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 In the competitive business landscape, customer relationship management 

(CRM) is pivotal for managing customer relationships. Lead generation and 

customer retention are critical aspects of CRM as they contribute to 
sustaining business growth and profitability. Also, identifying and 

converting leads into repeat customers is essential for optimizing revenue 

and minimizing promotional costs. This study focuses on developing a 

predictive model using machine learning techniques to convert leads into 
repeat order customers in conventional businesses. Leveraging data from a 

motorcycle distribution company in Jakarta and Tangerang, the study 

compares the performance of various models for predicting repeat orders. 

This includes individual models like DeepFM, random forest, and gradient 
boosting decision tree models. Additionally, it explores the effectiveness of 

stacking these models using logistic regression as a meta-learner. 

Furthermore, the study implements backward feature elimination for feature 

selection and hyperband for hyperparameter tuning to enhance model 
performance. The results indicate that Stacking model using base model 

default configuration stands out as the most robust, achieving the highest 

scores in accuracy (0.95), area under the curve receiver-operating 

characteristic curve (AUC-ROC) (0.67), log loss (0.19), weighted average 
precision (0.95), weighted average recall (0.95), and weighted average F1-

score (0.92), effectively handling the imbalanced dataset. 
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1. INTRODUCTION 

In the competitive business landscape, customer relationship management (CRM) plays a vital role 

in managing customer relationships, with lead generation and customer retention being key components. 

According to the market research report, approximately 27.8% of CRM usage is dedicated to these areas [1]. 

A survey conducted in the United States reveals that enhancing performance through CRM customer 

analytics has led to a 58% increase in customer retention or loyalty [2]. Leads represent prospective 

customers or prospects showing interest in a company's products or services. Managing leads within CRM 

systems helps companies identify and prioritize potential leads for conversion into new or repeat order 

customers. Retaining existing customers is crucial for long-term success, as customers who engage in repeat 

orders hold significant value in terms of retention and business revenue. Therefore, identifying customers 
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who can be converted into repeat order customers is imperative, as it reduces promotional costs and increases 

return on investment (ROI) [3]. 

The integration of machine learning techniques has emerged as a powerful tool in enhancing CRM 

effectiveness, particularly in optimizing lead management through the identification of potential customers 

[4]. Various machine learning models, including basic classifiers, ensemble models, and fusion models, have 

been applied to construct predictive models for repeat order customers. Benhaddou and Leray [5] developed 

lead scoring models using Bayesian networks, which leveraged heuristics and expert knowledge to achieve 

significant precision, recall, and accuracy. Nygård and Mezei [6] automated lead assessment using machine 

learning algorithms, highlighting random forest's superiority in controlling biases and optimizing neural 

network models. 

In a similar vein, Espadinha-Cruz et al. [7] focused on enhancing lead management efficiency by 

comparing algorithms and leveraging ensemble regression models for improved accuracy. Ayaz [8] 

compared machine learning models for lead scoring, emphasizing the significance of feature selection and 

hyperparameter tuning in decision tree-based models. Arun [4] underscored the role of data analysis and 

machine learning in CRM, highlighting the importance of predictive accuracy in understanding customer 

behavior and optimizing prospect scores. Yang et al. [9] develops a dynamic, data-driven framework for 

predicting repeat purchases using a voting-based method with transactional data, showing that the integration 

of extreme gradient boosting (XGB) and light gradient boosting machine (LGBM) yields the best 

performance. Mortensen et al. [10] proposed classification models for predicting prospect success, with 

random forest outperforming others. 

Moreover, Huang [11] compared predictive models for repeat buyer behavior, highlighting 

DeepFM's accuracy and LightGBM's training speed. Ensemble techniques proposed by Xu et al. [12] and 

Zhang and Wang [13] significantly enhanced model robustness and accuracy. The use of low-level 

interaction data [14], feature engineering [15]-[17], deep learning ensemble models [18], model distillation, 

and fusion techniques [19], [20], as well as vote stacking methods [21], further improved model accuracy and 

interpretability. Gokhale and Joshi [22] and Sangaralingam et al. [23] explored optimal classification 

algorithms for lead potential and supervised learning for customer identification, respectively, highlighting 

the importance of accurate modeling in CRM strategies and business decision-making.  

These studies collectively showcase the diverse methodologies and approaches in lead scoring and 

customer prediction, emphasizing the critical role of feature engineering, model optimization, and algorithm 

selection in driving effective CRM strategies and business outcomes. Recent research has particularly 

highlighted the benefits of exploring DeepFM models, which have demonstrated superior performance in 

predicting repeat order customers compared to decision tree-based models like random forest and gradient 

boosting [11]. However, much of the prior research has focused on assessing customer potential within the  

e-commerce domain and has not thoroughly examined the benefits of feature selection and hyperparameter 

tuning for enhancing model performance, especially in scenarios involving class imbalance and optimization 

of predictive accuracy. 

Given these findings, this study aims to compare three types of machine learning models DeepFM, 

random forest, and gradient boosting decision tree (GBDT). It applies feature selection through backward 

feature elimination and hyperparameter tuning using hyperband, while also exploring the effectiveness of 

stacking these models using logistic regression as a meta-learner. The goal is to enhance the accuracy of 

predictive models for lead conversion into repeat order customers in conventional business settings. This 

study adopts a case study approach focused on a company operating in the motorcycle distribution sector in 

the Jakarta and Tangerang regions. The company needs to manage its lead data (outbound leads) to identify 

those with the potential to become repeat order customers based on attributes such as demographics and 

consumer behavior. 

 

 

2. RESEARCH METHOD 

The conceptual framework of this research is illustrated in Figure 1. This research adopts the cross-

industry standard process for data mining (CRISP-DM) framework, widely recognized for its effectiveness in 

tackling various challenges encountered in data mining projects within industrial environments [24]. CRISP-

DM encompasses six key stages: business understanding, data understanding, data preparation, modelling, 

evaluation, and deployment [25]. In this research, the CRISP-DM framework is utilized up to the evaluation 

stage, with each stage detailed in subsections 2.1 to 2.5. 

The research begins with business understanding, focusing on identifying key business objectives by 

analyzing data from the customer database (CDB) to understand the factors that drive repeat orders. 

Following this, data understanding involves collecting and exploring the data to assess its quality and 

uncover relevant patterns. In the data preparation stage, the data is cleaned and transformed to ensure it is 

ready for modeling. During modeling, algorithms such as random forest, GBDT, and DeepFM are applied to 
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build predictive models. Further model optimization is conducted through feature selection using backward 

feature elimination, hyperparameter tuning using hyperband, and stacking models using logistic regression as 

meta-learner to enhance performance. The models are then evaluated in the evaluation stage using 

performance metrics to select the most robust model. Finally, the determining the best model stage identifies 

the most suitable model, which is then used as the predictive model to identify leads likely to become repeat 

customers. 

 

 

 
 

Figure 1. The conceptual framework 

 

 

2.1.  Business understanding 

Based on the business regulations within the company at the research case study location, a repeat 

order consumer is defined as a customer who purchases a motorcycle more than once from the same dealer. 

However, to aid lead generation, particularly concerning repeat order consumers (RO), a list of customers 

who have purchased motorcycles more than once from different dealers will also be considered as leads for 

follow-up by the dealers from previous purchases. Lead generation is also based on individual customer type 

and customers aged over 17 years old. Hence, the labelling process for model development data is 

categorized as follows: i) positive class (1): repeat order consumers, meaning customers who have purchased 

motorcycles more than once; and ii) negative class (0): consumers who do not make repeat orders. 

 

2.2.  Data understanding 

The dataset used in this research consists of the customer database (CDB), which includes invoice 

data and motorcycle information from the company at the case study location. This dataset covers the period 

from 2018 to 2022 and totals 1,474,369 records. The invoice data captures the transactions of motorcycle 

purchases made by customers and is stored in a table named MOHONFAKTUR, with field information 

detailed in Table 1.  

Additionally, the motor prices table in Table 2 stores motorcycle information, including the model 

code (KD_MDL), original model code (KD_MDL_ASAL), motor number (NO_MTR), motor series name 

(NM_MTR), motor category (CUB_SPORT), and motor price (MTR_HRGJUAL).  

From the combination of these two datasets, the features used in the data preparation stage consist of 

16 features: 4 numerical (CICILAN, DP, JML_ANGSURAN, MTR_HRGJUAL), 8 categorical (JNS_KLM, 

JNS_JUAL, STS_RUMAH, TUJU_PAKAI, KODE_KERJA, CUB_SPORT, KODE_DIDIK, 

KELUAR_BLN), and 4 object features (TGL_MOHON, NO_DLRP, NO_KTPNPWP, TGL_LAHIR). 
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Table 1. Structure of MOHONFAKTUR table 
Attribute group Field Field description Data Type 

Customer profile KODE_DIDIK Customer education code Object – ordinal categorical 

KODE_KERJA Customer job Code Object – nominal categorical 

STS_RUMAH Customer home status code Object – nominal categorical 

KELUAR_BLN Range of spending money per month Object – ordinal categorical 

Deal behaviour TGL_MOHON Transaction date Object 

JNS_JUAL Transaction method Int64 – nominal categorical 

KD_MDL Unique purchased motorbike model code Object 

NO_MTR Unique purchased motorbike code Object 

NO_DLRP Unique dealer code (customer purchase location) Object 

DP Nominal amount of down payment Int64 

CICILAN The nominal installment amount Int64 

JML_ANGSURAN Tenor amount in months Int64 

TUJU_PAKAI Code of the intended use of the motorbike purchased Object – nominal categorical 

THN_MTR Year motor purchased Object 

Customer Identity NO_KTPNPWP Customer unique IDE Object 

NM1_MOHON Customer name Object 

NO_RGK Unique motorbike frame number code Object 

NO_MSN Unique motorbike engine number code Object 

NO_HP Consumer telephone number Object 

JNS_BELI Types of consumers Object 

TGL_LAHIR Consumer's date of birth Object 

GENDER Gender Int64 – nominal categorical 

 

 

Table 2. Structure of motor prices table 
Field Field description Data type 

KD_MDL Unique motorbike model code Object 

KD_MDL_ASAL Unique code for original motorbike model Object 

NO_MTR Unique motorbike code Object 

NM_MTR Motor series name Object 

CUB_SPORT Motorcycle category Object – nominal categorical 

MTR_HRGJUAL Motorcycle selling price Int64 

 

 

2.3.  Data preparation 

The data preparation stage involved several crucial steps to ensure the quality and reliability of the 

dataset used for the predictive model. These steps included data integration, data transformation, handling 

missing values, identifying abnormal users, splitting the data, and addressing imbalanced data. Each of these 

processes was carefully executed to maintain the integrity of the data, ultimately leading to better model 

performance. 

Data integration was the first step, where motorcycle purchase invoice data (Table 1) was combined 

with motorcycle information data (Table 2). The integration was achieved by matching the model code 

(KD_MDL) in the invoices with the original model code (KD_MDL_ASAL) in the motorcycle information 

data. This step ensured that all relevant data was linked and could be used cohesively for further analysis.  

Next, the data transformation process was undertaken to convert and modify the data into a format 

more suitable for analysis and modeling. This involved converting certain fields, such as TGL_MOHON and 

TGL_LAHIR, from object types to datetime, standardizing other object types to integers, and replacing 

specific string values with numeric ones in fields like KODE_DIDIK, KODE_KERJA, STS_RUMAH, 

TUJU_PAKAI, and JML_ANGSURAN. Additionally, new variables were created, including purchasing 

behavior attributes (e.g., buying cycle, recency, total purchases, total amount spent, and average spending per 

purchase) and age categories, while categorical variables such as JNS_KLM, JNS_JUAL, STS_RUMAH, 

TUJU_PAKAI, KODE_KERJA, KATEGORI_USIA, and CUB_SPORT were transformed into one-hot 

encoding for better model interpretation. Moreover, numeric variables were transformed using logarithmic 

and squared transformations to enhance feature richness, such as CICILAN, DP, JML_ANGSURAN, 

JML_ANGSURAN_MEAN, mtr_hrgjual, BUYING_CYCLE, RECENCY, AVG_TOTAL_SPENT, 

JML_PEMBELIAN. 

Handling missing values was a critical step to ensure that the dataset was complete and accurate. 

Missing values can significantly disrupt analysis and modeling, so null or NaN values in specific fields like 

KODE_DIDIK and RECENCY were replaced with 0. This replacement prevented potential errors in the 

modeling process and ensured that all records were fully utilized. 

Identifying abnormal users involved cleaning the data to remove potentially invalid or mistyped 

entries, particularly in the NO_KTPNPWP field. Records with incorrect or suspicious NO_KTPNPWP 

values were deleted, and data was filtered to include only customers aged 17 and above. This step was crucial 
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to maintaining the accuracy and consistency of the dataset, which in turn ensured more reliable analysis and 

modeling outcomes. 

The data was then split into training and testing sets to facilitate model training and evaluation. The 

dataset was divided with 80% allocated to training and 20% to testing, and the training set was further split 

using 4-fold cross-validation. This approach helped prevent overfitting and ensured that the model’s 

predictions would be consistent and generalizable. 

Finally, the issue of imbalanced data was addressed using SMOTEENN, a combination of synthetic 

minority over-sampling technique (SMOTE) and edited nearest neighbors (ENN) [26]. This method helped to 

balance the distribution of classes by generating synthetic samples for the minority class and refining the 

dataset by removing noisy samples from the majority class. SMOTEENN is highly effective in handling 

imbalanced data and significantly enhances model accuracy [27]. In this research, SMOTE was configured 

with sampling_strategy='auto' to balance the minority class with the majority class, and k_neighbors=5 to 

determine the number of nearest neighbors for synthesizing new samples. ENN was applied with 

sampling_strategy='all' to remove noise from all classes, ensuring a cleaner dataset. To ensure consistent 

results, SMOTE and ENN set the seed for the random number generator using random_state=42. Applying 

SMOTEENN to the training data resulted in significant changes in the class distribution. Before resampling, 

the dataset contained 864,039 samples, with the majority class (non-repeat order) having 815,870 samples 

and the minority class (repeat order) only 48,169 samples. After applying SMOTEENN, the total number of 

samples was reduced to 715,697, with the majority class reduced to 480,975 samples and the minority class 

increased to 234,722 samples. Although SMOTEENN did not achieve perfect balance, the more equal 

distribution improved the model’s ability to accurately predict the minority class. After completing all these 

data preparation steps, the dataset was refined to include 78 final features and a total of 1,080,049 records. 

These features, which are essential for the modeling process, are detailed in Table 3. This prepared dataset 

provided a strong foundation for building a reliable and effective predictive model. 
 

 

Table 3. The features used as input for modeling process 
Numerical feature Categorical feature 

CICILAN, DP, JML_ANGSURAN, 

JML_ANGSURAN_MEAN, mtr_hrgjual,  

BUYING_CYCLE, RECENCY, TOTAL_SPENT, 

JML_PEMBELIAN, CICILAN_DP_ratio, 

JML_ANGSURAN_TOTAL_SPENT_ratio, 

RECENCY_BUYING_CYCLE_ratio, CICILAN_log, 

DP_log, JML_ANGSURAN_log, 

JML_ANGSURAN_MEAN_log, mtr_hrgjual_log, 

BUYING_CYCLE_log, RECENCY_log, 

TOTAL_SPENT_log, JML_PEMBELIAN_log, 

CICILAN_squared, DP_squared, 

JML_ANGSURAN_squared, 

JML_ANGSURAN_MEAN_squared, mtr_hrgjual_squared, 

BUYING_CYCLE_squared, RECENCY_squared, 

TOTAL_SPENT_squared, JML_PEMBELIAN_squared, 

TOTAL, LABEL 

JNS_KLM_0, JNS_KLM_1, JNS_KLM_2, JNS_JUAL_1, 

JNS_JUAL_2, STS_RUMAH_0, STS_RUMAH_1, 

STS_RUMAH_2, STS_RUMAH_3, TUJU_PAKAI_0, 

TUJU_PAKAI_1, TUJU_PAKAI_2, TUJU_PAKAI_3, 

TUJU_PAKAI_4, TUJU_PAKAI_5, TUJU_PAKAI_6, 

TUJU_PAKAI_7, KODE_KERJA_0, KODE_KERJA_1, 

KODE_KERJA_2, KODE_KERJA_3, KODE_KERJA_4, 

KODE_KERJA_5, KODE_KERJA_6, KODE_KERJA_7, 

KODE_KERJA_8, KODE_KERJA_9, KODE_KERJA_10, 

KODE_KERJA_11, KODE_KERJA_12, KODE_KERJA_13, 

KODE_KERJA_14, KODE_KERJA_15, KODE_KERJA_16, 

CUB_SPORT_1, CUB_SPORT_2, CUB_SPORT_3, 

KATEGORI_USIA_1, KATEGORI_USIA_2, 

KATEGORI_USIA_3, KATEGORI_USIA_4, 

KATEGORI_USIA_5, KATEGORI_USIA_6, 

KATEGORI_USIA_7, KODE_DIDIK, KELUAR_BLN 

 

 

2.4.  Modeling 

The development of the predictive model involved three machine learning models: random forest, 

GBDT, and DeepFM. The dataset was split into 80% for training and 20% for testing. Initially, these models 

were trained with default parameters, followed by optimization to enhance performance. Cross-validation 

was performed using k-fold (k=4) on the training data. For each fold, the training data was split into k 

subsets, and SMOTEENN was applied to balance the data within the current fold. The models were then 

trained on the balanced k-1 subsets and validated on the remaining subset. Performance metrics were 

recorded for each fold, and the best-performing fold was identified based on these metrics. The model was 

retrained using this best-performing fold and subsequently used to make predictions on the test data, ensuring 

robustness. Additionally, optimization included feature selection through backward feature elimination and 

hyperparameter tuning using hyperband to identify the best features and parameters for each model. 

Following the individual model training, a stacking process was implemented, with logistic regression 

serving as the meta-learner to further enhance predictive accuracy. 
 

2.4.1. Model random forest 

Random forest is an ensemble learning method used for classification and regression tasks. Its 

operation involves building multiple decision trees during the training phase and combining their predictions 



Int J Inf & Commun Technol  ISSN: 2252-8776  

 

 Predictive model for converting leads into repeat order customer … (Deryan Everestha Maured) 

25 

to make the final prediction. Each decision tree is constructed using a random subset of the training data and 

random subset of features, introducing diversity and reducing overfitting [8]. In this research, random forest 

model was constructed using the RandomForestClassifier library with default parameters: max_depth=5, 

n_jobs=-1, oob_score=True, and random_state=42.  

 

2.4.2. Model gradient boosting decision tree 

GBDT is an ensemble model used for regression and classification tasks. This model constructs 

multiple weak learners (usually decision trees) sequentially, where each tree attempts to correct the errors 

made by the preceding one. This process continues until a predetermined number of learners is created or 

until certain stopping criteria are met. This is achieved by minimizing the loss function (method parameter) 

with each base model added [14]. In this research, GBDT model was constructed using the 

GradientBoostingClassifier library with default parameters: max_depth=5, n_estimators=100, 

oob_score=True, and random_state=42. 

 

2.4.3. Model DeepFM 

DeepFM is a hybrid model that effectively captures low-order and high-order feature interactions by 

combining the linear component of factorization machines (FM) and deep neural network (DNN) [11]. The 

DeepFM model structure consist of several components: the linear component (sparse feature and dense 

embedding), the factorization machine layer component, the deep neural network component (hidden layer). 

The linear component deals with categorical features, encoding them into both sparse feature space and dense 

embedding vectors. It captures linear interactions by summing sparse feature values and calculating dot 

products of dense embeddings. The FM layer focuses on pairwise interactions, computing the inner product 

of feature embeddings to capture interactions between different features. The DNN component captures high-

order interactions through multiple layers of neural networks, learning complex patterns and feature 

representations. It processes dense embeddings and predicts the target variable using non-linear 

transformations.  

 

2.4.4. Model optimization 

Model optimization in this research involved several techniques, starting with feature selection 

using backward feature elimination. In this method, a significance level (SL) of 0.05 was set, corresponding 

to a 95% confidence level. The p-value was calculated for each feature, and any feature with a p-value 

greater than the significance level was removed. If a feature’s p-value did not exceed the significance level, 

the elimination process was halted. This iterative approach continued until no additional features met the 

removal criteria, ultimately reducing the number of features from 78 to 59, as shown in Table 4.  

 

 

Table 4. Final feature after feature selection 
Numerical feature Categorical feature 

CICILAN, DP, JML_ANGSURAN, 

JML_ANGSURAN_MEAN, mtr_hrgjual, 

BUYING_CYCLE, RECENCY, TOTAL_SPENT, 

CICILAN_log, DP_log, JML_ANGSURAN_log, 

JML_ANGSURAN_MEAN_log, 

BUYING_CYCLE_log, RECENCY_log, 

TOTAL_SPENT_log, CICILAN_squared, 

DP_squared, JML_ANGSURAN_squared, 

JML_ANGSURAN_MEAN_squared, 

mtr_hrgjual_squared, BUYING_CYCLE_squared, 

RECENCY_squared, TOTAL_SPENT_squared, 

TOTAL 

JNS_KLM_1, JNS_KLM_2, JNS_JUAL_1, 

STS_RUMAH_1, STS_RUMAH_2, TUJU_PAKAI_1, 

TUJU_PAKAI_2, TUJU_PAKAI_3, TUJU_PAKAI_4, 

TUJU_PAKAI_5, TUJU_PAKAI_6, TUJU_PAKAI_7, 

KODE_KERJA_0, KODE_KERJA_1, KODE_KERJA_2, 

KODE_KERJA_5, KODE_KERJA_6, KODE_KERJA_7, 

KODE_KERJA_8, KODE_KERJA_11, KODE_KERJA_12, 

KODE_KERJA_13, KODE_KERJA_14, 

KODE_KERJA_15, KODE_KERJA_16, CUB_SPORT_2, 

CUB_SPORT_3, KATEGORI_USIA_1, 

KATEGORI_USIA_3, KATEGORI_USIA_4, 

KATEGORI_USIA_5, KATEGORI_USIA_7, 

KODE_DIDIK, KELUAR_BLN 

 

 

Hyperparameter tuning was also carried out using hyperband, an efficient algorithm that 

dynamically allocates resources to the most promising hyperparameter configurations, significantly reducing 

computational costs compared to traditional grid search methods [28]. In this research, hyperband was 

employed to identify the best parameters for the three models, using several parameter options listed in Table 5, 

with a hyperband configuration set at max_iteration=27 and eta=3 for each model. This tuning process was 

applied to models utilizing both the full set of features and the reduced set, with the optimal parameters 

detailed in Table 6. 

The hyperparameter tuning results revealed distinct strategies depending on feature selection. For 

the random forest model, the feature-selected version opted for a deeper tree (8 vs. 5) and the Gini criterion, 
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while the all-features model adopted more conservative settings. In the GBDT, feature selection resulted in 

fewer estimators (15 vs. 45) but deeper trees and stricter splits, indicating a more efficient learning process. 

The DeepFM model, when using feature selection, employed a smaller batch size (64 vs. 256) and a simpler 

architecture but a higher learning rate (0.7356 vs. 0.04129), suggesting faster adaptation with fewer, more 

significant features. Overall, models with feature selection were more aggressive and optimized for a smaller 

feature set, whereas models utilizing all features took a more cautious approach to prevent overfitting. 

Lastly, a stacking model approach was utilized in three variations. The first approach used base 

models (random forest, GBDT, and DeepFM) with default configurations. The second approach used base 

model that applied hyperparameter tuning using all features, and the third approach used base model that 

applied hyperparameter tuning with feature selection. This ensemble method aimed to leverage the strengths 

of each base model and improve overall prediction accuracy, particularly for predicting repeat order 

customers.  

 

 

Table 5. List of parameters to find best parameter 
Model List parameter to find best parameter 

RF 'criterion': hp.choice( 'c', ( 'gini', 'entropy' )), 'bootstrap': hp.choice( 'b', ( True, False )), 

'class_weight': hp.choice( 'cw', ( 'balanced', 'balanced_subsample', None )), 

'max_depth': hp.quniform( 'md', 2, 10, 1 ), 'max_features': hp.choice( 'mf', ( 'sqrt', 'log2', None )), 

'min_samples_split': hp.quniform( 'msp', 2, 20, 1 ),'min_samples_leaf': hp.quniform( 'msl', 1, 10, 1 ) 

GBDT 'learning_rate': hp.uniform( 'lr', 0.01, 0.2 ), 'subsample': hp.uniform( 'ss', 0.8, 1.0 ), 

'max_depth': hp.quniform( 'md', 2, 10, 1 ), 'max_features': hp.choice( 'mf', ( 'sqrt', 'log2', None )), 

'min_samples_leaf': hp.quniform( 'mss', 1, 10, 1 ), 'min_samples_split': hp.quniform( 'mss', 2, 20, 1 ) 

DeepFM ‘optimizer’: hp.choice( ‘o’, [‘rmsprop’, ‘adagrad’, ‘adamax’]), 

‘learning_rate’: hp.loguniform(‘learning_rate’, -5, 0), 

‘batch_size’: hp.choice(‘batch_size’, [64, 128, 256]), 

‘l2_reg_linear’: hp.loguniform(‘l2_reg_linear’, -10, -5), 

‘l2_reg_embedding’: hp.loguniform(‘l2_reg_embedding’, -10, -5), 

‘l2_reg_dnn’: hp.loguniform(‘l2_reg_dnn’, -10, -5), 

‘dnn_dropout’: hp.uniform(‘dnn_dropout’, 0, 0.5), 

‘dnn_activation’: hp.choice(‘dnn_activation’, [‘relu’, ‘sigmoid’, ‘tanh’]), 

‘seed’: hp.choice(‘seed’, [0,1024]), 

‘dnn_hidden_units’: hp.choice(‘dnn_hidden_units’, [(256, 128, 64), (64, 32, 16), (30, 20, 10)]) 

 

 

Table 6. The optimal parameter for each model 
Model Best parameter 

RF 'n_estimators': 5, 'bootstrap': False, 'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 

'max_features': 'log2', 'min_samples_leaf': 5, 'min_samples_split': 15 

RF (Feature Selection) 'n_estimators': 5, 'bootstrap': False, 'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 

'max_features': 'log2', 'min_samples_leaf': 8, 'min_samples_split': 6 

GBDT 'n_estimators': 45, 'learning_rate': 0.18861818786755138, 'max_depth': 4, 'max_features': None, 

'min_samples_leaf': 10, 'min_samples_split': 7, 'subsample': 0.9025409533959227 

GBDT 

(Feature Selection) 

'n_estimators': 15, 'learning_rate': 0.19080522396266575, 'max_depth': 9, 'max_features': None, 

'min_samples_leaf': 2, 'min_samples_split': 4, 'subsample': 0.9442618269109583 

DeepFM 'iterations': 9, 'batch_size': 256, 'dnn_activation': 'relu', 'dnn_dropout': 0.09398487307992287,  

'dnn_hidden_units': (256, 128, 64), 'l2_reg_dnn': 0.00015427748646839538,  

'l2_reg_embedding': 0.0006685422033088367, 'l2_reg_linear': 0.0005985209123729851, 

'learning_rate': 0.041293725390164925, 'optimizer': 'adamax', 'seed': 0 

DeepFM 

(Feature Selection) 

'iterations': 9, 'batch_size': 64, 'dnn_activation': 'relu', 'dnn_dropout': 0.043312236659931225, 

'dnn_hidden_units': (30, 20, 10), 'l2_reg_dnn': 7.363305306789893e-05, 

'l2_reg_embedding': 0.0014565149402621209, 'l2_reg_linear': 0.0012858385266040664, 

'learning_rate': 0.7355648719703358, 'optimizer': 'adamax', 'seed': 1024 

 

 

2.5.  Evaluation 

The performance evaluation in cases of class imbalance in this research will focus on several key 

metrics: accuracy, AUC-ROC, log loss, weighted average precision, weighted average recall, and weighted 

average F1-score. These metrics are crucial for providing a comprehensive and fair assessment of the 

model’s ability to handle class imbalance. By evaluating these metrics, we can determine how well the model 

differentiates between majority and minority classes and ensure that the predictions are not biased towards 

the majority class. Accuracy measures how successful a classification model is at making correct predictions. 

For binary classification, accuracy can be calculated using (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (1) 
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AUC-ROC measures the classification model's performance in distinguishing between positive and 

negative classes. The ROC curve is a graph that illustrates the relationship between the true positive rate 

(Recall) and false positive rate at various prediction thresholds. AUC-ROC calculates the area under the ROC 

curve. The AUC-ROC value ranges from 0 to 1, where a value closer to 1 indicates that the model is better at 

distinguishing between positive and negative classes, the formula is defined as (2). 

 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 =  
∑ 𝑖𝑛𝑠𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑙𝑎𝑠𝑠 𝑟𝑎𝑛𝑘𝑖𝑛𝑠𝑖−

𝑀∗(𝑀+1)

2

𝑀∗𝑁
 (2) 

 

Where 𝑟𝑎𝑛𝑘𝑖𝑛𝑠𝑖 is the serial number of the sample, M is the number of positive samples, and N is the number 

of negative samples. Log loss measures the likelihood estimation of the prediction probability, the formula is 

defined as (3). 

 

𝐿Log _𝑙𝑜𝑠𝑠 =  −
1

𝑁
 ∑ (𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) +𝑁

𝑖=1  (1 − 𝑦𝑖) log (1 − 𝑝𝑖)) (3) 

 

Precision measures the level of accuracy between the predicted results provided by the model and 

the actual available data, precision is defined as (4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4) 

 

The recall metric evaluates how well a model can recognize all accurately identified data samples in the true 

class within the dataset, recall is defined as (5). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

 

The F1-score gives a comprehensive assessment of the model's performance by incorporating both precision 

and recall into a single value, the formula is defined as (6). 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 

The weighted average provides a more accurate assessment of the model's performance in cases of 

imbalanced data. By appropriately weighting each class based on its actual distribution, the weighted average 

allows us to evaluate the model's performance by considering the relative importance of each class. Weighted 

average precision (7), recall (8), and F1-score (9) consider class imbalance by assigning weights to the 

precision, recall, and F1-score of each class based on the proportion of that class in the dataset. 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1  𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖 (7) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =  ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1  𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝐶𝑙𝑎𝑠𝑠 𝑖 (8) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1𝑠𝑐𝑜𝑟𝑒 =  ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)𝑛

𝑖=1  𝑥 𝐹1𝑠𝑐𝑜𝑟𝑒 𝐶𝑙𝑎𝑠𝑠 𝑖 (9) 

 

 

3. RESULTS AND DISCUSSION 

After completing all stages, the models were evaluated on the testing data. To enrich the analysis of 

model performance, this research also compared the results with a baseline model using logistic regression. 

This comparison aimed to assess whether the added complexity of more advanced models provided 

significant advantages over the simpler baseline model. The evaluation metrics for the three models whether 

using default settings, hyperparameter tuning using all feature, hyperparameter tuning using feature selection, 

or the baseline model are detailed in Table 7. 

For the random forest model, feature selection and hyperparameter tuning led to substantial 

improvements. The default configuration yielded an accuracy of 0.61 and an AUC-ROC of 0.66, suggesting 

moderate classification capability. Hyperparameter tuning using all features slightly improved accuracy to 

0.62, though AUC-ROC decreased to 0.65. However, after feature selection, accuracy increased significantly 

to 0.76, and the weighted average F1-score rose to 0.82, indicating enhanced performance in handling class 

imbalance and generating more accurate predictions. Additionally, the log loss metric decreased from 0.49 in 
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the default setting to 0.41 after feature selection and tuning, reflecting an improvement in the model’s ability 

to produce well-calibrated probability estimates. 
 
 

Table 7. The comparison of performance measurement results from all models 
Model  Accuracy AUC-

ROC 

Weighted 

avg precision 

Weighted 

avg recall 

Weighted avg 

F1-score 

Log 

loss 

Random 

forest 

Default 0.61 0.66 0.92 0.61 0.71 0.49 

All feature and 

hyperparameter tuning 

0.62 0.65 0.92 0.62 0.72 0.51 

Feature selection and 

hyperparameter tuning 

0.76 0.66 0.91 0.76 0.82 0.41 

Gradient 

boosting 

decision tree 

Default 0.95 0.66 0.95 0.95 0.93 0.21 

All feature and 

hyperparameter tuning 

0.95 0.66 0.95 0.95 0.93 0.21 

Feature selection and 

hyperparameter tuning 

0.94 0.66 0.92 0.94 0.92 0.21 

DeepFM Default 0.60 0.46 0.89 0.60 0.71 6.31 

All feature and 

hyperparameter tuning 

0.60 0.46 0.89 0.60 0.71 6.30 

Feature selection and 

hyperparameter tuning 

0.60 0.46 0.89 0.60 0.71 6.31 

Stacking – 

logistic 

regression 

Default 0.95 0.67 0.95 0.95 0.93 0.19 

All feature and 

hyperparameter tuning 

0.95 0.66 0.95 0.95 0.93 0.19 

Feature selection and 

hyperparameter tuning 

0.95 0.67 0.95 0.95 0.92 0.20 

Model baseline – logistic regression 0.85 0.52 0.89 0.85 0.87 0.68 

 

 

The GBDT model showed consistent performance across different configurations. The default 

model had an accuracy of 0.95 and an AUC-ROC of 0.66, with a weighted average F1-score of 0.93. 

Hyperparameter tuning using all features did not significantly alter these metrics, indicating that GBDT 

model was already well-optimized. After feature selection, the weighted average F1-score slightly decreased 

to 0.92, while accuracy and AUC-ROC remained stable, reflecting robustness to feature changes. The log 

loss for this model remained low at 0.21 across all configurations, indicating high confidence in its 

predictions. 

In contrast, the DeepFM model struggled in all scenarios, which contradicts Huang’s [11] findings 

in predicting repeat order customers compared to decision tree-based models like random forest and GBDT. 

Whether using default settings, hyperparameter tuning using all feature, or hyperparameter tuning using 

feature selection, accuracy stayed at 0.60, and AUC-ROC remained low at 0.46. The consistent weighted 

average F1-score of 0.71 and high log loss values, ranging from 6.30 to 6.31, indicated significant challenges 

in dealing with class imbalance, suggesting that DeepFM may not be ideal for such tasks.  

The stacking model using logistic regression as the meta-learner consistently outperformed other 

models, aligning with earlier studies by [12], [15], [19], [21], which demonstrated that ensemble methods 

typically offer superior predictive performance. The default stacking model achieved an accuracy of 0.95 and 

an AUC-ROC of 0.67. While hyperparameter tuning with all features slightly decreased the AUC-ROC to 

0.66, accuracy and the weighted average F1-score remained high at 0.95 and 0.93, respectively. After feature 

selection, the AUC-ROC improved back to 0.67, though the weighted average F1-score slightly decreased to 

0.92. This highlights the stacking model’s strength in managing class imbalance and delivering accurate, 

balanced predictions. Notably, the log loss of the stacking model was the lowest across all models, reaching 

0.19, which indicates superior reliability in its probability predictions. 

Compared to the baseline logistic regression, which had an accuracy of 0.85 and an AUC-ROC of 

0.52, the advanced models demonstrated significant improvements. The baseline’s weighted average  

F1-score of 0.87 and log loss of 0.68 further underscore the benefits of using more complex models like 

random forest, GBDT, and especially stacking with logistic regression, which delivered superior performance 

across various metrics. 

Overall, the stacking model with logistic regression as the meta-learner delivered the best 

performance, consistently achieving high accuracy, weighted average F1-scores, and low log loss across all 

configurations. While the random forest model showed significant improvement after feature selection and 

hyperparameter tuning, it still fell short compared to the GBDT and stacking models. The DeepFM model 

consistently underperformed across all configurations. Although the baseline model was less powerful, it 

provided a useful benchmark, highlighting the performance gains offered by more advanced models.  
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The application of backward feature elimination and hyperband was particularly effective in 

enhancing the random forest model, showing that these methods can improve model performance by 

optimizing feature selection and configuration. However, for the GBDT, performance remained robust and 

stable, even with minimal adjustments. Unfortunately, these methods did not significantly enhance the 

performance of the DeepFM model. Stacking methods across the models did not substantially increase 

accuracy but provided consistent and stable performance. 

 

 

4. CONCLUSION 

This research conducted experiments to develop predictive models for converting leads into repeat 

order customers, using random forest, GBDT, and DeepFM. Model optimization was performed through 

feature selection using backward feature elimination and hyperparameter tuning with hyperband. These 

processes were particularly important given the imbalanced nature of the dataset, as they aimed to enhance 

the models’ ability to handle class imbalance effectively. Additionally, the exploration of stacking models 

was carried out, with logistic regression as the meta-learner. The performance of these models on the test 

data was also compared with a baseline model using logistic regression to enrich the analysis of model 

performance. The results indicate that the Stacking model using the default base model configuration stands 

out as the most robust, achieving the highest scores in accuracy (0.95), AUC-ROC (0.67), log loss (0.19), 

weighted average precision (0.95), weighted average recall (0.95), and weighted average F1-score (0.93), 

effectively handling the imbalanced dataset. 

To address the data imbalance, SMOTEENN was applied, but the challenge persisted, particularly 

affecting the DeepFM model’s performance. Given this underperformance, future research should explore 

alternative models like DeepForest, DeepGBM, and other neural networks, which may be better suited for 

predicting repeat order customers. Additionally, further studies could investigate more nuanced data-level 

preprocessing methods, such as ADASYN or SMOTETomek, and hybrid approaches that integrate over-

sampling, under-sampling, and ensemble techniques. While methods like backward feature elimination and 

hyperband offered some improvements, especially in handling class imbalance, their impact was limited. 

Thus, future research could benefit from techniques like recursive feature elimination, Lasso, Bayesian 

optimization, or AutoML to enhance model accuracy and better address class imbalance. 

The stacking approach with logistic regression as the meta-learner did not yield significant 

performance improvements, suggesting that exploring different stacking combinations and meta-learners 

could be beneficial. Future studies should focus on refining these techniques and applying them to practical 

CRM scenarios to better manage and increase repeat customer orders. By addressing these areas, future 

research can contribute to more accurate predictive models and offer valuable insights for businesses 

conventional aiming to optimize their CRM strategies and boost customer retention. 
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