
International Journal of Informatics and Communication Technology (IJ-ICT)

Vol. 14, No. 1, April 2025, pp. 20~30

ISSN: 2252-8776, DOI: 10.11591/ijict.v14i1.pp20-30  20

Journal homepage: http://ijict.iaescore.com

Predictive model for converting leads into repeat order

customer using machine learning

Deryan Everestha Maured, Gede Putra Kusuma
Department of Computer Science, BINUS Graduate Program – Master of Computer Science, Bina Nusantara University,

Jakarta, Indonesia

Article Info ABSTRACT

Article history:

Received May 31, 2024

Revised Oct 23, 2024

Accepted Nov 19, 2024

 In the competitive business landscape, customer relationship management

(CRM) is pivotal for managing customer relationships. Lead generation and

customer retention are critical aspects of CRM as they contribute to
sustaining business growth and profitability. Also, identifying and

converting leads into repeat customers is essential for optimizing revenue

and minimizing promotional costs. This study focuses on developing a

predictive model using machine learning techniques to convert leads into
repeat order customers in conventional businesses. Leveraging data from a

motorcycle distribution company in Jakarta and Tangerang, the study

compares the performance of various models for predicting repeat orders.

This includes individual models like DeepFM, random forest, and gradient
boosting decision tree models. Additionally, it explores the effectiveness of

stacking these models using logistic regression as a meta-learner.

Furthermore, the study implements backward feature elimination for feature

selection and hyperband for hyperparameter tuning to enhance model
performance. The results indicate that Stacking model using base model

default configuration stands out as the most robust, achieving the highest

scores in accuracy (0.95), area under the curve receiver-operating

characteristic curve (AUC-ROC) (0.67), log loss (0.19), weighted average
precision (0.95), weighted average recall (0.95), and weighted average F1-

score (0.92), effectively handling the imbalanced dataset.

Keywords:

DeepFM model

Gradient boosting

Machine learning

Random forest

Repeat order customers

This is an open access article under the CC BY-SA license.

Corresponding Author:

Deryan Everestha Maured

Department of Computer Science, BINUS Graduate Program – Master of Computer Science

Bina Nusantara University

Jakarta 11480, Indonesia

Email: deryan.maured@binus.ac.id

1. INTRODUCTION

In the competitive business landscape, customer relationship management (CRM) plays a vital role

in managing customer relationships, with lead generation and customer retention being key components.

According to the market research report, approximately 27.8% of CRM usage is dedicated to these areas [1].

A survey conducted in the United States reveals that enhancing performance through CRM customer

analytics has led to a 58% increase in customer retention or loyalty [2]. Leads represent prospective

customers or prospects showing interest in a company's products or services. Managing leads within CRM

systems helps companies identify and prioritize potential leads for conversion into new or repeat order

customers. Retaining existing customers is crucial for long-term success, as customers who engage in repeat

orders hold significant value in terms of retention and business revenue. Therefore, identifying customers

https://creativecommons.org/licenses/by-sa/4.0/

Int J Inf & Commun Technol ISSN: 2252-8776 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured)

21

who can be converted into repeat order customers is imperative, as it reduces promotional costs and increases

return on investment (ROI) [3].

The integration of machine learning techniques has emerged as a powerful tool in enhancing CRM

effectiveness, particularly in optimizing lead management through the identification of potential customers

[4]. Various machine learning models, including basic classifiers, ensemble models, and fusion models, have

been applied to construct predictive models for repeat order customers. Benhaddou and Leray [5] developed

lead scoring models using Bayesian networks, which leveraged heuristics and expert knowledge to achieve

significant precision, recall, and accuracy. Nygård and Mezei [6] automated lead assessment using machine

learning algorithms, highlighting random forest's superiority in controlling biases and optimizing neural

network models.

In a similar vein, Espadinha-Cruz et al. [7] focused on enhancing lead management efficiency by

comparing algorithms and leveraging ensemble regression models for improved accuracy. Ayaz [8]

compared machine learning models for lead scoring, emphasizing the significance of feature selection and

hyperparameter tuning in decision tree-based models. Arun [4] underscored the role of data analysis and

machine learning in CRM, highlighting the importance of predictive accuracy in understanding customer

behavior and optimizing prospect scores. Yang et al. [9] develops a dynamic, data-driven framework for

predicting repeat purchases using a voting-based method with transactional data, showing that the integration

of extreme gradient boosting (XGB) and light gradient boosting machine (LGBM) yields the best

performance. Mortensen et al. [10] proposed classification models for predicting prospect success, with

random forest outperforming others.

Moreover, Huang [11] compared predictive models for repeat buyer behavior, highlighting

DeepFM's accuracy and LightGBM's training speed. Ensemble techniques proposed by Xu et al. [12] and

Zhang and Wang [13] significantly enhanced model robustness and accuracy. The use of low-level

interaction data [14], feature engineering [15]-[17], deep learning ensemble models [18], model distillation,

and fusion techniques [19], [20], as well as vote stacking methods [21], further improved model accuracy and

interpretability. Gokhale and Joshi [22] and Sangaralingam et al. [23] explored optimal classification

algorithms for lead potential and supervised learning for customer identification, respectively, highlighting

the importance of accurate modeling in CRM strategies and business decision-making.

These studies collectively showcase the diverse methodologies and approaches in lead scoring and

customer prediction, emphasizing the critical role of feature engineering, model optimization, and algorithm

selection in driving effective CRM strategies and business outcomes. Recent research has particularly

highlighted the benefits of exploring DeepFM models, which have demonstrated superior performance in

predicting repeat order customers compared to decision tree-based models like random forest and gradient

boosting [11]. However, much of the prior research has focused on assessing customer potential within the

e-commerce domain and has not thoroughly examined the benefits of feature selection and hyperparameter

tuning for enhancing model performance, especially in scenarios involving class imbalance and optimization

of predictive accuracy.

Given these findings, this study aims to compare three types of machine learning models DeepFM,

random forest, and gradient boosting decision tree (GBDT). It applies feature selection through backward

feature elimination and hyperparameter tuning using hyperband, while also exploring the effectiveness of

stacking these models using logistic regression as a meta-learner. The goal is to enhance the accuracy of

predictive models for lead conversion into repeat order customers in conventional business settings. This

study adopts a case study approach focused on a company operating in the motorcycle distribution sector in

the Jakarta and Tangerang regions. The company needs to manage its lead data (outbound leads) to identify

those with the potential to become repeat order customers based on attributes such as demographics and

consumer behavior.

2. RESEARCH METHOD

The conceptual framework of this research is illustrated in Figure 1. This research adopts the cross-

industry standard process for data mining (CRISP-DM) framework, widely recognized for its effectiveness in

tackling various challenges encountered in data mining projects within industrial environments [24]. CRISP-

DM encompasses six key stages: business understanding, data understanding, data preparation, modelling,

evaluation, and deployment [25]. In this research, the CRISP-DM framework is utilized up to the evaluation

stage, with each stage detailed in subsections 2.1 to 2.5.

The research begins with business understanding, focusing on identifying key business objectives by

analyzing data from the customer database (CDB) to understand the factors that drive repeat orders.

Following this, data understanding involves collecting and exploring the data to assess its quality and

uncover relevant patterns. In the data preparation stage, the data is cleaned and transformed to ensure it is

ready for modeling. During modeling, algorithms such as random forest, GBDT, and DeepFM are applied to

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 1, April 2025: 20-30

22

build predictive models. Further model optimization is conducted through feature selection using backward

feature elimination, hyperparameter tuning using hyperband, and stacking models using logistic regression as

meta-learner to enhance performance. The models are then evaluated in the evaluation stage using

performance metrics to select the most robust model. Finally, the determining the best model stage identifies

the most suitable model, which is then used as the predictive model to identify leads likely to become repeat

customers.

Figure 1. The conceptual framework

2.1. Business understanding

Based on the business regulations within the company at the research case study location, a repeat

order consumer is defined as a customer who purchases a motorcycle more than once from the same dealer.

However, to aid lead generation, particularly concerning repeat order consumers (RO), a list of customers

who have purchased motorcycles more than once from different dealers will also be considered as leads for

follow-up by the dealers from previous purchases. Lead generation is also based on individual customer type

and customers aged over 17 years old. Hence, the labelling process for model development data is

categorized as follows: i) positive class (1): repeat order consumers, meaning customers who have purchased

motorcycles more than once; and ii) negative class (0): consumers who do not make repeat orders.

2.2. Data understanding

The dataset used in this research consists of the customer database (CDB), which includes invoice

data and motorcycle information from the company at the case study location. This dataset covers the period

from 2018 to 2022 and totals 1,474,369 records. The invoice data captures the transactions of motorcycle

purchases made by customers and is stored in a table named MOHONFAKTUR, with field information

detailed in Table 1.

Additionally, the motor prices table in Table 2 stores motorcycle information, including the model

code (KD_MDL), original model code (KD_MDL_ASAL), motor number (NO_MTR), motor series name

(NM_MTR), motor category (CUB_SPORT), and motor price (MTR_HRGJUAL).

From the combination of these two datasets, the features used in the data preparation stage consist of

16 features: 4 numerical (CICILAN, DP, JML_ANGSURAN, MTR_HRGJUAL), 8 categorical (JNS_KLM,

JNS_JUAL, STS_RUMAH, TUJU_PAKAI, KODE_KERJA, CUB_SPORT, KODE_DIDIK,

KELUAR_BLN), and 4 object features (TGL_MOHON, NO_DLRP, NO_KTPNPWP, TGL_LAHIR).

Int J Inf & Commun Technol ISSN: 2252-8776 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured)

23

Table 1. Structure of MOHONFAKTUR table
Attribute group Field Field description Data Type

Customer profile KODE_DIDIK Customer education code Object – ordinal categorical

KODE_KERJA Customer job Code Object – nominal categorical

STS_RUMAH Customer home status code Object – nominal categorical

KELUAR_BLN Range of spending money per month Object – ordinal categorical

Deal behaviour TGL_MOHON Transaction date Object

JNS_JUAL Transaction method Int64 – nominal categorical

KD_MDL Unique purchased motorbike model code Object

NO_MTR Unique purchased motorbike code Object

NO_DLRP Unique dealer code (customer purchase location) Object

DP Nominal amount of down payment Int64

CICILAN The nominal installment amount Int64

JML_ANGSURAN Tenor amount in months Int64

TUJU_PAKAI Code of the intended use of the motorbike purchased Object – nominal categorical

THN_MTR Year motor purchased Object

Customer Identity NO_KTPNPWP Customer unique IDE Object

NM1_MOHON Customer name Object

NO_RGK Unique motorbike frame number code Object

NO_MSN Unique motorbike engine number code Object

NO_HP Consumer telephone number Object

JNS_BELI Types of consumers Object

TGL_LAHIR Consumer's date of birth Object

GENDER Gender Int64 – nominal categorical

Table 2. Structure of motor prices table
Field Field description Data type

KD_MDL Unique motorbike model code Object

KD_MDL_ASAL Unique code for original motorbike model Object

NO_MTR Unique motorbike code Object

NM_MTR Motor series name Object

CUB_SPORT Motorcycle category Object – nominal categorical

MTR_HRGJUAL Motorcycle selling price Int64

2.3. Data preparation

The data preparation stage involved several crucial steps to ensure the quality and reliability of the

dataset used for the predictive model. These steps included data integration, data transformation, handling

missing values, identifying abnormal users, splitting the data, and addressing imbalanced data. Each of these

processes was carefully executed to maintain the integrity of the data, ultimately leading to better model

performance.

Data integration was the first step, where motorcycle purchase invoice data (Table 1) was combined

with motorcycle information data (Table 2). The integration was achieved by matching the model code

(KD_MDL) in the invoices with the original model code (KD_MDL_ASAL) in the motorcycle information

data. This step ensured that all relevant data was linked and could be used cohesively for further analysis.

Next, the data transformation process was undertaken to convert and modify the data into a format

more suitable for analysis and modeling. This involved converting certain fields, such as TGL_MOHON and

TGL_LAHIR, from object types to datetime, standardizing other object types to integers, and replacing

specific string values with numeric ones in fields like KODE_DIDIK, KODE_KERJA, STS_RUMAH,

TUJU_PAKAI, and JML_ANGSURAN. Additionally, new variables were created, including purchasing

behavior attributes (e.g., buying cycle, recency, total purchases, total amount spent, and average spending per

purchase) and age categories, while categorical variables such as JNS_KLM, JNS_JUAL, STS_RUMAH,

TUJU_PAKAI, KODE_KERJA, KATEGORI_USIA, and CUB_SPORT were transformed into one-hot

encoding for better model interpretation. Moreover, numeric variables were transformed using logarithmic

and squared transformations to enhance feature richness, such as CICILAN, DP, JML_ANGSURAN,

JML_ANGSURAN_MEAN, mtr_hrgjual, BUYING_CYCLE, RECENCY, AVG_TOTAL_SPENT,

JML_PEMBELIAN.

Handling missing values was a critical step to ensure that the dataset was complete and accurate.

Missing values can significantly disrupt analysis and modeling, so null or NaN values in specific fields like

KODE_DIDIK and RECENCY were replaced with 0. This replacement prevented potential errors in the

modeling process and ensured that all records were fully utilized.

Identifying abnormal users involved cleaning the data to remove potentially invalid or mistyped

entries, particularly in the NO_KTPNPWP field. Records with incorrect or suspicious NO_KTPNPWP

values were deleted, and data was filtered to include only customers aged 17 and above. This step was crucial

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 1, April 2025: 20-30

24

to maintaining the accuracy and consistency of the dataset, which in turn ensured more reliable analysis and

modeling outcomes.

The data was then split into training and testing sets to facilitate model training and evaluation. The

dataset was divided with 80% allocated to training and 20% to testing, and the training set was further split

using 4-fold cross-validation. This approach helped prevent overfitting and ensured that the model’s

predictions would be consistent and generalizable.

Finally, the issue of imbalanced data was addressed using SMOTEENN, a combination of synthetic

minority over-sampling technique (SMOTE) and edited nearest neighbors (ENN) [26]. This method helped to

balance the distribution of classes by generating synthetic samples for the minority class and refining the

dataset by removing noisy samples from the majority class. SMOTEENN is highly effective in handling

imbalanced data and significantly enhances model accuracy [27]. In this research, SMOTE was configured

with sampling_strategy='auto' to balance the minority class with the majority class, and k_neighbors=5 to

determine the number of nearest neighbors for synthesizing new samples. ENN was applied with

sampling_strategy='all' to remove noise from all classes, ensuring a cleaner dataset. To ensure consistent

results, SMOTE and ENN set the seed for the random number generator using random_state=42. Applying

SMOTEENN to the training data resulted in significant changes in the class distribution. Before resampling,

the dataset contained 864,039 samples, with the majority class (non-repeat order) having 815,870 samples

and the minority class (repeat order) only 48,169 samples. After applying SMOTEENN, the total number of

samples was reduced to 715,697, with the majority class reduced to 480,975 samples and the minority class

increased to 234,722 samples. Although SMOTEENN did not achieve perfect balance, the more equal

distribution improved the model’s ability to accurately predict the minority class. After completing all these

data preparation steps, the dataset was refined to include 78 final features and a total of 1,080,049 records.

These features, which are essential for the modeling process, are detailed in Table 3. This prepared dataset

provided a strong foundation for building a reliable and effective predictive model.

Table 3. The features used as input for modeling process
Numerical feature Categorical feature

CICILAN, DP, JML_ANGSURAN,

JML_ANGSURAN_MEAN, mtr_hrgjual,

BUYING_CYCLE, RECENCY, TOTAL_SPENT,

JML_PEMBELIAN, CICILAN_DP_ratio,

JML_ANGSURAN_TOTAL_SPENT_ratio,

RECENCY_BUYING_CYCLE_ratio, CICILAN_log,

DP_log, JML_ANGSURAN_log,

JML_ANGSURAN_MEAN_log, mtr_hrgjual_log,

BUYING_CYCLE_log, RECENCY_log,

TOTAL_SPENT_log, JML_PEMBELIAN_log,

CICILAN_squared, DP_squared,

JML_ANGSURAN_squared,

JML_ANGSURAN_MEAN_squared, mtr_hrgjual_squared,

BUYING_CYCLE_squared, RECENCY_squared,

TOTAL_SPENT_squared, JML_PEMBELIAN_squared,

TOTAL, LABEL

JNS_KLM_0, JNS_KLM_1, JNS_KLM_2, JNS_JUAL_1,

JNS_JUAL_2, STS_RUMAH_0, STS_RUMAH_1,

STS_RUMAH_2, STS_RUMAH_3, TUJU_PAKAI_0,

TUJU_PAKAI_1, TUJU_PAKAI_2, TUJU_PAKAI_3,

TUJU_PAKAI_4, TUJU_PAKAI_5, TUJU_PAKAI_6,

TUJU_PAKAI_7, KODE_KERJA_0, KODE_KERJA_1,

KODE_KERJA_2, KODE_KERJA_3, KODE_KERJA_4,

KODE_KERJA_5, KODE_KERJA_6, KODE_KERJA_7,

KODE_KERJA_8, KODE_KERJA_9, KODE_KERJA_10,

KODE_KERJA_11, KODE_KERJA_12, KODE_KERJA_13,

KODE_KERJA_14, KODE_KERJA_15, KODE_KERJA_16,

CUB_SPORT_1, CUB_SPORT_2, CUB_SPORT_3,

KATEGORI_USIA_1, KATEGORI_USIA_2,

KATEGORI_USIA_3, KATEGORI_USIA_4,

KATEGORI_USIA_5, KATEGORI_USIA_6,

KATEGORI_USIA_7, KODE_DIDIK, KELUAR_BLN

2.4. Modeling

The development of the predictive model involved three machine learning models: random forest,

GBDT, and DeepFM. The dataset was split into 80% for training and 20% for testing. Initially, these models

were trained with default parameters, followed by optimization to enhance performance. Cross-validation

was performed using k-fold (k=4) on the training data. For each fold, the training data was split into k

subsets, and SMOTEENN was applied to balance the data within the current fold. The models were then

trained on the balanced k-1 subsets and validated on the remaining subset. Performance metrics were

recorded for each fold, and the best-performing fold was identified based on these metrics. The model was

retrained using this best-performing fold and subsequently used to make predictions on the test data, ensuring

robustness. Additionally, optimization included feature selection through backward feature elimination and

hyperparameter tuning using hyperband to identify the best features and parameters for each model.

Following the individual model training, a stacking process was implemented, with logistic regression

serving as the meta-learner to further enhance predictive accuracy.

2.4.1. Model random forest

Random forest is an ensemble learning method used for classification and regression tasks. Its

operation involves building multiple decision trees during the training phase and combining their predictions

Int J Inf & Commun Technol ISSN: 2252-8776 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured)

25

to make the final prediction. Each decision tree is constructed using a random subset of the training data and

random subset of features, introducing diversity and reducing overfitting [8]. In this research, random forest

model was constructed using the RandomForestClassifier library with default parameters: max_depth=5,

n_jobs=-1, oob_score=True, and random_state=42.

2.4.2. Model gradient boosting decision tree

GBDT is an ensemble model used for regression and classification tasks. This model constructs

multiple weak learners (usually decision trees) sequentially, where each tree attempts to correct the errors

made by the preceding one. This process continues until a predetermined number of learners is created or

until certain stopping criteria are met. This is achieved by minimizing the loss function (method parameter)

with each base model added [14]. In this research, GBDT model was constructed using the

GradientBoostingClassifier library with default parameters: max_depth=5, n_estimators=100,

oob_score=True, and random_state=42.

2.4.3. Model DeepFM

DeepFM is a hybrid model that effectively captures low-order and high-order feature interactions by

combining the linear component of factorization machines (FM) and deep neural network (DNN) [11]. The

DeepFM model structure consist of several components: the linear component (sparse feature and dense

embedding), the factorization machine layer component, the deep neural network component (hidden layer).

The linear component deals with categorical features, encoding them into both sparse feature space and dense

embedding vectors. It captures linear interactions by summing sparse feature values and calculating dot

products of dense embeddings. The FM layer focuses on pairwise interactions, computing the inner product

of feature embeddings to capture interactions between different features. The DNN component captures high-

order interactions through multiple layers of neural networks, learning complex patterns and feature

representations. It processes dense embeddings and predicts the target variable using non-linear

transformations.

2.4.4. Model optimization

Model optimization in this research involved several techniques, starting with feature selection

using backward feature elimination. In this method, a significance level (SL) of 0.05 was set, corresponding

to a 95% confidence level. The p-value was calculated for each feature, and any feature with a p-value

greater than the significance level was removed. If a feature’s p-value did not exceed the significance level,

the elimination process was halted. This iterative approach continued until no additional features met the

removal criteria, ultimately reducing the number of features from 78 to 59, as shown in Table 4.

Table 4. Final feature after feature selection
Numerical feature Categorical feature

CICILAN, DP, JML_ANGSURAN,

JML_ANGSURAN_MEAN, mtr_hrgjual,

BUYING_CYCLE, RECENCY, TOTAL_SPENT,

CICILAN_log, DP_log, JML_ANGSURAN_log,

JML_ANGSURAN_MEAN_log,

BUYING_CYCLE_log, RECENCY_log,

TOTAL_SPENT_log, CICILAN_squared,

DP_squared, JML_ANGSURAN_squared,

JML_ANGSURAN_MEAN_squared,

mtr_hrgjual_squared, BUYING_CYCLE_squared,

RECENCY_squared, TOTAL_SPENT_squared,

TOTAL

JNS_KLM_1, JNS_KLM_2, JNS_JUAL_1,

STS_RUMAH_1, STS_RUMAH_2, TUJU_PAKAI_1,

TUJU_PAKAI_2, TUJU_PAKAI_3, TUJU_PAKAI_4,

TUJU_PAKAI_5, TUJU_PAKAI_6, TUJU_PAKAI_7,

KODE_KERJA_0, KODE_KERJA_1, KODE_KERJA_2,

KODE_KERJA_5, KODE_KERJA_6, KODE_KERJA_7,

KODE_KERJA_8, KODE_KERJA_11, KODE_KERJA_12,

KODE_KERJA_13, KODE_KERJA_14,

KODE_KERJA_15, KODE_KERJA_16, CUB_SPORT_2,

CUB_SPORT_3, KATEGORI_USIA_1,

KATEGORI_USIA_3, KATEGORI_USIA_4,

KATEGORI_USIA_5, KATEGORI_USIA_7,

KODE_DIDIK, KELUAR_BLN

Hyperparameter tuning was also carried out using hyperband, an efficient algorithm that

dynamically allocates resources to the most promising hyperparameter configurations, significantly reducing

computational costs compared to traditional grid search methods [28]. In this research, hyperband was

employed to identify the best parameters for the three models, using several parameter options listed in Table 5,

with a hyperband configuration set at max_iteration=27 and eta=3 for each model. This tuning process was

applied to models utilizing both the full set of features and the reduced set, with the optimal parameters

detailed in Table 6.

The hyperparameter tuning results revealed distinct strategies depending on feature selection. For

the random forest model, the feature-selected version opted for a deeper tree (8 vs. 5) and the Gini criterion,

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 1, April 2025: 20-30

26

while the all-features model adopted more conservative settings. In the GBDT, feature selection resulted in

fewer estimators (15 vs. 45) but deeper trees and stricter splits, indicating a more efficient learning process.

The DeepFM model, when using feature selection, employed a smaller batch size (64 vs. 256) and a simpler

architecture but a higher learning rate (0.7356 vs. 0.04129), suggesting faster adaptation with fewer, more

significant features. Overall, models with feature selection were more aggressive and optimized for a smaller

feature set, whereas models utilizing all features took a more cautious approach to prevent overfitting.

Lastly, a stacking model approach was utilized in three variations. The first approach used base

models (random forest, GBDT, and DeepFM) with default configurations. The second approach used base

model that applied hyperparameter tuning using all features, and the third approach used base model that

applied hyperparameter tuning with feature selection. This ensemble method aimed to leverage the strengths

of each base model and improve overall prediction accuracy, particularly for predicting repeat order

customers.

Table 5. List of parameters to find best parameter
Model List parameter to find best parameter

RF 'criterion': hp.choice('c', ('gini', 'entropy')), 'bootstrap': hp.choice('b', (True, False)),

'class_weight': hp.choice('cw', ('balanced', 'balanced_subsample', None)),

'max_depth': hp.quniform('md', 2, 10, 1), 'max_features': hp.choice('mf', ('sqrt', 'log2', None)),

'min_samples_split': hp.quniform('msp', 2, 20, 1),'min_samples_leaf': hp.quniform('msl', 1, 10, 1)

GBDT 'learning_rate': hp.uniform('lr', 0.01, 0.2), 'subsample': hp.uniform('ss', 0.8, 1.0),

'max_depth': hp.quniform('md', 2, 10, 1), 'max_features': hp.choice('mf', ('sqrt', 'log2', None)),

'min_samples_leaf': hp.quniform('mss', 1, 10, 1), 'min_samples_split': hp.quniform('mss', 2, 20, 1)

DeepFM ‘optimizer’: hp.choice(‘o’, [‘rmsprop’, ‘adagrad’, ‘adamax’]),

‘learning_rate’: hp.loguniform(‘learning_rate’, -5, 0),

‘batch_size’: hp.choice(‘batch_size’, [64, 128, 256]),

‘l2_reg_linear’: hp.loguniform(‘l2_reg_linear’, -10, -5),

‘l2_reg_embedding’: hp.loguniform(‘l2_reg_embedding’, -10, -5),

‘l2_reg_dnn’: hp.loguniform(‘l2_reg_dnn’, -10, -5),

‘dnn_dropout’: hp.uniform(‘dnn_dropout’, 0, 0.5),

‘dnn_activation’: hp.choice(‘dnn_activation’, [‘relu’, ‘sigmoid’, ‘tanh’]),

‘seed’: hp.choice(‘seed’, [0,1024]),

‘dnn_hidden_units’: hp.choice(‘dnn_hidden_units’, [(256, 128, 64), (64, 32, 16), (30, 20, 10)])

Table 6. The optimal parameter for each model
Model Best parameter

RF 'n_estimators': 5, 'bootstrap': False, 'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5,

'max_features': 'log2', 'min_samples_leaf': 5, 'min_samples_split': 15

RF (Feature Selection) 'n_estimators': 5, 'bootstrap': False, 'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8,

'max_features': 'log2', 'min_samples_leaf': 8, 'min_samples_split': 6

GBDT 'n_estimators': 45, 'learning_rate': 0.18861818786755138, 'max_depth': 4, 'max_features': None,

'min_samples_leaf': 10, 'min_samples_split': 7, 'subsample': 0.9025409533959227

GBDT

(Feature Selection)

'n_estimators': 15, 'learning_rate': 0.19080522396266575, 'max_depth': 9, 'max_features': None,

'min_samples_leaf': 2, 'min_samples_split': 4, 'subsample': 0.9442618269109583

DeepFM 'iterations': 9, 'batch_size': 256, 'dnn_activation': 'relu', 'dnn_dropout': 0.09398487307992287,

'dnn_hidden_units': (256, 128, 64), 'l2_reg_dnn': 0.00015427748646839538,

'l2_reg_embedding': 0.0006685422033088367, 'l2_reg_linear': 0.0005985209123729851,

'learning_rate': 0.041293725390164925, 'optimizer': 'adamax', 'seed': 0

DeepFM

(Feature Selection)

'iterations': 9, 'batch_size': 64, 'dnn_activation': 'relu', 'dnn_dropout': 0.043312236659931225,

'dnn_hidden_units': (30, 20, 10), 'l2_reg_dnn': 7.363305306789893e-05,

'l2_reg_embedding': 0.0014565149402621209, 'l2_reg_linear': 0.0012858385266040664,

'learning_rate': 0.7355648719703358, 'optimizer': 'adamax', 'seed': 1024

2.5. Evaluation

The performance evaluation in cases of class imbalance in this research will focus on several key

metrics: accuracy, AUC-ROC, log loss, weighted average precision, weighted average recall, and weighted

average F1-score. These metrics are crucial for providing a comprehensive and fair assessment of the

model’s ability to handle class imbalance. By evaluating these metrics, we can determine how well the model

differentiates between majority and minority classes and ensure that the predictions are not biased towards

the majority class. Accuracy measures how successful a classification model is at making correct predictions.

For binary classification, accuracy can be calculated using (1).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (1)

Int J Inf & Commun Technol ISSN: 2252-8776 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured)

27

AUC-ROC measures the classification model's performance in distinguishing between positive and

negative classes. The ROC curve is a graph that illustrates the relationship between the true positive rate

(Recall) and false positive rate at various prediction thresholds. AUC-ROC calculates the area under the ROC

curve. The AUC-ROC value ranges from 0 to 1, where a value closer to 1 indicates that the model is better at

distinguishing between positive and negative classes, the formula is defined as (2).

𝐴𝑈𝐶 − 𝑅𝑂𝐶 =
∑ 𝑖𝑛𝑠𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑙𝑎𝑠𝑠 𝑟𝑎𝑛𝑘𝑖𝑛𝑠𝑖−

𝑀∗(𝑀+1)

2

𝑀∗𝑁
 (2)

Where 𝑟𝑎𝑛𝑘𝑖𝑛𝑠𝑖 is the serial number of the sample, M is the number of positive samples, and N is the number

of negative samples. Log loss measures the likelihood estimation of the prediction probability, the formula is

defined as (3).

𝐿Log _𝑙𝑜𝑠𝑠 = −
1

𝑁
 ∑ (𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) +𝑁

𝑖=1 (1 − 𝑦𝑖) log (1 − 𝑝𝑖)) (3)

Precision measures the level of accuracy between the predicted results provided by the model and

the actual available data, precision is defined as (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4)

The recall metric evaluates how well a model can recognize all accurately identified data samples in the true

class within the dataset, recall is defined as (5).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5)

The F1-score gives a comprehensive assessment of the model's performance by incorporating both precision

and recall into a single value, the formula is defined as (6).

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

The weighted average provides a more accurate assessment of the model's performance in cases of

imbalanced data. By appropriately weighting each class based on its actual distribution, the weighted average

allows us to evaluate the model's performance by considering the relative importance of each class. Weighted

average precision (7), recall (8), and F1-score (9) consider class imbalance by assigning weights to the

precision, recall, and F1-score of each class based on the proportion of that class in the dataset.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖 (7)

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝐶𝑙𝑎𝑠𝑠 𝑖 (8)

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1𝑠𝑐𝑜𝑟𝑒 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1 𝑥 𝐹1𝑠𝑐𝑜𝑟𝑒 𝐶𝑙𝑎𝑠𝑠 𝑖 (9)

3. RESULTS AND DISCUSSION

After completing all stages, the models were evaluated on the testing data. To enrich the analysis of

model performance, this research also compared the results with a baseline model using logistic regression.

This comparison aimed to assess whether the added complexity of more advanced models provided

significant advantages over the simpler baseline model. The evaluation metrics for the three models whether

using default settings, hyperparameter tuning using all feature, hyperparameter tuning using feature selection,

or the baseline model are detailed in Table 7.

For the random forest model, feature selection and hyperparameter tuning led to substantial

improvements. The default configuration yielded an accuracy of 0.61 and an AUC-ROC of 0.66, suggesting

moderate classification capability. Hyperparameter tuning using all features slightly improved accuracy to

0.62, though AUC-ROC decreased to 0.65. However, after feature selection, accuracy increased significantly

to 0.76, and the weighted average F1-score rose to 0.82, indicating enhanced performance in handling class

imbalance and generating more accurate predictions. Additionally, the log loss metric decreased from 0.49 in

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 1, April 2025: 20-30

28

the default setting to 0.41 after feature selection and tuning, reflecting an improvement in the model’s ability

to produce well-calibrated probability estimates.

Table 7. The comparison of performance measurement results from all models
Model Accuracy AUC-

ROC

Weighted

avg precision

Weighted

avg recall

Weighted avg

F1-score

Log

loss

Random

forest

Default 0.61 0.66 0.92 0.61 0.71 0.49

All feature and

hyperparameter tuning

0.62 0.65 0.92 0.62 0.72 0.51

Feature selection and

hyperparameter tuning

0.76 0.66 0.91 0.76 0.82 0.41

Gradient

boosting

decision tree

Default 0.95 0.66 0.95 0.95 0.93 0.21

All feature and

hyperparameter tuning

0.95 0.66 0.95 0.95 0.93 0.21

Feature selection and

hyperparameter tuning

0.94 0.66 0.92 0.94 0.92 0.21

DeepFM Default 0.60 0.46 0.89 0.60 0.71 6.31

All feature and

hyperparameter tuning

0.60 0.46 0.89 0.60 0.71 6.30

Feature selection and

hyperparameter tuning

0.60 0.46 0.89 0.60 0.71 6.31

Stacking –

logistic

regression

Default 0.95 0.67 0.95 0.95 0.93 0.19

All feature and

hyperparameter tuning

0.95 0.66 0.95 0.95 0.93 0.19

Feature selection and

hyperparameter tuning

0.95 0.67 0.95 0.95 0.92 0.20

Model baseline – logistic regression 0.85 0.52 0.89 0.85 0.87 0.68

The GBDT model showed consistent performance across different configurations. The default

model had an accuracy of 0.95 and an AUC-ROC of 0.66, with a weighted average F1-score of 0.93.

Hyperparameter tuning using all features did not significantly alter these metrics, indicating that GBDT

model was already well-optimized. After feature selection, the weighted average F1-score slightly decreased

to 0.92, while accuracy and AUC-ROC remained stable, reflecting robustness to feature changes. The log

loss for this model remained low at 0.21 across all configurations, indicating high confidence in its

predictions.

In contrast, the DeepFM model struggled in all scenarios, which contradicts Huang’s [11] findings

in predicting repeat order customers compared to decision tree-based models like random forest and GBDT.

Whether using default settings, hyperparameter tuning using all feature, or hyperparameter tuning using

feature selection, accuracy stayed at 0.60, and AUC-ROC remained low at 0.46. The consistent weighted

average F1-score of 0.71 and high log loss values, ranging from 6.30 to 6.31, indicated significant challenges

in dealing with class imbalance, suggesting that DeepFM may not be ideal for such tasks.

The stacking model using logistic regression as the meta-learner consistently outperformed other

models, aligning with earlier studies by [12], [15], [19], [21], which demonstrated that ensemble methods

typically offer superior predictive performance. The default stacking model achieved an accuracy of 0.95 and

an AUC-ROC of 0.67. While hyperparameter tuning with all features slightly decreased the AUC-ROC to

0.66, accuracy and the weighted average F1-score remained high at 0.95 and 0.93, respectively. After feature

selection, the AUC-ROC improved back to 0.67, though the weighted average F1-score slightly decreased to

0.92. This highlights the stacking model’s strength in managing class imbalance and delivering accurate,

balanced predictions. Notably, the log loss of the stacking model was the lowest across all models, reaching

0.19, which indicates superior reliability in its probability predictions.

Compared to the baseline logistic regression, which had an accuracy of 0.85 and an AUC-ROC of

0.52, the advanced models demonstrated significant improvements. The baseline’s weighted average

F1-score of 0.87 and log loss of 0.68 further underscore the benefits of using more complex models like

random forest, GBDT, and especially stacking with logistic regression, which delivered superior performance

across various metrics.

Overall, the stacking model with logistic regression as the meta-learner delivered the best

performance, consistently achieving high accuracy, weighted average F1-scores, and low log loss across all

configurations. While the random forest model showed significant improvement after feature selection and

hyperparameter tuning, it still fell short compared to the GBDT and stacking models. The DeepFM model

consistently underperformed across all configurations. Although the baseline model was less powerful, it

provided a useful benchmark, highlighting the performance gains offered by more advanced models.

Int J Inf & Commun Technol ISSN: 2252-8776 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured)

29

The application of backward feature elimination and hyperband was particularly effective in

enhancing the random forest model, showing that these methods can improve model performance by

optimizing feature selection and configuration. However, for the GBDT, performance remained robust and

stable, even with minimal adjustments. Unfortunately, these methods did not significantly enhance the

performance of the DeepFM model. Stacking methods across the models did not substantially increase

accuracy but provided consistent and stable performance.

4. CONCLUSION

This research conducted experiments to develop predictive models for converting leads into repeat

order customers, using random forest, GBDT, and DeepFM. Model optimization was performed through

feature selection using backward feature elimination and hyperparameter tuning with hyperband. These

processes were particularly important given the imbalanced nature of the dataset, as they aimed to enhance

the models’ ability to handle class imbalance effectively. Additionally, the exploration of stacking models

was carried out, with logistic regression as the meta-learner. The performance of these models on the test

data was also compared with a baseline model using logistic regression to enrich the analysis of model

performance. The results indicate that the Stacking model using the default base model configuration stands

out as the most robust, achieving the highest scores in accuracy (0.95), AUC-ROC (0.67), log loss (0.19),

weighted average precision (0.95), weighted average recall (0.95), and weighted average F1-score (0.93),

effectively handling the imbalanced dataset.

To address the data imbalance, SMOTEENN was applied, but the challenge persisted, particularly

affecting the DeepFM model’s performance. Given this underperformance, future research should explore

alternative models like DeepForest, DeepGBM, and other neural networks, which may be better suited for

predicting repeat order customers. Additionally, further studies could investigate more nuanced data-level

preprocessing methods, such as ADASYN or SMOTETomek, and hybrid approaches that integrate over-

sampling, under-sampling, and ensemble techniques. While methods like backward feature elimination and

hyperband offered some improvements, especially in handling class imbalance, their impact was limited.

Thus, future research could benefit from techniques like recursive feature elimination, Lasso, Bayesian

optimization, or AutoML to enhance model accuracy and better address class imbalance.

The stacking approach with logistic regression as the meta-learner did not yield significant

performance improvements, suggesting that exploring different stacking combinations and meta-learners

could be beneficial. Future studies should focus on refining these techniques and applying them to practical

CRM scenarios to better manage and increase repeat customer orders. By addressing these areas, future

research can contribute to more accurate predictive models and offer valuable insights for businesses

conventional aiming to optimize their CRM strategies and boost customer retention.

REFERENCES
[1] “Market Research Report 2022,” Fortune Business Insight, 2023. https://www.fortunebusinessinsights.com/customer-

relationship-management-crm-market-103418 (accessed Jul. 19, 2023).

[2] Reichheld F F, “The one number you need to grow,” Harvard Business Review, vol. 81, no. 12, pp. 46–54, 2004.

[3] B. Zhao, A. Takasu, R. Yahyapour, and X. Fu, “Loyal Consumers or one-time deal hunters: repeat buyer prediction for

E-commerce,” in 2019 International Conference on Data Mining Workshops (ICDMW), Nov. 2019, pp. 1080–1087, doi:

10.1109/ICDMW.2019.00158.

[4] V. Arun, “Machine learning techniques for customer relationship management,” International Journal of Creative Research

Thoughts (IJCRT), vol. 9, no. 6, pp. 753–763, 2021.

[5] Y. Benhaddou and P. Leray, “Customer relationship management and small data - application of bayesian network elicitation

techniques for building a lead scoring model,” in 2017 IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA), Oct. 2017, pp. 251–255, doi: 10.1109/AICCSA.2017.51.

[6] R. Nygård and J. Mezei, “Automating lead scoring with machine learning: an experimental study,” in Proceedings of the Annual

Hawaii International Conference on System Sciences, 2020, vol. 2020-January, pp. 1439–1448, doi: 10.24251/hicss.2020.177.

[7] P. Espadinha-Cruz, A. Fernandes, and A. Grilo, “Lead management optimization using data mining: A case in the

telecommunications sector,” Computers & Industrial Engineering, vol. 154, p. 107122, Apr. 2021, doi: 10.1016/j.cie.2021.107122.

[8] S. B. Ayaz, “Lead Scoring with machine learning,” University of Applied Sciences, 2023.

[9] L. Yang, J. Wu, X. Niu, and L. Shi, “Towards purchase prediction: a voting-based method leveraging transactional information,”

in 2022 5th International Conference on Data Science and Information Technology (DSIT), Jul. 2022, pp. 1–5, doi:

10.1109/DSIT55514.2022.9943898.

[10] S. Mortensen, M. Christison, B. Li, A. Zhu, and R. Venkatesan, “Predicting and defining B2B sales success with machine learning,” in

2019 Systems and Information Engineering Design Symposium (SIEDS), Apr. 2019, pp. 1–5, doi: 10.1109/SIEDS.2019.8735638.

[11] S. Huang, “AI-based repeat buyers prediction system using deep learning,” in 2021 6th International Conference on Intelligent

Computing and Signal Processing (ICSP), Apr. 2021, pp. 800–806, doi: 10.1109/ICSP51882.2021.9408760.

[12] D. Xu, W. Yang, and L. Ma, “Repurchase prediction based on ensemble learning,” in 2018 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Oct. 2018,

pp. 1317–1322, doi: 10.1109/SmartWorld.2018.00229.

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 1, April 2025: 20-30

30

[13] W. Zhang and M. Wang, “An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior,” PLOS

ONE, vol. 16, no. 9, p. e0255906, Sep. 2021, doi: 10.1371/journal.pone.0255906.

[14] E. Kuric, A. Puskas, P. Demcak, and D. Mensatorisova, “Effect of low-level interaction data in repeat purchase prediction task,”

International Journal of Human–Computer Interaction, vol. 40, no. 10, pp. 2515–2533, May 2024, doi:

10.1080/10447318.2023.2175973.

[15] M. Zhang, J. Lu, N. Ma, T. C. E. Cheng, and G. Hua, “A feature engineering and ensemble learning based approach for repeated

buyers prediction,” International Journal Of Computers Communications & Control, vol. 17, no. 6, Dec. 2022, doi:

10.15837/ijccc.2022.6.4988.

[16] Y. Li and C. You, “Brand loyalty measurement model based on machine learning clustering algorithm,” Journal of Physics:

Conference Series, vol. 1982, no. 1, p. 012089, Jul. 2021, doi: 10.1088/1742-6596/1982/1/012089.

[17] A. H. Kazmi, G. Shroff, and P. Agarwal, “Generic framework to predict repeat behavior of customers using their transaction

history,” in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Oct. 2016, pp. 449–452, doi:

10.1109/WI.2016.0072.

[18] M. R. Machado, S. Karray, and I. T. de Sousa, “LightGBM: an effective decision tree gradient boosting method to predict

customer loyalty in the finance industry,” in 2019 14th International Conference on Computer Science & Education (ICCSE),

Aug. 2019, pp. 1111–1116, doi: 10.1109/ICCSE.2019.8845529.

[19] Y. Shen, X. Xu, and J. Cao, “Reconciling predictive and interpretable performance in repeat buyer prediction via model

distillation and heterogeneous classifiers fusion,” Neural Computing and Applications, vol. 32, no. 13, pp. 9495–9508, Jul. 2020,

doi: 10.1007/s00521-019-04462-9.

[20] X. Zhai, P. Shi, L. Xu, Y. Wang, and X. Chen, “Prediction model of user purchase behavior based on machine learning,” in 2020

IEEE International Conference on Mechatronics and Automation (ICMA), Oct. 2020, pp. 1483–1487, doi:

10.1109/ICMA49215.2020.9233677.

[21] H. Zhang and J. Dong, “Prediction of repeat customers on E-commerce platform based on blockchain,” Wireless Communications

and Mobile Computing, vol. 2020, pp. 1–15, Aug. 2020, doi: 10.1155/2020/8841437.

[22] P. Gokhale and P. Joshi, “A binary classification approach to lead identification and qualification,” in Smart Trends in

Information Technology and Computer Communications: Second International Conference, SmartCom 2017, 2018, pp. 279–291,

doi: 10.1007/978-981-13-1423-0_30.

[23] K. Sangaralingam, N. Verma, A. Ravi, S. W. Bae, and A. Datta, “High value customer acquisition & retention modelling – a

scalable data mashup approach,” in 2019 IEEE International Conference on Big Data (Big Data), Dec. 2019, pp. 1907–1916, doi:

10.1109/BigData47090.2019.9006106.

[24] G. Mariscal, Ó. Marbán, and C. Fernández, “A survey of data mining and knowledge discovery process models and

methodologies,” The Knowledge Engineering Review, vol. 25, no. 2, pp. 137–166, Jun. 2010, doi: 10.1017/S0269888910000032.

[25] P. Chapman et al., “The CRISP-DM user guide,” in 4th CRISP-DM SIG Workshop in Brussels in March, 1999, p. 14.

[26] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, “Data level preprocessing methods,” in Learning

from Imbalanced Data Sets, Cham: Springer International Publishing, 2018, pp. 79–121.

[27] M. Lin, X. Zhu, T. Hua, X. Tang, G. Tu, and X. Chen, “Detection of ionospheric scintillation based on XGBoost model improved

by SMOTE-ENN technique,” Remote Sensing, vol. 13, no. 13, p. 2577, Jul. 2021, doi: 10.3390/rs13132577.

[28] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, A. Rostamizadeh, and A. Talwalkar, “Hyperband: a novel

bandit-based approach to hyperparameter optimization,” Journal of Machine Learning Research, vol. 18, no. 185, pp. 1–52, 2016.

BIOGRAPHIES OF AUTHORS

Deryan Everestha Maured received her first degree from Bina Nusantara

University, Information System, Jakarta, in 2019. She is currently a master’s degree student at
Bina Nusantara University, Master of Computer Science, Jakarta. Her main research interests

focus on natural language processing, machine learning, data science, text mining, and

recommendation system. She can be contacted at email: deryan.maured@binus.ac.id.

Gede Putra Kusuma received Ph.D. degree in Electrical and Electronic

Engineering from Nanyang Technological University (NTU), Singapore, in 2013. He is

currently working as a Lecturer and Head of Department of Master of Computer Science,

Bina Nusantara University, Indonesia. Before joining Bina Nusantara University, he was
working as a Research Scientist in I2R – A*STAR, Singapore. His research interests include

computer vision, deep learning, face recognition, appearance-based object recognition,

gamification of learning, and indoor positioning system. He can be contacted at email:

inegara@binus.edu.

https://orcid.org/0009-0003-8485-8994
https://scholar.google.com/citations?user=44B48dMAAAAJ&hl=en&oi=ao
https://www.webofscience.com/wos/author/record/24874
https://orcid.org/0000-0003-4241-997X
https://scholar.google.com/citations?user=82k9-SkAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=24474615100
https://www.webofscience.com/wos/author/record/24874

