp.2018.8461429. 
[22] K. Sharma and G. P. Pandey, “Designing a compact microstrip antenna using the machine learning approach,” Journal of 

Telecommunications and Information Technology, vol. 2020, no. 4, pp. 44–52, 2020, doi: 10.26636/jtit.2020.143520. 

[23] B. K. Singh, “Design of rectangular microstrip patch antenna based on artificial neural network algorithm,” 2nd International 
Conference on Signal Processing and Integrated Networks, Spin 2015, pp. 6–9, 2015, doi: 10.1109/spin.2015.7095291. 

[24] T. Khan and A. De, “Modeling of microstrip antennas using neural networks techniques: a review,” International Journal of Rf 

and Microwave Computer-Aided Engineering, vol. 25, no. 9, pp. 747–757, 2015, doi: 10.1002/mmce.20910. 
[25] D. R. Prado, J. A. Lopez-Fernandez, M. Arrebola, and G. Goussetis, “Efficient shaped-beam reflectarray design using machine 

learning techniques,” 2018 15th European Radar Conference, EURAD 2018, pp. 525–528, 2018,  

doi: 10.23919/eurad.2018.8546527. 

 

 

BIOGRAPHIES OF AUTHORS  
 

 

Piske Laxmi Prasanna Kumar     an undergraduate student of Rajiv Gandhi 

University of Knowledge Technologies, Basar Telangana India.Pursuing Bachelor’s 

Technology in Electronics and Communications Stream. He is from Nalgonda, Telangana, 

India. His research interests are antenna design, automation, and artificial intelligence. He 

can be contacted at email: plpkdhruva@gmail.com. 

https://orcid.org/0009-0006-3305-4074


Int J Inf & Commun Technol  ISSN: 2252-8776  

 

Machine learning-driven design and performance analysis … (Piske Laxmi Prasanna Kumar) 

469 

 

Ramineni Padmasree     holds the position of assistant professor in the 

Department of Electronics and Communication Engineering (ECE) at Rajiv Gandhi 

University of Knowledge and Technologies, Basar. Concurrently, she is pursuing a part-

time Ph.D. in Wireless Communications at Osmania University, Hyderabad. She earned her 

M. Tech degree in Digital Electronics and Communication Systems (DECS) and her B. 

Tech degree in Electronics and Communications Engineering (ECE) from JNTU 

Hyderabad. Her research interests encompass wireless communication, advanced 

microcontrollers-embedded systems, wireless sensor networks, antenna designs, and 

machine learning. She can be contacted at email: r.padmasree3@gmail.com. 

 

 

Korra Kiran     an undergraduate student of Rajiv Gandhi University of 

Knowledge Technologies, Basar Telangana India.Pursuing Bachelor’s Technology in 

Electronics and Communications Stream. His research interests are web development, 

machine learning, and designing. He can be contacted at email: kirankorra72@gmail.com. 

 

 

Banothu Sudheer     an undergraduate student of Rajiv Gandhi University of 

Knowledge Technologies, Basar Telangana India.Pursuing Bachelor’s Technology in 

Electronics and Communications Stream. His research interests are machine learning and 

designing. He can be contacted at email: banothusudheer20@gmail.com. 

 

https://orcid.org/0009-0006-2351-7274
https://orcid.org/0009-0001-7969-912X
https://orcid.org/0009-0002-4246-7752

