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 Diagnosing silent diseases such as chronic kidney disease (CKD) at an early 

stage is challenging due to the absence of symptoms, making early detection 

crucial to slowing disease progression. This study addresses this challenge 
by introducing a novel feature, the estimated glomerular filtration rate 

(eGFR), calculated using the modification of diet in renal disease (MDRD) 

formula. We enriched our dataset by incorporating this feature, effectively 

increasing the volume of data at our disposal. eGFR serves as a critical 
indicator for diagnosing CKD and assessing its progression, thereby guiding 

clinical management. Our focus is on developing machine learning and deep 

learning models for the efficient and precise prediction of CKD. To ensure 

the reliability of our approach, we employed robust data collection and 
preprocessing techniques, resulting in refined information for model 

training. Our methodology integrates various machine learning and deep 

learning models, including four machine learning algorithms: adaptive 

boosting (AdaBoost), random forest (RF), Bagging, and artificial neural 
network (ANN), as well as a hybrid model. Our proposed ANN_AdaBoost 

model not only introduces a novel perspective by addressing an identified 

gap but significantly enhances CKD prediction. 
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1. INTRODUCTION 

Chronic kidney disease (CKD) represents a significant global health challenge, characterized by a 

gradual loss of kidney function over time. One of the leading contributors to CKD is diabetes mellitus, a 

condition affecting approximately 422 million people worldwide, according to the World Health 

Organization (WHO) [1]. Prolonged hyperglycemia associated with diabetes can damage vital organs, 

including the kidneys, eyes, heart, nerves, and blood vessels [2]. 

CKD frequently manifests as a complication in individuals with diabetes, with a majority 

experiencing this condition during their lifetime [3]. The metabolic consequences of diabetes play a 

significant role in the development of CKD, making it one of the primary causes of kidney damage. 

Approximately 40% of diabetic patients develop CKD, a silent yet potentially fatal condition that commonly 

afflicts adults, particularly those with comorbidities such as diabetes or hypertension [4]. 

Diagnosis and assessment of CKD severity often rely on parameters such as estimated glomerular 

filtration rate (eGFR), the presence of albuminuria, age, dietary habits, and underlying health conditions like 
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diabetes and hypertension [5]. Notably, eGFR is a critical indicator of kidney function and is calculated based 

on various factors, including blood creatinine levels, age, and sex [6]. CKD diagnosis typically involves 

identifying consistent increases in urinary albumin excretion (albuminuria), diminished eGFR, or other signs 

indicating kidney impairment [7]. Laboratory tests assessing kidney function, such as elevated creatinine and 

blood urea levels as well as anemia due to reduced red blood cell count, contribute to diagnostic evaluation [8]. 

The silent progression of CKD poses challenges in early detection, often leading to advanced stages 

with debilitating consequences. Patients with CKD, especially those with concomitant diabetes, face 

numerous complications that necessitating meticulous management and potentially regular dialysis [9]. The 

economic burden associated with managing both diabetes and CKD escalates due to expenses incurred for 

medications and treatments, significantly impacting patients’ quality of life. 

Early detection of CKD among diabetic individuals enables timely interventions to mitigate disease 

progression, thereby minimizing complications and sustaining a better quality of life [10]. Furthermore, early 

diagnosis aids in averting complications such as end-stage renal disease and cardiovascular disorders.  

To address the imperative need for early detection, sophisticated approaches such as artificial intelligence 

offer promising solutions [11]. 

In this study, our primary objective is to introduce an intelligent approach for predicting and 

diagnosing CKD. Instead of limiting ourselves to an innovative machine learning and deep learning model, 

we deliberately opted for an approach that intelligently leverages data for more efficient and accurate disease 

prediction. Our methodology begins with a thorough exploration various analytical techniques, culminating 

in enriching our dataset. Specifically, we enriched our dataset by incorporating the eGFR attribute, a 

previously identified aspect for future work in previous studies, which we accomplished. This addition 

enhances our dataset’s comprehensiveness and improves aspect for future work by incorporating a crucial 

biomarker for CKD diagnosis. We calculated the eGFR using the modification of diet in renal disease 

(MDRD) formula, which is renowned for its applicability in approximating the glomerular filtration (GFR) 

rate of the kidney. We then conducted a comprehensive analysis of specific risk factors for CKD within this 

particular group. The inclusion of the eGFR indicator in our dataset constitutes a significant breakthrough, 

recognized as a crucial yet neglected factor in previous research on predicting CKD. This indicator is 

essential for diagnosing the presence of CKD and contributes to determining its stage of progression, 

assisting clinicians in planning appropriate treatment. To enhance the accuracy of our predictions, we 

adopted an intelligent approach by using rigorous techniques such as least absolute shrinkage and selection 

operator (LASSO) for feature selection and principal component analysis (PCA) for dimensionality 

reduction. 

While previous studies have explored machine learning and deep learning models for CKD 

prediction, many have not explicitly addressed the integration of crucial biomarkers such as the eGFR, 

despite its recognized importance in CKD diagnosis and staging. Additionally, prior research often focused 

on using the same dataset for training, testing, and validation, which limits the generalizability of the results 

Unlike many previous studies, which relied on using the same dataset for training, testing, and validation,  

our approach evaluates the models’ ability to generalize to new data, confirming the validity of our 

conclusions and contributing to more reliable CKD prediction. 

In this paper, we extend our investigation by validating model results using a second distinct dataset to 

ensure the reliability and robustness of our results. This decision is motivated by previous findings indicating 

that many prior studies have relied solely on a single dataset for model training, testing, and validation, which 

may potentially limit the generalizability of the results. By utilizing a separate dataset for testing, we aim to 

assess the ability of our models to generalize to new data and confirm the validity of our conclusions. 

 

 

2. RELATED WORK 

The use of machine learning algorithms for chronic disease prediction has become increasingly 

important in recent years because of this disease’s effective prediction and improved accuracy [12]. Ani et al. 

[13] developed a decision support system for clinicians based on machine learning models: LDA classifier, 

neural network (NN)-based back propagation (BPN), probability-based Naive Bayes, random subspace 

classification algorithms, decision tree (DT), and K-nearest neighbor (KNN) to predict CKD. After 

evaluating the accuracy results, the random forest (RF) model achieved the highest accuracy of 94%, while 

the LDA model had an accuracy of 76%. Predictive models are developed and compared for early prediction 

of CKD using biochemical analyses. Xioa et al. [14] employed nine machine learning algorithms: logistic 

regression (LR), Elastic Net, LASSO regression, ridge regression, support vector machine (SVM), RF, 

XGBoost, NN, and KNN on a dataset of 551 patients. Elastic Net, LASSO regression, ridge regression, and 

LR yielded the best results with accuracies of 0.82 and 0.81, respectively. Hassan et al. [15] proposed a model 

that can predict patients with early-stage CKD by utilizing the seven most relevant features: hemo, sg, pcv, al, 

pe, se, and pb, using the XGBoost feature selection technique based on XGBoost. Hassan et al. [15] applied five 
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machine learning models, NN, RF, SVM, random tree, and Bagging tree model, to their XGBoost-based dataset 

to find the best predictive model. The SVM model achieved the highest accuracy of 100% for the seven relevant 

features, while the NN model achieved 100% accuracy on the entire UCI machine learning repository dataset.  

To impede or arrest the progression of CKD, Baidya et al. [16] employed a set of twelve machine 

learning classifiers, encompassing adaptive boosting (AdaBoost), DT, XGBoost, CatBoost, KNN, RF, 

Gradient boosting, Stochastic gradient boosting, light gradient boosting machine (LGBM), Extra tree, SVM, 

and artificial neural network (ANN). These classifiers underwent training on ten crucial features, namely 

hemoglobin, specific gravity, albumin, sugar, random blood glucose, serum creatinine, potassium, packed 

cell volume, white and red blood cell count, and diabetes mellitus. The feature selection method used was 

PCA. Notably, the XGBoost classifier demonstrated an impressive accuracy of 98% in the early detection of 

CKD. The approach of Baidya et al. [16] highlights the effectiveness of machine learning models in the early 

detection of CKD, carrying substantial implications for the timely management and treatment of this disease. 

The outcomes obtained emphasize the significance of feature selection and the utilization of advanced 

machine learning techniques to enhance the precision of CKD-related predictions.  

To predict whether a person has CKD or not, Chittora et al. [17] applied seven machine learning 

classifiers, including ANN, C5.0, Chi-square Automatic interaction detector, LR, linear SVM with penalty 

L1 & L2, and random tree, on the CKD dataset from the UCI machine learning repository. They applied 

three feature selection techniques for each classifier: correlation-based feature selection, wrapper method 

feature selection, and LASSO regression. After comparing the results, Chittora et al. [17] found that the 

LSVM classifier with L2 penalty achieved the highest accuracy of 98.86% with all features included. Yashfi 

et al. [18] proposed a system for predicting CKD based on machine learning algorithms such as ANN and 

RF. They utilized the Chi-Square Test to extract the most significant features. The RF algorithm achieved an 

accuracy of 97.12%. CKD is prevalent and difficult to diagnose early due to its asymptomatic nature. Pal [19] 

focuses on developing a machine learning model for CKD’s early detection. The proposed approach, 

integrating baseline classifiers with a majority voting method, achieved a 3% accuracy increase over existing 

models. Utilizing data mining techniques, the model involves three steps: classification based on categorical 

attributes, non-categorical attributes, and a combined approach. Machine learning classifiers such as SVM, 

RF, and ANN were evaluated. Their performances yielded accuracies of 91%, 93%, and 89%, respectively, 

highlighting their effectiveness in CKD classification. Rahman et al. [20] addressed CKD diagnosis, focusing 

on South Asia’s health challenges. Employing eight ensemble learning methods, including LightGBM, they 

optimized classifier performance using MICE imputation for missing values and Borderline-SMOTE for data 

balance. Recursive feature elimination and boruta were instrumental in significant feature selection.  

The proposed method achieved an outstanding average accuracy of 99.75%, demonstrating its effectiveness 

for precise CKD diagnosis. The study of Rahman et al. [20] uniquely combined ensemble methods, 

showcasing advancements not explored collectively before. Experiments on two datasets validated the 

model’s efficiency and contributed novel strategies to CKD analysis. For precise identification of CKD, 

Ghosh et al. [21] employed advanced techniques such as SVM, AdaBoost, linear discriminant analysis 

(LDA), and gradient boosting (GBoost). They utilized data collected from the UCI repository for their 

analysis. Notably, the GBoost model achieved an outstanding accuracy of 99.80%, outperforming the other 

models employed in the study. Navaneeth and Suchetha [22] used an innovative hybrid deep learning 

network comprising a convolutional neural network (CNN) classifier and SVM, which is introduced to 

overcome challenges faced by conventional data classification networks. The network incorporates a 

dynamic clustering approach and a feature-pruning algorithm to select the most relevant attributes for the 

classification task. The urea concentration in saliva samples is examined for disease detection, and a novel 

detection module is developed to test the samples. The CNN-SVM outperformed the traditional CNN model, 

achieving an average accuracy of 96.51%. For effective detection of CKD, Ebiaredoh-Mienye et al. [23] 

introduced a cost-sensitive AdaBoost classifier with a feature selection strategy based on information gain. 

This approach expedited and economized CKD screening, as only a small subset of clinical test parameters 

was required for accurate interpretation. The methodology was compared with other approaches, including 

classifiers such as logistic regression, DT, RF, SVM, XGBoost, and the traditional AdaBoost for CKD 

prediction. With a reduced set of features, the AdaBoost approach outperformed other classifiers in terms of 

accuracy, achieving 99.8%. Experimental results demonstrated the positive impact of feature selection on the 

efficiency of different classifiers. 

Our study utilizes four machine learning classifiers: the Bagging classifier, AdaBoost, RF, and 

ANN. While numerous studies have explored machine learning models, most have focused on enhancing 

existing datasets without exploring new perspectives in our research domain. Furthermore, our innovative 

contribution lies in enhancing predictive modeling capabilities by introducing a crucial feature the GFR, 

essential for diagnosing and predicting the stage of CKD. Unlike traditional approaches applying AI or 

machine learning models to datasets common to all studies, our novel approach fills an identified gap in 
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previous research. To bolster the relevance of our model, we implemented two feature selection methods: 

PCA and LASSO. This approach aims to improve accuracy by identifying the most informative features for 

modeling, thereby enhancing the robustness of our approach. Improving the dataset requires effective 

preprocessing, and to ensure the validity of our results, we also employed a separate test dataset. Moreover, 

hybrid methods in our study aim to optimize the modeling process, ensuring a robust and generalizable 

approach. By providing a unique perspective to enhance predictive accuracy in CKD, our research opens new 

avenues for advancing modeling in this specific domain. Table 1 provides a summary of key studies on CKD 

prediction using machine learning algorithms. It highlights the datasets used, the models applied, and the 

feature selection methods employed. 
 

 

Table 1. Summary of previous studies comparison 
Previous 

studies 

Dataset Models Feature selection 

methods 

Accuracy Limitation 

Ani et 

al. [13] 

UCI LDA classifier, NN-

based back propagation 

(BPN), Naive Bayes, 

RF, DT, and KNN 

_ 76%,81%,78%,94%, 

93%, and 90% 

The authors did not use feature selection 

methods, and they did not use data 

preprocessing to improve accuracy. 

Xioa et 

al. [14] 

551 

patient’s 

datasets 

LR, Elastic Net, LASSO 

regression, ridge 

regression, SVM, RF, 

XGBoost, NN, and KNN 

_ 82%,82%,81%,81%,

81%, 80%,83%,80 

and 74% 

No feature selection method was used in 

this work to improve accuracy. 

Hassan 

et al. 

[15] 

UCI NN, RF, SVM, RT, 

BTM 

XGBoost 97.5%,98.75%,100

%,96,25%,97.5% 

The authors used only 7 features 

Baidya 

et al. 

[16] 

UCI ADB,DT,XGB,CatBoost

,KNN,RF,ET,GNB 

_ 94%,95%95%,98%,

99%,95%,99%, 96% 

The researchers did not use any feature 

selection methods to improve the 

accuracy and efficiency of the machine 

learning models. 

Chittora 

et al. 

[17] 

UCI ANN, C5.0, CHAID, 

LR, 

LSVM_L1,LSVM_L2,R

T,KNN 

LASSO,Wrapper,

CFS 

90,2%,88,29%,97,0

7%,74,15%,97,07%,

97,07%,88,78%,56,

59 (with LASSO) 

While this study employed three feature 

selection techniques (correlation-based, 

Wrapper method, and LASSO 

regression), other potentially effective 

methods were not explored. 

Yashfi 

et al. 

[18] 

UCI ANN, RF Chi-Square 94,5%,97,12% The research does not include 

performance results after utilizing the 

chi-square feature selection method; 

accuracy results are on 24 features. 

Pal [19] UCI SVM, RF, and ANNk _  91%, 93%, and 

89%, 

No feature selection methods were used 

in this research. 

Rahman 

et al. 

[20] 

UCI RF, Voting, Bagging, 

AdaBoost, GBDT, 

XGBoost, LightGBM, 

and Stacking 

Boruta and RFE 96,15%,100%,98,07

%,100%,98,07%, 

96,15%,98,07% and 

100% 

This study lacks indication or mention 

of the features selected by the RFE and 

Boruta methods. This lack of 

transparency hinders a thorough 

understanding of the selection process, 

limiting transparency and result 

interpretation. 

Ghosh 

et al. 

[21] 

UCI SVM, AdaBoost, LDA, 

and GBoost 

_ 99,56%,97,91%,97,

91%99,8% 

No feature selection methods were 

employed in this study, which may lead 

to less efficient models. 

Navanee

th and 

Sucheth

a [22] 

172 

participa

nts 

CNN classifier, SVM, 

and CNN-SVM  

pruning 87,32%,95,01% and 

96,12% 

In this study, utilizing a small dataset 

(172 patients) compromises the 

generalization of results and the model’s 

robustness due to an elevated risk of 

random variations. 

Ebiared

oh-

Mienye 

et al. 

[23] 

UCI AdaBoost, LR, DT, RF, 

SVM, XGBoost 

Information Gain 93%,94%,90,2%,95,

2%,93,7%,95,8% 

No data preprocessing methods were 

used in this study, which may introduce 

biases and compromise the robustness of 

results due to the potential vulnerability 

to missing. 

 

 

3. METHOD 

Our research used a UCI machine learning repository dataset dedicated to CKD. This dataset 

consists of 25 attributes. To enhance the quality and relevance of this data, we have made concerted efforts to 

incorporate critical medical markers relevant to the condition. A significant addition is the eGFR calculation, 

which is a pivotal metric for assessing kidney function. The inclusion of the eGFR is critical for improving 

the accuracy and precision of our predictions, as it is a key biomarker in diagnosing CKD and determining its 
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progression stages. This is particularly important since the stage of CKD progression influences therapeutic 

decisions and prognoses, thus aiding clinicians in providing timely interventions. 

The choice of eGFR as a core attribute aligns with the primary objective of this study, which is to go 

beyond traditional predictive models by enhancing the dataset with medically significant markers. By 

integrating the eGFR, we address a gap noted in previous studies, where its absence limited the ability to 

accurately predict both the occurrence and progression of CKD. To further refine our model, we employed two 

well-established techniques: LASSO for feature selection and PCA for dimensionality reduction. LASSO was 

chosen for its ability to identify and retain the most relevant features, thereby improving model accuracy and 

minimizing the risk of overfitting. PCA, on the other hand, was applied to reduce the dataset’s dimensionality 

while preserving the most significant patterns in the data. Both methods aim to enhance the model’s efficiency 

and predictive power by focusing on the most informative attributes, leading to better generalization and 

interpretation of results. The dataset was then divided into 80% for training and 20% for testing to assess the 

performance of our machine learning models. The selected models include RF, AdaBoost, Bagging, and ANN, 

which were chosen for their proven ability to handle complex classification tasks. The performance of these 

models, with and without feature selection, was compared to evaluate the impact of eGFR and other selected 

features on the prediction accuracy. 

Our approach to CKD prediction comprises six phases, as shown in Figure 1, and is designed to 

ensure the reliability and generalizability of the results. By systematically incorporating feature selection and 

validation steps, we aim to improve model performance and enhance the clinical relevance of our predictions. 
 

 

 
 

Figure 1. Description of our approach 

 

 

3.1.  Description of the dataset 1 

The dataset used for this work is collected from the UCI machine learning repository [24], 

specifically focusing on CKD. Initially, the dataset comprised 25 features encapsulating various clinical 

measures and indicators pertinent to renal disorders. It contains 400 instances, each representing a distinct 

diabetic patient case, and is categorized into two target classes: “ckd” and “notckd.” Given the pivotal role of 

the eGFR as a primary indicator of renal functionality, we elected to enhance the dataset by incorporating 

eGFR as an additional feature. We determined the eGFR utilizing the MDRD [25], which is widely 

recognized for its effectiveness in estimating the kidney’s glomerular filtration rate (eGFR). The MDRD 

method is a specialized equation that considers various factors, including serum creatinine and age, to 

measure kidney function accurately. This formula has become an essential tool in nephrology because it 

offers a reliable estimate of eGFR, which is crucial for diagnosing and monitoring kidney diseases. The 

MDRD formula for calculating the eGFR is given below. 

 

𝑒𝐺𝑅𝐹 = 186 × (𝑆𝐶)−1,154 × (𝑎𝑔𝑒)−0,203 × 1 (𝑖𝑓 𝑚𝑎𝑙𝑒) × 0,742 (𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒) 
 

With this inclusion, the dataset has expanded to encompass 26 features while maintaining the original 400 

instances. This strategic augmentation is geared towards bolstering our analyses’ accuracy and contextual 

relevance and ensuing predictive models for renal disorders in the diabetic population. The characteristics of 

the original and new “eGFR” features are shown in Table 2, which provides an overview of all features in the 

dataset. The target class that is mentioned in the dataset that is “classification” which is divided into two 

classes’ ckd=250 and notckd=150, as shown in the following Figure 2: 
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Table 2. Represents original and new “eGFR” features 
Features Description Type 

age age in years Numerical 

bp blood pressure in mm/Hg Numerical 

sg Specific gravity Nominal 

al Albumin Nominal 

su Sugar Nominal 

rbc Red blood cells Nominal 

pc Pus cells Nominal 

pcc Pus cell clumps Nominal 

ba Bacteria Nominal 

bgr Blood glucose random in mgs/dl Numerical 

bu Blood urea in mgs/dl Numerical 

sc Serum creatinine in mgs/dl Numerical 

sod Sodium in mEq/L Numerical 

pot Potassium in mEq/L Numerical 

hemo Hemoglobin (gms) Numerical 

pcv Packed cell volume Numerical 

wc White blood cells count (Cells/cumm) Numerical 

rc Red blood cells count (millions/cumm) Numerical 

htn Hypertension (yes, no) Nominal 

dm Diabetes mellitus (yes, no) Nominal 

cad Coronary artery disease (yes, no) Nominal 

appet Appetite (good, poor) Nominal 

pe Pedal Edema (yes, no) Nominal 

ane Anemia (yes, no) Nominal 

eGFR estimated glomerular filtration rate in 

mL/min/1.73m^2 

Numerical 

class Class (ckd or notckd) Nominal 

 

 

 
 

Figure 2. Distribution of patients with and without CKD 

 

 

The following Figure 3 shows the correlation between CKD and diabetes among the studied 

population. Out of the 400 patients analyzed, 250 individuals were diagnosed with CKD. Remarkably, over 

half of these, precisely 136, are also diabetic. This significant proportion strongly suggests that diabetes could 

be a pivotal factor or a comorbidity in the development or progression of CKD in this particular cohort.  

On the other hand, the dataset indicates that all 150 patients without CKD are non-diabetic. This absence of 

any diabetic patient in the notckd group further amplifies the potential association between diabetes and 

CKD. In the context of our study, which aims to predict kidney disease among people with diabetes, these 

observations emphasize the critical nature of our research. The current dataset draws a compelling narrative 

about the potential risks people with diabetes face concerning CKD. 
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Figure 3. Distribution of diabetic patients with CKD 

 

 

3.2.  Description of the dataset 2 

In this study, we utilized a dataset Islam et al. [26] collected from Enam Medical College, Savar, 

Dhaka, Bangladesh. This dataset was employed to validate the outcomes of our models following appropriate 

preprocessing steps. It comprises 200 instances and encompasses 28 distinct features. Among these features, 

particular emphasis is placed on the eGFR in predicting CKD. To enhance our primary dataset, we computed 

the eGFR and incorporated it into our initial dataset. The eGFR estimates kidney filtration rate, a pivotal 

indicator of renal function, thereby serving as a critical feature in CKD prediction. Furthermore, the disease 

stage, a significant parameter influencing CKD prediction, is also encompassed in this dataset. We opted for 

this dataset due to its similarity to both the training and test datasets, ensuring consistency in evaluating our 

model performance and reinforcing the reliability of our findings. The features of this dataset 2 are delineated 

in Table 3, facilitating a comprehensive analysis of their impact on our predictive models. 

 

 

Table 3. Features and description of the dataset 2 
Features Description 

bp (Diastolic) blood pressure diastolic 

bp limit blood pressure 

sg Specific gravity 

al Albumin 

class Class (ckd or notckd) 

rbc Red blood cells 

su Sugar 

pc Pus cell 

pcc Pus cell clumps 

ba Bacteria 

bgr Blood glucose random 

bu Blood urea 

sod Sodium 

sc Serum creatinine 

pot Potassium 

hemo Hemoglobin 

pcv Packed cell volume 

rbcc Red blood cells count 

htn Hypertension 

dm Diabetes mellitus 

cad Coronary artery disease 

appet Appetite 

pe Pedal Edema 

ane Anemia 

GRF glomerular rate filtration 

stage CKD Stage (S1, S2, S3, S4, S5) 

Affected Affected by CKD or not (1,0) 

age Age in years 
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3.3.  Preprocessing 

The dataset from the UCI machine learning repository contains missing and null values. Therefore, 

the data-preprocessing step is crucial in training machine learning models, as these can lead to errors during 

algorithm execution and inaccurate predictions. To address this issue in our study, we used imputation 

methods. 

The features of the dataset are initially categorized into categorical and numerical. For the 

categorical columns, missing values are replaced by the mode (the most frequent value) of the respective 

feature. Figure 4 illustrates the distribution of numerical characteristics before using imputation methods.  

An imputation technique is employed for the numerical features to substitute missing values with the average 

of the available values for that feature. Subsequently, a function is devised to detect and rectify outliers 

within the numerical attributes. Utilizing the interquartile range method establishes boundaries to identify 

upper and lower outliers. Figure 5 demonstrates the distribution of numerical characteristics after applying 

imputation techniques. Any detected outliers are then replaced with the mean value of their respective feature 

to make the data set more stable and less sensitive to these extreme fluctuations. The formula for calculating 

the interquartile range [24], [27] is given below, where Q3 is the third quartile (or the 75th percentile), and 

Q1 is the first quartile (or the 25th percentile). 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (1) 

 

The bounds for outliers are determined as upper bound and lower bound; the formula [28] of each 

outlier is given below: 

 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝐵𝑜𝑢𝑛𝑑 𝑈𝑝𝑝𝑒𝑟(𝑂𝑈) = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (2) 

 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝐵𝑜𝑢𝑛𝑑 𝐿𝑜𝑤𝑒𝑟(𝑂𝐿) = 𝑄1 − 1.5 × 𝐼𝑄𝑅  (3) 

 

Then, we encoded the categorical variables into numerical variables and replaced the original data 

with the encoded data, which is necessary for machine learning algorithms that only accept numerical data 

using the “LabelEncoder” class. Figure 6 shows the distribution of these categorical variables. 

 

 

 
 

Figure 4. Distribution of numerical characteristics before using imputation methods 
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Figure 5. Distribution of numerical characteristics after using imputation methods 

 

 

 
 

Figure 6. Distribution of categorical variables 

 

 

3.4.  Feature selection and dimensionality reduction methods 

In machine learning, feature selection and dimensionality reduction play a crucial role in enhancing 

model accuracy and efficiency. Feature selection focuses on identifying and retaining only the most 

informative attributes, which helps to prevent overfitting, reduce execution time, and improve model 

interpretability. By emphasizing significant features and eliminating redundant ones, models become more 

robust and generalize better to unseen data. Dimensionality reduction, on the other hand, transforms the data 

into a smaller set of components while preserving its variability. This process simplifies the dataset and 

facilitates more efficient model training, without explicitly selecting the original features. In this study,  

we employed two complementary techniques: 

 

3.4.1. PCA 

PCA is a linear technique to reduce data dimensionality, ensuring the focus remains on the 

directions with the most variability [29]. The core of PCA revolves around computing the eigenvalues and 

eigenvectors of a data set’s covariance matrix. Once these are determined, the eigenvectors are systematically 

arranged based on the descending sequence of their associated eigenvalues. With this order established,  

the data is projected onto these sorted eigenvector directions. The process starts by determining the 

covariance matrix for the signal samples, using both the signal matrix, which comprises M data points of N 
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dimensions, and its corresponding mean vector. After deriving the covariance matrix, one determines its 

eigenvectors and places the eigenvalues along the diagonal of another matrix. Once sorted by descending 

eigenvalue, the data undergoes a projection phase through a dot product operation with the sorted 

eigenvectors. Finally, only the leading principal components are selected to ensure optimal data 

representation, capturing a specified percentage of total variability, such as 95% or 98%. This methodology 

provides the retention of significant data patterns while minimizing dimensionality [29], [30]. 

 

3.4.2. LASSO 

LASSO is a method that seeks to minimize the mean square error with a constraint on the sum of the 

absolute values of the regression coefficients [31]. It is particularly effective for feature selection as it can 

shrink the coefficients of less important features to zero, effectively eliminating them [32]. This unique 

capability of LASSO to select and regularize features allows for identifying the most critical features in a 

dataset. The reliability of feature selection can be enhanced through the randomized LASSO, which involves 

repeated applications to determine the most frequently occurring features indicative of their importance [33], [34]. 

 

3.5.  Machine learning models 

Four machine-learning models are applied in this work: Bagging classifier, RF, AdaBoost, and 

ANN.  

 

3.5.1. Bagging classifier  

Bagging is an ensemble technique that boosts classification algorithm performance [35]. It operates 

by training individual classifiers on random subsets of the dataset drawn with replacement [36]. These 

classifiers’ predictions are then combined, typically through voting or averaging, to produce a unified 

outcome [35], [36]. The primary goal of Bagging is to diminish overfitting, counterbalancing any rise in bias 

with a decrease in variance [36]. This method leverages the strength of multiple models to produce a more 

robust and accurate prediction [37]. 

 

3.5.2. Random forest 

RF is an ensemble method, which means that it brings together several algorithms to form an 

optimal model [33], [38]. More precisely, it comprises several DT built on randomly chosen and uncorrelated 

datasets during the training phase [39]. In the RF working process, we first select K data points from the 

training set and then create DT for these points [19], [40]. This procedure is repeated several times while 

deciding on a number N for the DT. When predicting new data, RF collects the predictions from each DT and 

assigns the new data to the category receiving the most votes [19], [40]. Although computational complexity 

may increase with RF compared to a standalone DT due to the use of multiple features, it generally exhibits 

better accuracy when facing previously unseen datasets [30]. In summary, RF leverages the training set to 

produce better results than an individual model by integrating predictions from multiple DT [33], [19], [40].  

 

3.5.3. AdaBoost 

AdaBoost is a Boosting algorithm designed for binary classification that amalgamates multiple weak 

classifiers to formulate a stronger and more robust classifier [33], [41]. Initiated with a predetermined weight 

on the training dataset instances, its intent is to enhance accuracy predictions based on a large number of 

samples, such as 1000 [33]. The AdaBoost technique used in certain studies seeks to establish a potent 

classifier through a training approach often referred to as weak learning [33], [35]. The essence of weak 

learning is to identify the optimal weak classifier that adeptly differentiates between positive and negative 

samples. During this process, the optimal threshold value for every feature is determined to minimize the 

misclassification of instances [35]. 

 

3.5.4. Artificial neural network  

An ANN is a supervised learning technique composed of interconnected simple units called 

perceptrons. Structurally, an ANN typically consists of an input layer, which receives data, one or more 

hidden layers, which perform computations, and an output layer that delivers the final prediction [35], [42]. 

These perceptrons, when organized across multiple layers, form what is known as a multilayer perceptron 

(MLP). In an MLP, signals are transmitted from the input layer through to the hidden layer, with each 

perceptron having its unique weight. Every neuron in the input layer connects to every neuron in the hidden 

layer, and computations primarily take place in the hidden layer, where input weights are multiplied and 

processed [42]. The processed data is then conveyed to the output layer, which provides the final prediction. 

The efficiency of the model can be assessed by determining the error, which is the discrepancy between the 

actual and predicted outcomes [36]. 
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4. RESULTS AND DISCUSSION 

4.1.  Identification and distribution of chronic kidney disease stages among diagnosed patients 

In this section, we sought to identify and classify the stages of CKD among diagnosed patients using 

their eGFR. Based on current clinical guidelines, we categorized patients into one of six stages: CKD1 

(eGFR ≥ 90), CKD2 (eGFR ≥ 60), CKD3a (eGFR ≥ 45), CKD3b (eGFR ≥ 30), CKD4 (eGFR ≥ 15), and 

CKD5 (eGFR < 15) [43]. The distribution of patients across these stages is depicted in the Figure 7. 

Importantly, our study was adept at early prediction, identifying a substantial number of patients in the 

preliminary stages of CKD, especially within the CKD1 and CKD2 stages. This early predictive capability is 

paramount as it allows for prompt intervention and tailored therapeutic approaches for these patients before 

the disease advances further. Our findings indicate that the CKD2 stage is the most prevalent with 110 

patients, closely followed by the CKD1 stage with 69 patients. As illustrated in Figure 8, which shows the 

distribution of CKD stages for patients, some patients were initially not classified as having CKD, but after 

eGFR calculation and CKD staging, they were categorized into CKD1 and CKD2. This observation 

highlights that despite the absence of an initial CKD diagnosis, certain patients were identified as having 

CKD upon further analysis. 

It is crucial to note that, even with this initial diagnosis, a significant number of patients are in the 

advanced stages of the disease, with 68 patients in CKD4 and 66 in CKD5. The CKD3b and CKD3a stages 

have 45 and 42 patients, respectively. These findings underscore the diversity of CKD stages within our 

patient cohort, the importance of accurate screening methods, and the need for stage-specific medical 

intervention to ensure optimal patient care. 
 
 

 
 

Figure 8. Distribution of eGFR rate by CKD stage 
 

 

 
 

Figure 7. Distribution of CKD stages 
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4.2.  Results of feature selection techniques 

Figure 9 offers crucial insights into the most influential factors in CKD prediction. The specific 

gravity of urine, denoted as ‘sg,’ has a strong positive association with CKD, suggesting that its 

concentration is a notable indicator of kidney function. Albumin in urine, or ‘al,’ displays a negative 

relationship, emphasizing its role as a symptom of kidney damage when present in higher concentrations. 

Serum creatinine, ‘sc,’ another crucial marker, also shows a negative association, underscoring its well-

established connection with kidney dysfunction. Hemoglobin levels and packed cell volume, ‘hemo’ and 

‘pcv’ respectively, have positive coefficients, indicating their significance in CKD, particularly as markers of 

anemia, a condition commonly associated with kidney disease. Hypertension, ‘htn,’ and diabetes mellitus, 

‘dm,’ both show negative coefficients, reinforcing their adverse effects on kidney health, with diabetes being 

a leading cause of CKD globally. Appetite changes, represented by ‘appet,’ correlate negatively with CKD 

progression. Finally, the ‘eGFR’ showcases a positive relationship, highlighting its value in representing 

kidney function for CKD prediction. These features and their associated coefficients provide a 

comprehensive understanding of the factors influencing CKD prognosis. 

 

 

 
 

Figure 9. Features selected by LASSO 

 

 

The PCA results provide valuable insights into the relationships between the principal components 

(PCs) and the original features. PC-1 exhibits a strong positive correlation with ‘sc’ (serum creatinine) and a 

negative correlation with ‘hemo’ (hemoglobin), implying its sensitivity to changes in serum creatinine levels 

and susceptibility to fluctuations in hemoglobin levels. PC-2 prominently aligns with ‘sod’ (sodium) and 

inversely associates with ‘rc’ (red blood cell count), indicating its significant dependence on sodium levels 

and responsiveness to fluctuations in red blood cell counts. PC-3 demonstrates a predominant positive link 

with ‘wc’ (white blood cell count) and an adverse connection with ‘pot’ (potassium), highlighting its 

dependence on shifts in white blood cell counts and vulnerability to potassium level variations. PC-4 is 

positively influenced by ‘bu’ (blood urea) and negatively affected by ‘bp’ (systolic blood pressure), 

emphasizing its responsiveness to variations in blood urea levels and sensitivity to changes in systolic blood 

pressure. PC-5 displays a strong positive association with ‘pot’ and a negative association with ‘age,’ 

indicating its sensitivity to potassium level variations and its vulnerability to age-related changes. PC-6 is 

characterized by a strong positive correlation with ‘age’ and a negative correlation with ‘bp’ (blood pressure), 

illustrating its dependence on age-related variations and susceptibility to fluctuations in blood pressure. PC-7 

highlights its responsiveness to changes in blood glucose levels and vulnerability to fluctuations in white 

blood cell counts. PC-8 is positively influenced by ‘age’ and negatively affected by ‘sod’ (sodium), 

emphasizing its dependence on age-related variations and sensitivity to changes in sodium levels. PC-9 

primarily correlates positively with ‘al’ (albumin) and negatively with ‘bgr,’ indicating its responsiveness to 

variations in albumin levels and vulnerability to changes in blood glucose levels. PC-10 is positively 

influenced by ‘sg’ (urine specific gravity) and negatively affected by ‘sod,’ highlighting its dependence on 
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variations in urine specific gravity and sensitivity to changes in sodium levels. PC-11 exhibits a strong 

positive correlation with ‘bu’ and a negative correlation with ‘rc,’ emphasizing its responsiveness to changes 

in blood urea levels and vulnerability to fluctuations in red blood cell counts. PC-12 is mainly positively 

influenced by ‘eGFR’ and negatively affected by ‘sc,’ indicating its responsiveness to changes in eGFR and 

sensitivity to fluctuations in serum creatinine levels. PC-13 primarily correlates positively with ‘pcv’ (packed 

cell volume) and negatively with ‘hemo,’ illustrating its dependence on variations in packed cell volume and 

sensitivity to fluctuations in hemoglobin levels. PC-14 shows a strong positive association with ‘sc’ and a 

negative association with ‘dm’ (diabetes mellitus), emphasizing its responsiveness to changes in serum 

creatinine levels and sensitivity to the presence of diabetes mellitus. PC-15 is positively influenced by ‘sc’ 

and negatively affected by ‘pcv,’ highlighting its dependence on variations in serum creatinine levels and 

sensitivity to changes in packed cell volume. The following Figure 10 provides a visualization of each 

principal component’s contribution to the total variance in the data and shows how the total variance 

accumulates as additional principal components are included in the PCA method. 

 

 

 
 

Figure 10. Variance explained by principal components 

 

 

4.3.  Comparison of results for each model of dataset 1 

We further emphasize the rigorous assessment of our models by incorporating cross-validation with 

5-fold validation, a widely accepted practice for robust model evaluation. To rigorously assess the 

performance of our models, we utilized several key metrics: accuracy, precision, recall, and the F1-score. 

Accuracy provides a general measure of the overall correctness of the model, indicating the proportion of all 

predictions that were correct. Precision gives insight into how many of the positive identifications were 

actually correct, making it crucial when the cost of a false positive is high. Recall, on the other hand, tells us 

about the model’s ability to identify all relevant instances, proving vital when the cost of a false negative is 

significant. The F1-score harmoniously combines both precision and recall into a single metric, providing a 

balanced measure, especially useful for datasets with uneven class distributions. It’s crucial to highlight that 

these evaluations were performed on the transformed dataset using the PCA method. This dimensionality 

reduction technique ensures that only the most significant features are considered, potentially enhancing the 

model’s performance while reducing computational costs. In addition to PCA, we also employed the LASSO 

method for feature selection. LASSO is particularly effective in reducing model complexity by selecting the 

most relevant features while simultaneously regularizing the model, helping to avoid overfitting and 

improving generalization on new data. 

 

4.3.1. Comparison between different models based on accuracy using PCA 

Accuracy is a cornerstone metric in the machine-learning domain, providing a panoramic view of 

the model’s overall efficiency by representing the ratio of accurate predictions to the total predictions made. 
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When it comes to predicting CKD, this metric assumes paramount significance. The ability to pinpoint 

correct diagnoses has a reverberating impact on patient outcomes, shaping medical interventions and 

treatment pathways. Among the various models evaluated, RF emerged as the unequivocal frontrunner, 

charting an impeccable accuracy of 98.3%. This metric speaks volumes about the model’s discerning 

prowess in navigating the intricacies of the dataset and delivering near-perfect predictions.  

The AdaBoost algorithm delivered an impressive performance with an accuracy rate of 99.1%, 

reinforcing its robustness and reliability in CKD detection. The Bagging model also demonstrated its 

capabilities, achieving an accuracy of 97.5%. While this figure is slightly lower than that of the RF and 

AdaBoost models, it still highlights the model’s proficiency in CKD detection. The ANN model, designed to 

replicate neural pathways and processes, recorded an accuracy of 96.67%. Although this is a commendable 

score, it also indicates potential areas for improvement that, if addressed, could further enhance the model’s 

predictive accuracy. 

Our experimental exploration of hybrid models yielded the ANN_AdaBoost model, which is a 

fusion of the intricate neural pathways of ANN and the algorithms of AdaBoost, achieving an accuracy of 

99.5%. This score not only validates the effectiveness of combining different algorithmic strengths but also 

suggests opportunities for further refinement and enhancement, as detailed in Figure 11. 

 

 

 
 

Figure 11. Results of accuracy scores using PCA 

 

 

4.3.2. Comparison between different models based on precision using PCA 

Precision stands as an instrumental metric in machine learning, underscoring the credibility of 

positive predictions made by a model. In the medical landscape, the gravity of precision is accentuated. A 

high precision implies that a model has a minimal tendency to raise false alarms incorrectly diagnosing a 

patient with CKD when they are, in fact, unaffected. Such misdiagnoses can have severe implications, 

making the precision metric indispensable.  

Diving into our diverse range of models, the RF algorithm rose as the gold standard in terms of 

precision, achieving a near-perfect score of 98.3%. This stellar result echoes the model’s prowess when it 

flags a case as CKD, the diagnosis is very likely spot-on. Close on its trail, the AdaBoost model 

demonstrated precision at 97.9%, reflecting its acute discernment and robustness in positively identifying 

CKD cases. The Bagging model also carved its niche, registering a precision of 97.7%, indicating its 

steadfastness in CKD detection. The ANN model, with its intricate architecture and algorithms, clinched a 

precision score of 96%. While commendable, this score simultaneously hints at potential avenues to refine 

and enhance its predictive accuracy further. Venturing into the domain of hybrid models, our 

ANN_AdaBoost model unveiled its formidable capabilities. Achieving a precision of 97.8%, this model 

stands as a testament to the synergistic amalgamation of the intricacies of neural networks and the robustness 

of boosting mechanisms. This score, especially when juxtaposed with other models, underscores the model’s 

consistent and reliable performance. The outcomes for precision are illustrated in Figure 12. 
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Figure 12. Results of precision scores using PCA 

 

 

4.3.3. Comparison between different models based on recall using PCA 

Recall, within the medical diagnostic sphere, stands as a defining metric, illuminating a model’s 

capability to accurately recognize every case of a specific medical condition in this study, CKD. The 

implications of recall are profound, especially in the medical landscape. A missed true positive CKD case, 

resulting from lower recall, can lead to overlooked treatments and escalated medical complications, 

amplifying the repercussions of inaccurate model predictions. Among the ensemble of machine learning 

models we evaluated, AdaBoost emerged as the paragon of precision, achieving a perfect recall score of 

100%. This exceptional performance reaffirms the algorithm’s unparalleled prowess in CKD detection, 

ensuring that every CKD case was accurately flagged, leaving no patient undiagnosed. 

The RF model showcased exemplary proficiency with a recall score of 98.3%. The architectural 

foundation of RF a compilation of numerous DTs enhances its ability to meticulously sift through data, 

ensuring comprehensive CKD detection and making instances of overlooked CKD patients exceedingly rare. 

Our experiment with hybrid models yielded the ANN_AdaBoost model, which performed impressively, 

achieving a recall rate of 97.8%, as illustrated in Figure 13. This score underscores the hybrid model’s 

adeptness in CKD detection, drawing from the strengths of both ANN and AdaBoost. The ANN model, 

despite its intricate neural pathways, achieved a recall of 96%. While commendable, this metric highlights 

potential areas for improvement, suggesting that refinements could enhance the model’s CKD detection 

efficiency. However, the Bagging model should not be overlooked. With a recall of 95.7%, it firmly positions 

itself among the top performers, further underscoring the power and potential of ensemble techniques in 

medical diagnostics. In essence, while each model exhibited its strengths and demonstrated commendable 

recall metrics, the collective results illuminate the monumental potential of machine learning in 

revolutionizing CKD diagnostics. 
 

 

 
 

Figure 13. Results of recall scores using PCA 
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4.3.4. Comparison between different models based on F1-score using PCA 

The F1-score emerges as a crucial metric, particularly in critical scenarios where the repercussions 

of misclassifications can be profound. It provides a harmonized understanding of a model’s performance by 

encapsulating the combined potency of precision and recall, making it especially significant in datasets where 

class imbalances could skew evaluations. The RF model, underpinned by its intricate ensemble mechanism, 

exemplifies this balance with an impressive F1-score of 98.3%. This remarkable score attests to the model’s 

unmatched ability to strike an optimal balance between precision and recall, marking it as a gold standard in 

CKD prediction. Close behind, the AdaBoost algorithm demonstrated robust capabilities with an F1-score of 

98.9%, highlighting its efficacy in harmonizing the strengths of both precision and recall, thereby minimizing 

both false positives and negatives. Turning to hybrid models, our ANN_AdaBoost creation an intricate blend 

of neural architectures and boosting techniques achieved an F1-score of 97.8%, as shown in Figure 14.  

This score reflects the model’s stellar performance in CKD prediction, showcasing its proficiency in 

integrating the complexities of neural processes with the robustness of boosting mechanisms to yield reliable 

predictions. The ANN model, with its unique neural pathways, achieved an F1-score of 96%. While this 

score establishes the model as a reliable tool for CKD predictions, it also suggests areas for improvement to 

ensure a more harmonious balance between precision and recall in future iterations. However, it’s important 

not to overlook the Bagging model, which showcased a formidable F1-score of 96.7%. This score underscores 

the model’s consistency and adeptness in delivering balanced CKD diagnostic outputs. 
 

 

 
 

Figure 14. Results of F1-score scores using PCA 

 

 

4.3.5. Hybrid model’s AUC analysis in CKD detection using PCA 

The area under the curve (AUC) represents a crucial metric in evaluating the efficacy of a classifier, 

especially in binary classification tasks. As illustrated in Figure 15, an AUC of 0.999, as achieved by our 

hybrid model, is particularly striking. It suggests a near-perfect ability of the model to discern between the 

two classes, in this case, distinguishing those with CKD from those without. In more tangible terms, the high 

AUC value indicates that the model is 99.9% confident in its classifications, an exceptionally rare and 

commendable feat in predictive modeling. In the spectrum of AUC values, a score of 0.5 suggests no 

discriminative power akin to a random guess. On the other hand, a perfect AUC of 1.0 denotes that the model 

has an impeccable discriminative capability. Our model’s AUC of 0.999 positions it very closes to this 

pinnacle of perfection. Such an outstanding result underscores the model’s robustness, reliability, and 

heightened sensitivity and specificity in identifying CKD cases. While this metric alone paints a compelling 

picture of the model’s prowess, it is essential to recognize the broader implications. In medical diagnostics, 

where the stakes are inherently high, misclassification can have profound consequences. The exceptional 

AUC value provides assurance that the hybrid model can be entrusted with the critical task of CKD detection, 

reducing the chances of diagnostic errors to a minimum.  

 

4.3.6. Comparison between different models based on accuracy using LASSO 

In the pursuit of accurately predicting CKD using select features derived via the LASSO method-sg, 

al, sc, hemo, pcv, htn, dm, appet, and eGFR several models were rigorously evaluated. The RF model stood 

out distinctly, achieving an outstanding accuracy of 98.3%, attesting to its adeptness at effectively processing 
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and interpreting the intricacies of the selected features. Following closely, the AdaBoost model achieved an 

accuracy of 96.6%, underlining its robust capability in detecting CKD with commendable reliability. Notably, 

as illustrated in Figure 16, the Bagging model demonstrated a notable accuracy of 95.8%, further asserting its 

proficiency as a formidable tool in the CKD diagnostic arsenal. The ANN model, inspired by its intricate neural 

network architecture, posted an accuracy of 96.67%. While commendable, this figure suggests potential avenues 

for refinement to harness even greater predictive precision. Interestingly, our exploration with the hybrid 

ANN_AdaBoost model showcased a synergistic melding of the two algorithms, yielding an accuracy of 96.6%. 

This result highlights not only the merit of integrating diverse algorithms but also the room for further fine-

tuning to elevate this hybrid model’s performance. 
 

 

 
 

Figure 15. ROC analysis of the hybrid model for CKD prediction 
 

 

 
 

Figure 16. Results of accuracy scores using LASSO 
 
 

4.3.7. Comparison between different models based on precision using LASSO 

In predictive modeling, precision elucidates the trustworthiness of identifications, making it 

paramount when the implications of false positives are significant. The RF model stands out in predicting 

CKD using the nine selected features, achieving a flawless precision score of 100%. This impeccable score 

underscores the model’s adeptness in identifying true CKD cases while minimizing false alerts. Following 

closely is the ANN model, with a precision of 97%. While it hasn’t reached the perfection of RF, it still 

demonstrates commendable discernment in its predictions. The Bagging and ANN_AdaBoost models 
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showcased precision scores of 95.8% and 92%, respectively, reinforcing their capacity to make largely 

accurate positive predictions. AdaBoost, with a precision of 92%, reflects strong performance but also hints 

at areas for refinement to further reduce false positives. In an era where precision can directly influence 

medical decisions and patient care pathways, these findings underscore the importance of selecting the right 

predictive model. The detailed precision scores offer valuable insights for clinicians, researchers, and data 

scientists striving to improve CKD prediction algorithms. Figure 17, which displays the precision scores 

using LASSO, illustrates these results. 
 

 

 
 

Figure 17. Results of precision scores using LASSO 
 

 

4.3.8. Comparison between different models based on recall using LASSO 

Recall, also known as sensitivity, is a pivotal metric in machine learning, particularly in medical 

diagnostics like predicting CKD. It reflects the model’s ability to correctly identify all relevant cases, making 

it crucial to capture all actual CKD cases while minimizing missed diagnoses. Using the nine features 

selected by LASSO, both AdaBoost and ANN_AdaBoost demonstrated exceptional proficiency, each 

achieving a perfect recall score of 100%. This flawless performance underscores their ability to detect every 

instance of CKD without omission. Close behind, the ANN model achieved a commendable recall of 97%, 

showcasing its strong capability in reducing false negatives. RF, a model known for its robustness, reached a 

recall rate of 95.65%, further emphasizing its effectiveness in this critical diagnostic task. Meanwhile, the 

Bagging model, with a recall of 93.47%, demonstrated potential in CKD prediction, although there is room 

for further improvement. In CKD prediction, where missed diagnoses can have significant implications, these 

results highlight the importance of selecting a model with high recall. The outlined recall rates offer valuable 

insights for healthcare professionals and data practitioners striving to enhance CKD diagnostic tools. Figure 

18 illustrates these findings. 
 

 

 
 

Figure 18. Results of recall scores using LASSO 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 684-707 

702 

4.3.9. Comparison between different models based on F1-score using LASSO 

The F1-score, a harmonic mean of precision and recall, provides a holistic measure of a model’s 

performance, effectively balancing false positives and false negatives. This metric is especially pertinent in 

medical diagnostics, where both over-diagnosis and under-diagnosis can have significant consequences. 

Utilizing the selected features: sg, al, sc, hemo, pcv, htn, dm, appet, and eGFR for CKD prediction, the RF 

model stood out, achieving an impressive F1-score of 97.7%. This score highlights its optimal blend of 

precision and sensitivity in detecting CKD. Close behind, the ANN model recorded an F1-score of 97%, 

affirming its balanced capability in CKD detection while maintaining a minimal margin of error. The 

AdaBoost and ANN_AdaBoost models both posted F1-scores of 95.8%, further validating their robustness in 

harmonizing precision and recall, which is crucial in medical diagnostics. Meanwhile, the Bagging model, 

with its F1-score of 94.5%, still demonstrates promise in CKD prediction, indicating potential for further 

refinement to enhance its performance. As efforts continue to perfect CKD diagnostic tools, insights into  

F1-scores are indispensable. These scores underscore the critical importance of balancing precision and 

recall, guiding healthcare professionals and researchers in refining their diagnostic algorithms, as illustrated 

in the following Figure 19. 
 

 

 
 

Figure 19. Results of F1-score scores using LASSO 

 

 

4.3.10. Comparative analysis of accuracy with LASSO and PCA feature selection 

In the intricate realm of CKD prediction, feature selection is pivotal in enhancing machine learning 

models’ performance. LASSO and PCA, two distinct methodologies, cater to this by focusing on feature 

regularization and dimensionality reduction. Using the LASSO methodology, the RF model tops the list, 

posting an impressive accuracy of 98.3%. However, when adopting the PCA approach for feature selection, 

its performance remains at the same level, registering an accuracy of 98.3%. The consistency suggests that 

PCA did not offer any additional advantage for the RF model in this case. 

Similarly, the AdaBoost model experienced a significant boost when transitioning from LASSO 

(96.6% accuracy) to PCA (99.1% accuracy). This uptick accentuates PCA’s prowess in underscoring salient 

features that align with AdaBoost algorithmic structure. Conversely, the Bagging model, with accuracies of 

95.8% (LASSO) and 97.5% (PCA), and the ANN model, consistently marking accuracy of 96.67% across 

both methodologies, elucidate the nuanced interplay between feature selection techniques and underlying 

model architectures. As depicted in Figure 20, the ANN_AdaBoost hybrid model, a fusion of neural networks 

and boosting, portrayed slight variability. While the LASSO approach yielded an accuracy of 96.6%, the 

PCA technique enhanced its performance, taking it to 99.5%. This improvement showcases the effective 

synergy between PCA-based feature selection and the intricacies of the hybrid model structure. 

 

4.4.  Performance comparison of models for the test dataset 

In our pursuit of achieving precise CKD predictions on the test dataset, various models were 

evaluated, as depicted in Figure 21. The AdaBoost model emerged as the most accurate, attaining an 

impressive accuracy of 99.3%, showcasing its exceptional ability to handle this dataset effectively. Following 

this, the ANN_AdaBoost hybrid model demonstrated an equally strong performance, achieving the highest 

accuracy of 99.6%. The RF model, known for its robustness, achieved a commendable accuracy of 98.3%, 
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reinforcing its reliability in accurately predicting CKD. Similarly, the Bagging model demonstrated a strong 

performance with an accuracy of 98%, reaffirming its effectiveness in ensemble learning for this task. 

Finally, the ANN, despite its intricate architecture, yielded a slightly lower accuracy of 97.1%, but still 

highlighted its capacity to model complex relationships in the data. A key strength of our approach lies in the 

use of a distinct second dataset for validation, enhancing the generalizability and robustness of our results. 

This dataset allowed for a more comprehensive evaluation of our models’ performance, ensuring that our 

results are not overly optimized for a single dataset, and providing a more reliable assessment of how these 

models perform in diverse real-world scenarios. This approach of testing on a separate dataset confirms the 

broader applicability of our findings and the models’ predictive power beyond the initial data. 

 

 

 
 

Figure 20. Results accuracy models with LASSO and PCA 

 

 

 
 

Figure 21. The results accuracy of our models on the test dataset 

 

 

4.5.  Comparison table between the accuracy of the proposed models and existing techniques 

Our study explored two datasets for training, validation, and testing for CKD. In working with real-

world data, it is common to encounter gaps for various reasons, such as errors, difficulties in collecting 

information, or incomplete extractions. Managing these missing values is crucial for building robust data 

models. A common method for this is data imputation, where missing values are replaced with simple 

statistics, such as the mean or mode of the respective column. This approach is effective as it is easy to 
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implement and often yields satisfactory results. However, more advanced approach involving imputation 

methods has recently been proposed, showing a significant improvement in accuracy compared to previous 

methods. Unlike most studies in this field, such as those conducted by Xioa et al. [14], Hassan et al. [15], 

Baidya et al. [16], and Chittora et al. [17], the authors of this article did not employ the approach of replacing 

missing data with the mean or median for all features. Instead, advanced imputation techniques were used, 

which resulted in a well-prepared dataset before applying machine learning algorithms. Additionally, unlike 

these studies, we used another dataset to validate the results of our research. Our proposed models 

demonstrated superior accuracies across multiple metrics compared to previous studies. While prior research 

by Xioa et al. [14] reported accuracies of 80% for both RF and ANN models, our AdaBoost model achieved 

an accuracy of 97.5%, showcasing a significant enhancement. Similarly, the RF model in our study surpassed 

the performance reported by Yashfi et al. [18], achieving an accuracy of 99.1% compared to their reported 

97.12%. Additionally, our Bagging model outperformed the results of Rahman et al. [20], achieving an 

accuracy of 98.3% compared to their reported 98.07%. 

Furthermore, our ANN model demonstrated notable improvement over the findings of Pal [19], with 

an accuracy of 96.6% compared to their reported 89%. Lastly, our ANN_AdaBoost hybrid model achieved 

an impressive accuracy of 99.5%, surpassing the accuracies reported in previous studies. Overall, our models 

exhibited significant advancements in accuracy compared to existing research, validating the efficacy of our 

approach in predicting CKD. As illustrated in Table 4 below, the results of our classifiers demonstrate 

accuracies that surpass those reported in other studies, underscoring the robustness of our approach. 

 

 

Table 4. Comparing the accuracy of our study with existing work 
Works Models Accuracy Dataset 2 for validating results Feature eGFR 

Xioa et al. [14] RF 

ANN 

80% 

80% 

_ _ 

Hassan et al. [15] ANN 

RF 

97.5% 

98.75% 

_ _ 

Islam et al. [16] AdaBoost 

RF 

94% 

95% 

_ _ 

Chittora et al. [17] ANN 90.2% _ _ 

Yashfi et al. [18] ANN 

RF 

94.5% 

97.12% 

_ _ 

Pal [19] RF 

ANN 

93% 

89% 

_ _ 

Rahman et al. [20] RF 

Bagging 

AdaBoost 

96.15% 

98.07% 

100% 

yes _ 

Ghosh et al. [21] AdaBoost 97.91%   

Ebiaredoh-Mienye et al. [23] AdaBoost 

RF 

93% 

95.2% 

  

Islam et al. [42] AdaBoost 

RF 

ANN 

98.3% 

97.5% 

60% 

_ _ 

Our proposition AdaBoost 

RF 

Bagging 

ANN 

ANN_AdaBoost 

97.5% 

99.1% 

98.3% 

96.6% 

99.5% 

yes yes 

 

 

5. CONCLUSION 

In this research, we pioneered an innovative approach for predicting and diagnosing CKD through 

the application of advanced machine learning and deep learning models. The linchpin of our methodology 

was the calculation of eGFR using the MDRD formula. a well-established equation for estimating kidney 

function. Our study conducted an in-depth analysis of CKD risk factors, emphasizing the critical role of 

eGFR as a key biomarker for both disease diagnosis and staging. This enhancement allows clinicians to 

develop more effective therapeutic strategies, ultimately improving patient outcomes. 

To enhance predictive accuracy, we employed feature selection techniques, specifically LASSO, 

and dimensionality reduction through PCA, ensuring that our model focused on the most relevant predictors. 

Among the models evaluated, the hybrid ANN_AdaBoost demonstrated outstanding performance, achieving 

an accuracy of 99.5% when using PCA. These promising results highlight the potential of our approach in 

advancing CKD diagnosis and staging. 

However, this study is not without limitations. The dataset used was relatively small, comprising 

only 400 samples, which may impact the generalizability of our findings. A larger and more representative 
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dataset would provide a more robust and comprehensive analysis. As part of our future work, we aim to 

enhance both the quantity and quality of the dataset, just as we improved diagnostic accuracy by 

incorporating eGFR. By expanding our dataset and refining our predictive models, we seek to further 

advance early CKD detection, enabling more precise and reliable clinical decision-making. 
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