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ranges. By employing various ML algorithms, this study conducts a
comprehensive analysis to identify the most effective algorithm for
accurately predicting antenna characteristics. The K-nearest neighbor (KNN)
algorithm achieved high accuracy across all parameters: gain at 94.23%
under sub-6 GHz and 95.93% under millimeter frequency range, directivity
at 99.02% and 98.59%, radiation efficiency at 93.94% and 94.28%, and
beam area at 99.07% and 98.59% respectively. These results optimize
microstrip antenna designs and enhance understanding of the relationship
between design parameters and performance outcomes with ML.
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1. INTRODUCTION

In the domain of computer science and artificial intelligence (Al), a hierarchical structure exists
among Al, machine learning (ML) [1], and deep learning (DL). Al is a broad concept focused on developing
intelligent systems that replicate human cognitive functions. ML, a subset of Al, focuses on developing
algorithms that enable machines to learn and improve from data without explicit programming. Within ML,
DL emerges as a specialized field that utilizes deep neural networks, inspired by the structure of the human
brain, to automatically learn complex patterns and representations from data. DL, thus, falls under the
umbrella of ML, which itself is a subset of the broader Al domain [2]. This hierarchical arrangement
illustrates the progressive specialization and advancement in leveraging data for the development of
intelligent systems, with DL representing a particularly potent approach within the larger realms of ML and
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Al [3]. ML techniques are revolutionizing the field of antennas, introducing innovative methods for design
optimization, performance prediction, fault detection, adaptive beamforming, and channel modeling in
communication technology [4], particularly in antenna selection for wireless communications [5]. Engineers
can efficiently address design challenges, anticipate performance metrics, detect issues, dynamically optimize
antenna arrays [6], and enhance the accuracy of channel models through ML. Leveraging ML accelerates
antenna development to meet the rigorous demands of modern communication systems, driving
advancements in wireless technology.

Many studies explore ML applications in antenna design to streamline the process while maintaining
accuracy. ML’s ability to minimize errors, predict antenna behavior, and enhance computational efficiency
positions it as a transformative tool in antenna engineering [7]. By conducting multiple simulations to gather
electromagnetic characteristics and creating a dataset for training ML algorithms, designers can efficiently
predict and design antennas that meet desired specifications. This iterative approach offers a faster and more
intelligent way to design antennas [8], departing from traditional methods.

Microstrip antennas are compact and lightweight, making them popular choices in communication
systems due to their seamless integration with circuit boards. They consist of a metallic patch positioned on a
dielectric substrate, allowing for design adjustments to meet specific requirements like frequency, bandwidth,
and polarization. Widely utilized across various sectors, microstrip antennas serve diverse applications in
wireless communication, radar, remote sensing, radio frequency identification (RFID), medical, automotive,
and military fields. They offer efficient signal transmission and reception in diverse environments. However,
microstrip antennas face challenges such as limited bandwidth and efficiency, prompting ongoing efforts by
researchers to overcome these limitations. Advancements in materials, manufacturing techniques, and signal
processing, including ML [9], are driving improvements in microstrip antenna capabilities, ensuring their
continued relevance in modern communication technologies.

Analysis of various papers reveals that manual antenna design is both time-consuming and resource-
intensive. To address this challenge, the application of ML in antenna design is proposed. The integration of
ML techniques into microstrip antenna design holds promise for simplifying workflows, improving
performance prediction accuracy, and speeding up optimization tasks [10]-[12]. With ongoing advancements
in ML, its fusion with antenna design is anticipated to spur further innovations in wireless communication
technologies. Present research initiatives are centered on enhancing the efficiency and capabilities of
microstrip antennas in communication systems through the incorporation of ML into antenna design
theory [13].

The reaearch approach aims to streamline the design process, with a particular focus on microstrip
antennas. The research objective is to optimize the antenna design process by determining the ML algorithm
that provides the most accurate predictions for antenna parameters. By identifying the algorithm with the
highest precision, our aim is to minimize the necessity for multiple simulations and decrease the time and
energy expended in creating top-quality antennas. This method allows us to develop antennas with optimal
dimensions in just one iteration, thus improving efficiency and productivity in antenna design.

2. METHOD

A microstrip antenna is composed of essential elements including the patch, substrate, ground plane,
feedline, and optionally a matching network as shown in Figure 1. The patch, typically constructed from
metal, is positioned on top of a dielectric substrate, with the ground plane situated beneath it. The feedline
links the patch to the transmitter or receiver. Optionally, a matching network can be incorporated to enhance
impedance matching.
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Figure 1. Microstrip antenna [14]
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The structure of the antenna governs its radiation pattern, impedance characteristics, and bandwidth.
Through meticulous design of these components, microstrip antennas can effectively transmit or receive
electromagnetic waves across designated frequency spectrums, catering to diverse application needs [15].
The process of designing microstrip antennas using ansys HFSS [16], [17] encompasses several crucial
stages. It starts by creating elements such as the patch, ground substrate, and radiation box, followed by
conducting simulations with frequency sweeping. The procedure entails initial geometry setup and material
property specification, along with defining excitation sources and meshing the structure. Simulation
parameters are configured, and analyses are performed to evaluate antenna performance, including factors
like return loss and radiation pattern. Optimization methods may be utilized to enhance performance, and
post-simulation tools aid in result analysis. Ultimately, the design undergoes validation and refinement as
needed. Ansys HFSS offers a comprehensive platform for microstrip antenna design and optimization across
various applications.

2.1. EMtalk patch calculator

The EMtalk patch calculator is a valuable tool in the design process of microstrip antennas.
Its primary function is to determine the ideal dimensions for the patch, which is crucial in microstrip antenna
construction. By entering parameters such as resonant frequency, dielectric constant, and dielectric height,
the calculator provides accurate length and width measurements for the patch [18]. For this specific case, the
dielectric constant is 6, the dielectric height is 1.5 mm, and the input impedance is 315 ohms. The calculator
finds the values of the length (L,) and width (WW,) of the patch using the formulas given by (1) and (2),
respectively. This data is instrumental in ensuring the precise fabrication of microstrip antennas, thus
guaranteeing their performance aligns with specific requirements [19].

c 2

p = a &+l (1)
where,
— Cisvelocity of light,
— fo is desired resonant frequency and,
— & isthe relative permittivity of the substrate.
=—% AL )

L
P 2fo [eerf

where,
— &y is effective dielectric constant of an antenna.
— AL is patch length extension.
To calculate the patch length, the effective dielectric constant of an antenna and the patch length
extension need to be determined. These values are calculated using the formulas provided in (3) and (4).
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where,
— his substrate thickness and w,, is patch width
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In the sub-6 GHz frequency range, a dielectric constant of 6 and a height of 1.5 mm are chosen.
Conversely, for the millimeter wave frequency range, the dielectric constant remains constant while the
height is reduced to 0.5 mm. These parameters play a crucial role in determining the dimensions of the
microstrip antenna, which are documented in a table. With the obtained patch dimensions, the microstrip
antenna is then designed accordingly.
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2.2. Antenna design and created data sets

The Microstrip antenna is designed with specified operating frequency, height, length, and width
values, followed by simulations using ansys HFSS. The sweep frequency technique is employed to vary the
frequency and observe the antenna’s performance across the specified ranges of 1-6 GHz and 28-40 GHz.
The flowchart for the research work is as shown in Figure 2.

The designed antenna undergoes simulation to record results, which include gain, beam area,
directivity, and radiation efficiency, for each frequency variation. This process results in two datasets: one for
the 1-6 GHz range and another for the 28-40 GHz range, capturing the antenna’s behavior under different
operational conditions. By iterating through various combinations of dimensions, a dataset is generated to
serve as the foundation for analysis. ML algorithms are then utilized on this dataset to determine the most
accurate algorithm for predicting antenna parameters such as gain, directivity, beam area, and radiation
efficiency.

In the careful construction of datasets for microstrip antenna design, two specific frequency ranges
were taken into account: 1-6 GHz and 28-40 GHz. For the dataset covering the 1-6 GHz range, each set of
antenna parameters is documented in 81 rows, capturing details such as operating frequency, length, width,
sweep frequency, gain, beam area, directivity, and radiation efficiency. This meticulous dataset consists of a
total of 486 rows, ensuring thorough exploration of the antenna’s performance across a range of frequencies
within the specified range. The sample dataset for sub-6 GHz frequency range is as shown below in Table 1.

Likewise, in the dataset focusing on the 28-40 GHz frequency range, a consistent structure is upheld
with the same eight columns: operating frequency, length, width, sweep frequency, gain, beam area,
directivity, and radiation efficiency. Yet, for this elevated frequency band, each operating frequency
corresponds to 100 rows of data. Consequently, the dataset for the 28-40 GHz range comprises a total of
1,300 rows, offering a comprehensive and detailed perspective on the microstrip antenna’s performance
within this particular frequency spectrum. The sample data set createdfor millimeter frequency range is
ashown below in Table 2.

This dual-dataset approach not only captures the variability of antenna parameters under different
operating conditions but also facilitates a comprehensive analysis that can uncover patterns, trends, and
optimal design configurations for both the 1-6 GHz and 28-40 GHz frequency bands. The generated dataset
undergoes training with various ML algorithms [20]-[22], including multiple linear regression (MLR),
ordinary least squares regression (OLSR), DT, random forest (RF), ANN, ridge regression (RR),
lasso regression (LR), support vector regression (SVR), K-neighbors regression (KNR), gradient boosting
regression (GBR), elasticnet regression (ER), gaussian progress regression (GPR), RANSAC regression,
quantile regression (QR), and isotonic regression (IR) [23]-[25]. Subsequently, the dataset is tested to
evaluate accuracy.
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Figure 2. Flow chart for the research work
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Table 1. Created data set for sub-6 GHz frequency range

Operating Patch Patch Sweep Gain (dBi) Directivity Beamarea  Radiation efficiency
frequency length width frequency (dB) (sr) (dB)
(GH2) (mm) (mm) (GHz)

1 61 80 1 -19.5844 -14.895486  25.887687 -4.68889186
1 61 80 1.05 -19.002 -14.280274 25.272475 -4.72167899
1 61 80 1.1 -17.7891 -13.647015 24.639216 -4.14203685
2 30 40 1 -14.4286 -12.244204 23.236405 -2.18443448
2 30 40 1.05 -12.5459 -12.111328 23.103529 -0.43454912
2 30 40 1.1 -10.9552 -11.954492  22.946693 0.999326339
3 20 26 1.55 4.90961 -4.7269819 15.719183 9.636592233
3 20 26 1.6 5.748265 -4.6999294 15.69213 10.44819486
3 20 26 1.65 6.482228 -4.6736093 15.66581 11.1558378
6 9 13 4.9 7.459077 2.80373265 6.514835 2.981710766
6 9 13 4.95 4.448389 2.34830692 7.2846524 0.740840226
6 9 13 5 0.330948 1.33122692  9.7496801 -0.91157242

Table 2. Created data set for millimeter wave frequency range

Operating Patch Patch Sweep Gain Directivity Beamarea  Radiation efficiency
frequency length width frequency (dBi) (dB) (sr) (dB)
(GH2) (mm) (mm) (GH2)

28 142 2.86 05 303033 20830124 31.822325 9.47321537
28 142 2.86 1 280345  -16.048049  27.040249 -12.8864743
30 1.27 267 6 3983061 -4.8609104  15.853111 8.843971301
30 127 267 6.5 866179  -4.8328075  15.825008 13.49459766
33 1.08 242 25 110531  -19.08442  30.076621 8.031369335
33 108 2.42 3 143641  -16.937237  27.929438 2573183315
36 0.93 222 30 1545000 3.06287665  7.9293243 12.39621572
36 0.93 2.22 305 1579713 3.44060076  7.5516002 12.35652954
38 0.84 21 475 700958  6.18431047  4.8078905 0.916647801
38 0.84 21 48 6.717097  6.07152646  4.9206745 0.645570824
40 0.76 2 50 5.144772 543579453 55564064 0.62562502

3. RESULTS AND DISCUSSIONS

The datasets resulting from the design process of microstrip antennas across the sub-6 GHz and
millimeter wave frequency spectrums serve as training inputs for various ML algorithms, aimed at assessing
their accuracy. Table 3 provides a detailed examination of the predictive performance of various ML
algorithms applied to microstrip antenna design across the frequency ranges of 1-6 GHz and 28-40 GHz.
These algorithms are tasked with predicting essential parameters such as gain, directivity, radiation
efficiency, and beam area.

Within the 1-6 GHz frequency range, MLR provides moderate predictions for gain (0.2316) and
directivity (0.6987), while yielding lower values for radiation efficiency (0.1000) and beam area (0.8157).
OLSR improves upon MLR, offering higher predictions for gain (0.3487) and directivity (0.7140), along with
enhanced radiation efficiency (0.2621) and beam area (0.8243). DT stands out with high predictions across
all parameters, excelling in gain (0.8970), directivity (0.9845), radiation efficiency (0.9271), and beam area
(0.9878). Similarly, RF demonstrates superior predictive capabilities, yielding high values for gain (0.9421),
directivity (0.9820), radiation efficiency (0.9414), and beam area (0.9846). Artificial neural network (ANN)
showcases excellent predictive power, particularly in directivity (0.9922) and beam area (0.9892),
with competitive values for gain (0.8979) and radiation efficiency (0.8791).

In the 28-40 GHz frequency range, MLR offers moderate predictions for gain (0.2348) and
directivity (0.7836), though with lower values for radiation efficiency (0.0444) and beam area (0.7836).
OLSR improves upon MLR, providing higher predictions for gain (0.3487) and directivity (0.8186),
with enhanced radiation efficiency (0.0372) and beam area (0.8186). DT stands out, excelling across all
parameters, especially in gain (0.9118), directivity (0.9664), radiation efficiency (0.8989), and beam area
(0.9660). RF mirrors DT’s strong predictive capabilities, offering high values for gain (0.9539), directivity
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(0.9790), radiation efficiency (0.9353), and beam area (0.9805). ANN shows impressive predictive power,
particularly in directivity (0.9706) and beam area (0.9644), with competitive values for gain (0.9125) and
radiation efficiency (0.8572). KNR excels with high predictions in gain (0.9593), directivity (0.9859),
radiation efficiency (0.9428), and beam area (0.9859). GBR performs exceptionally well, especially in gain
(0.9344) and directivity (0.9762), with competitive values for radiation efficiency (0.9026) and beam area
(0.976).

Our study identified significant variations in the performance of ML algorithms for forecasting
antenna properties. Notably, RF, KNR, GBR, and DT algorithms consistently exhibited superior accuracy.
This could be attributed to their ability to capture intricate nonlinear relationships in the dataset. For instance,
RF constructs multiple DT and aggregates their predictions, enhancing resilience to overfitting. Similarly,
KNR leverages the similarity principle among data points, making it adept at handling localized patterns.
GBR sequentially fits numerous weak learners to minimize prediction errors, leading to enhanced accuracy.
DT algorithms offer transparency and interpretability, aiding in understanding underlying patterns in antenna
design data. Further research is needed to explore these algorithms® unique characteristics and suitability for
microstrip antenna design applications.

Table 3. Predicted accuracy values of different algorithms for different parameters

ML algorithms Gain Directivity Radiation efficiency Beam area
1-6 GHz 28-40GHz 1-6GHz 28-40GHz 1-6 GHz 28-40GHZ 1-6 GHz  28-40 GHz

MLR 0.2316 0.2348 0.6987 0.7836 0.1000 0.0444 0.8157 0.7836
OLSR 0.3487 0.3487 0.7140 0.8186 0.2621 0.0372 0.8243 0.8186
DT 0.8970 0.9118 0.9845 0.9664 0.9271 0.8989 0.9878 0.9660
RF 0.9421 0.9539 0.9820 0.9790 0.9414 0.9353 0.9846 0.9805
ANN 0.8979 0.9125 0.9922 0.9706 0.8791 0.8572 0.9892 0.9644
RR 0.3680 0.2458 0.7297 0.807 0.2371 0.0137 0.8398 0.807

LR 0.2844 0.2424 0.62 0.802 0.1991 -0.00415 0.77 0.8

SVR 0.39 0.24 0.72 0.797 0.2527 0.0088 0.82 0.79
KNR 0.9423 0.9593 0.9902 0.9859 0.9394 0.9428 0.9907 0.9859
GBR 0.9466 0.9344 0.9859 0.9762 0.9053 0.9026 0.989 0.976
ER 0.37 0.34 0.7300 0.8048 0.2372 0.014 0.838 0.8048
GPR 0.7877 0.8994 0.9193 0.9399 0.7803 0.8678 0.8945 0.8909
RANSAC regression  0.3691 0.2695 0.7300 0.8101 0.237 0.050 0.839 0.8101
QR 0.4098 0.3185 0.5468 0.5998 0.3748 0.2798 0.6580 0.5999
IR 0.2088 0.1860 0.2026 0.2281 0.2284 0.03919 0.2194 0.2281

4. CONCLUSION

This study emphasizes the significant impact of ML algorithms on the design process of microstrip
patch antennas. It involves crafting microstrip antennas within the frequency ranges of 1-6 GHz and
28-40 GHz using ansys HFSS. Datasets containing various combinations of heights and widths are generated
for analysis with different ML algorithms, offering insights into their effectiveness in accurately predicting
antenna characteristics.

The outstanding performance of the DT algorithm is evident, with a notable correlation coefficient
of 0.9878 in the 1-6 GHz band. Following closely is the RF algorithm, boasting a substantial coefficient of
0.9846, highlighting its reliability. Extending the evaluation to the 28-40 GHz frequency band reaffirms the
consistent efficacy of DT, RF, and KNR, while the ANN emerges as a potent predictor.

These findings underscore the critical importance of selecting the appropriate ML algorithm,
with DT and RF emerging as robust choices for accurate predictions across diverse frequency bands and
antenna parameters. This innovative approach not only enhances the optimization of microstrip antenna
designs but also deepens our understanding of the intricate relationship between design parameters and
performance outcomes. By seamlessly integrating traditional antenna design with advanced ML capabilities,
this research propels the field of modern communication systems towards unprecedented efficiency and
informed processes.
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