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The increasing need for energy and the increasing cost of electricity have
prompted the development of smart energy optimization systems that can
help consumers reduce their electricity consumption and minimize costs.
These systems are developed on the concept of a “smart grid” which is a
digitalized and intelligent energy network that provides help in the efficient
distribution of energy. Load forecasting plays a crucial role in the precise
prediction of uncontrollable electrical load. Long-term load analysis predicts
a load of more than one year and helps in the planning of power systems
whereas short-term and medium-term load forecasting helps in the supply
and distribution of load, maintenance of load system, ensuring safety,
continuous electricity generation, and cost management. Machine learning
(ML) focuses on the development of smart energy optimization systems by
enabling intuitive decision-making and reciprocation to sudden variations in
consumer energy demands. This study focuses on the consumption of
consumer electricity and provides a solution regarding the optimized
methods that will predict future consumption based on previous data and
help in reducing costs and preserving renewable energy. This research
promotes sustainable energy usage. The use of ML models enables
intelligent decision-making and accurate predictions, making the system an
effective tool for managing electricity consumption.
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1. INTRODUCTION

A smart grid (SG) is a futuristic energy infrastructure, showcased as an advanced technique to meet
high-priority demands that creates and improves the quality of the modern human lifestyle [1]. The
importance of SG technology cannot be overstated, especially in today’s world where energy is a critical
component of increasing economy and social growth [2]. A SG enables utilities to observe and manage the
distribution of energy, allowing for optimal allocation and utilization of resources [3]. In a SG, machine
learning (ML) algorithms are used to analyze huge data generated by the grid, permitting the identification of
patterns and anomalies [4]. Additionally, ML can be used to identify areas of the grid that are at risk of
failure or outage, enabling proactive maintenance and reducing downtime. Effective management of the SG
requires a combination of human expertise and advanced technological solutions, including ML [5]-[7].
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A comparison is provided between every ML algorithm for load forecasting and the predicted trend is
analyzed with the real trend. The comparison proved that the enhanced decision tree classifier (EDTC) model
is more accurate and precise and has low loss. The accuracy of the model was 99.07% which is higher than
the other algorithms [8]. The possible benefits of using ML techniques for SG analysis, including improving
energy efficiency, reducing energy consumption, and optimizing energy management are demonstrated. The
highlights consist of the challenges associated with implementing ML techniques for SG analysis and
provides recommendations for overcoming these challenges [9]. The focus is on the energy usage reduction
in the residential area by comparison of several highly accurate forecast algorithms. The result shows a
comparison between general regression neural network (GRNN) and edited nearest neighbour (ENN) models
and also shows the electricity cost prediction [10].

This study introduces a novel multidirectional long short-term memory (MLSTM) model for
predicting the stability of SG, surpassing traditional models like gated recurrent unit (GRU), long short-term
memory (LSTM), and recurrent neural network (RNN) in accuracy, precision, and loss metrics. Tested on the
ML repository’s SG dataset, the MLSTM achieved significantly higher performance, suggesting future
exploration in context-aware models for dynamic power management [11]. Estimation of the electricity
generation in Cyprus is done by implementing four models’ artificial neural network (ANN), adaptive neuro
neutrosophic inference system (ANNIS), support vector machine (SVM), and multiple linear regression
(MLR) as long-term and short-term analysis. This research aims at better load prediction for electricity load.
In the evaluation, SVM stands out of all the models used for the long-term whereas ANN is better in the
short-term analysis [12]. For estimating the load forecasting of short-term electrical loads and mainly in load
profiles of day-ahead forecasting which are of schools, industries, supermarkets, and residential data the
methods used are support vector regression (SVR), linear regression (LR), multi layer perception (MLP),
LSTM, random forest (RF), autoregressive integrated moving average (ARIMA), and K-nearest neighbour
(KNN). Among all the methods, KNN was found to be the most suitable which is followed by SVR, LR, and
ARIMA [13]. Two models were applied and tested for the data of electric load taken from a grocery store and
library, then compared with the existing forecasting models. The logistic mixture vector autoregressive
model (LMVAR) outperforms all the models [14]. A hybrid model, combining variational mode
decomposition, SVR, self-recurrent mechanisms, chaotic mapping, and Cuckoo search algorithm
improvements, outperforms other forecasting models. This shows efficacy in fields like stock price
forecasting, offering advanced data analysis, enhanced accuracy, and effective boundary handling. Future
work aims to integrate these techniques with other algorithms for broader applications [15]. The proposed
statistical load forecasting (SLF) assesses risks in load demand profiles verified with international
organization for standardization (1SO)-New England data, this outperforms benchmarks by providing precise
prediction intervals and risk evaluations for smarter grid operations [16]. The empirical mode decomposition-
support vector regression-backpropagation in neural network (EMD-SVR-BPNN) model enhances load
forecasting accuracy and fitting, effectively addressing data volatility and trend issues for power system
stability [17].

A short-term load forecasting method was coined for Memorial University of Newfoundland using
19 regression models, with gaussian process regression (GPR) models identified as the most effective due to
their nonparametric, kernel-based approach. GPR excels in pattern recognition and extrapolation from small
datasets, making rational quadratic and exponential GPR algorithms ideal for forecasting [18]. A relevance
vector machine (RVM) based technique for short-term electricity load forecasting, integrating wavelet
transform and feature selection this outperforms traditional methods by effectively handling noisy data and
providing probabilistic predictions. When tested with New York independent system operator (NY1SO) and
ISO New England data, this shows potential for practical application and future pricing strategy optimization
[19]. Demonstrated effectiveness on benchmarks and real-world data shows significant forecasting
improvement, highlighting its importance for sustainable development [20]. The RF-moment generating
function (MGF) response surface methodology (RSM) hybrid model combines RF and mean generating
function for short-term load forecasting, significantly maximizing accuracy by optimizing input variables and
using response surface methodology, especially in fluctuating data peaks and valleys [21]. The deep forest
regression, designed for short-term power system load forecasting, outperforms traditional algorithms with its
dual-procedure structure, minimizing mean absolute percentage error. It simplifies hyper-parameter settings,
promising enhancements for mid and long-term forecasting through improved iterations [22]. The C# open
source managed operating system (COSMOS) scheme combines deep neural network (DNN) models using a
stacking approach for improved short-term building electric consumption forecasting and integrating models
with varied hidden layers, tested on actual data, COSMOS outperforms traditional forecasting methods,
offering a novel, accurate prediction tool for energy management systems [23]-[25].
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2. RESEARCH METHOD

The dataset consists of power consumption records collected from various households over
three years. The dataset was sourced from Kaggle’s dataset repository, specifically from the
“Household_power _consumption” dataset provided by Ahmed [26]. The dataset is freely available for
download and accessible for further analysis and research. Sub-metering allows for a detailed breakdown of
energy consumption in different areas or specific appliances within a household or building [27]. Data
cleaning is an important step in ensuring the integrity and accuracy of the dataset. In this study, the data-
cleaning process involved handling missing values, correcting inconsistencies, and addressing outliers.
Techniques such as imputation and outlier detection were employed to mitigate the impact of missing or
erroneous data points. Feature selection focuses on finding out the most relevant and explanatory variables

CEINNT3

for the analysis. In the context of household power consumption, features like “global active power”, “global
reactive power”, “voltage”, and “global intensity” were selected based on their significance in capturing
energy consumption patterns. Other features that were not deemed relevant to the research objectives were
excluded to reduce noise and improve the efficiency of subsequent analyses. For the evaluation of the
performance of models and to ensure their generalizability, the dataset was partitioned into two sets namely
training and testing sets. The commonly used train-test split ratio of 80:20 was employed, ensuring that the
models are trained on a sufficiently large portion of the data while still having unseen instances for
evaluation. All the Training data was then used to train the used models to undergo evaluation to assess their
performance in predicting suitable values.

The models included RF regressor, vector regressor, and Seasonal autoregressive integrated moving
average eith exogenous factors (SARIMAX). These models leveraged various features such as active power,
reactive power, voltage, and intensity to forecast power consumption accurately. RF regressor is an efficient
learning algorithm that uses ensemble learning to create a model that can predict a target value from a set of
features [28]. A vector autoregressive (VAR) [29] model that used to predict multiple time series
simultaneously. SARIMAX with exogenous variables, is an advanced statistical model used for forecasting
time series data. It extends the ARIMA model by incorporating seasonality and external variables,
determining to identify complex patterns and relationships within the data [30].

Figure 1 provides a detailed view of the minute trends of voltage over one year. It can be useful for
analyzing patterns and identifying any significant changes or anomalies in the voltage over time. Figure 2
presents a detailed view of the hourly trends of voltage over three years. It can be useful for analyzing
patterns and identifying any significant changes or anomalies in the voltage over time.

Minute Trend of Voltage for the Year 2007 - All Months

Figure 1. Minute trend of voltaage for the year 2007 for all the months
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Figure 2. Hourly trend of voltage over all the months for all years
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3.  RESULTS AND DISCUSSION
3.1. Analysis of graphs

The developed system includes several graphs to analyze the pattern of power consumption in
a household. This includes the representation of all the parameters like ‘global_active_power’,
‘global_reactive_power’, and their distribution among months. Focusing on the ‘voltage’ parameter, to know
the frequent changes and to identify changes; the time series graph for ‘voltage’ was plotted but the minute
was unable to capture any trend then with the hourly conversion of the dataset again graph was plotted with
the same parameter. In the new graph, we observed that a similar pattern of voltage fluctuation is carried out
rather most likely in the month of summer. To know the daily usage pattern of a household then a specific
date was randomly chosen, i.e., ‘2007-03-01" and there was a significant change for a fixed interval of time
i.e., ‘04:00-6:00” and ‘15:00-17:00°. To study the pattern of seasonality the dataset was passed through for
seasonal decomposition that delivered the trend, seasonality, and residuals on weekly terms.

3.2. Inference

The initial phase of our research focused on leveraging ML models, including RF and DT
regressors, to predict various components of household electricity consumption. Following this, we
extended our analysis through the implementation of VAR and SARIMAX models, which are particularly
well-suited for capturing the temporal dependencies and seasonal trends prevalent in time series data
related to energy usage. Further detailed analysis is done for each method and the results obtained have
been discussed.

3.2.1. Random forest regressor results

This model was trained to predict several key metrics related to household power consumption,
including global_active_power, global_reactive_power, voltage, global_intensity, sub_metering_1,
sub_metering_2, and sub_metering_3. The performance of these models varied across these different targets:
global_active_power: the model achieved exceptionally high accuracy, with a mean squared error (MSE) of
approximately 0.00026 and an R? score close to 1 (0.9997), indicating nearly perfect predictions.
global_reactive_power and voltage: these predictions were moderately accurate, with R? scores of 0.564 and
0.671, respectively. The errors were larger compared to global_active_power but still indicated a good level
of prediction accuracy. Global_intensity: similar to global_active_power, the model performed extremely
well, with an MSE of 0.0051 and an R? score of 0.9997. Sub_metering_1, sub_metering_2, and
sub_metering_3: the predictions for these targets were highly accurate, with R? scores ranging from 0.898 for
Sub_metering_1 to 0.983 for sub_metering_3, showcasing the model’s ability to accurately predict energy
consumption in various categories.

Subsequently, the decision tree (DT) regressor model was employed, offering a simpler, yet often
effective, alternative for regression tasks. However, the performance of the DT regressor was notably inferior
in this context, as evidenced by a higher MSE of 36.73, a significantly lower R-squared value of 0.07, and an
increased root mean square error (RMSE) of 6.06. The diminished R-squared value particularly highlights the
model’s limited capability in accounting for the variance observed in the target metrics, underscoring a
substantial reduction in predictive accuracy compared to the RF regressor.

3.2.2. SARIMAX results

The application of a SARIMAX model for forecasting household ‘global_active power’
consumption has shown promising results, with satisfactory accuracy as evidenced by the MSE and RMSE
metrics. After preprocessing, which involved resampling to hourly frequencies and handling missing values,
we focused on forecasting the ‘global active power’ using its previous hour’s value (‘Lag_1’) as an
exogenous variable. The dataset was split into 80% of train and 20% of test sets to evaluate the model’s
performance on unreviewed data. A SARIMAX model with the configuration (1, 1, 1) x (1, 1, 1, 24) was
chosen, indicating the use of first-order autoregression, differencing, and moving average processes, along
with their seasonal counterparts and a 24-hour seasonal period.

The efficiency of the SARIMAX model was evaluated using MSE and RMSE metrics on the test
set. The model achieved an MSE of 0.363 and an RMSE of 0.603. These metrics indicate the model’s
accuracy in forecasting ‘global_active_power’ consumption. Figure 3 presents a comparison of actual
‘global_active_power’ values against the forecasted values and visually represents the model’s
performance. The forecast values are also compared with actual values. The forecast closely follows the
actual data trends, demonstrating the model’s effectiveness in capturing the consumption pattern and
predicting future values.
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Figure 3. Actual vs forecast values for the SARIMAX model

When comparing VAR and SARIMAX models for energy consumption forecasting, we got VAR
values MSE 1.092 and RMSE 1.045; each shows unique strengths. VAR’s ability to model interdependencies
among variables works well for certain metrics, like ‘global_active_power,” but struggles with more complex
or seasonal trends seen in ‘sub_metering_3" and ‘sub_metering_4’. Conversely, SARIMAX excels in
handling datasets with clear seasonal patterns and external impacts, thanks to its incorporation of seasonality
and exogenous variables. While VAR offers deep insights into variable interrelations, SARIMAX’s
adaptability makes it superior for complex, seasonally affected data. Choosing the right model depends on
the dataset’s specific traits, considering that leveraging both could yield the most comprehensive
understanding of energy consumption dynamics. Figure 4 shows a minute-wise trend of voltage for all the
years. It highlights January, April, and July voltages in red, green, and blue respectively. The graph indicates
significant variations in voltage during these periods, providing insights into power stability over time and
also helping in the forecasting of future trends.

minute Trend of Voltage - All Months
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Figure 4. Voltage trend for the months of January, April, and July for all years

The research findings have significant implications for energy management and reducing household
power consumption. By accurately predicting expected power consumption, households can proactively take
necessary steps to decrease energy usage and optimize resource allocation. The predictive modeling approach
enables the identification of energy-saving opportunities and empowers households to implement targeted
measures for reducing power consumption. This dataset of a household suggests reducing the use of
appliances during those two hours of peak session. The appliances can be replaced with more energy-
efficient appliances, use of solar energy can also reduce power usage.

Table 1 presents the values obtained after testing various models such as decision forest (DF), RF,
and VAR. It compares different parameters like global active power, global reactive power, voltage, global
intensity, sub-metering 1, sub-metering 2, sub-metering 3, and sub-metering 4. Table 2 presents the MSE,
RMSE, and R? score values for global active power, global reactive power, voltage, global intensity, sub-
metering 1, sub-metering 2, sub-metering 3, and sub-metering 4 under the operation of SARIMAX model.
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DT provided a straightforward, interpretable model but were outperformed in terms of accuracy by
the more complex RFs. The latter showed a significant improvement in predictive accuracy, as evidenced by
lower MSE and higher R-squared values, underscoring the value of ensemble learning in capturing the
intricate patterns of energy consumption. Expanding our analysis to time series models, the VAR model
captured the linear interdependencies among multiple time series but showed variability in performance
across different metrics. It was particularly challenged by metrics demonstrating complex patterns or
seasonal trends, where its predictive accuracy, as measured by MSE and RMSE, varied significantly.

Table 1. Comparison of DF, RF, and VAR models
Variable Model MSE RMSE MAE  RZscore
Global active power DF 0.000585 0.024198 0.014  0.999324
Global active power RF 0.000574 0.023973 0.014  0.999337
Global active power VAR 1.092 1.045010 0.805 -
Global reactive power DF 0.003824 0.061796 0.039  0.112670
Global reactive power RF 0.003815 0.061752 0.039  0.114825

Global reactive power VAR 0.014 0.117615 0.089 -
Voltage DF 6.359017 2.514952 1.766  0.352550
Voltage RF 6.488995 2.546218 1.789  0.339316
Voltage VAR 12.162 3.487420 2.763 -

Global intensity DF 0.011127 0.105594 0.068  0.999267
Global intensity RF 0.011338 0.106485 0.068  0.999253
Global intensity VAR 19.115 4.372051 3.331 -
Sub metering 1 DF 10682.528 103.362360 27.006 0.800698
Sub metering 1 RF 11203.703  105.904540 27.538  0.790975
Sub metering 1 VAR 39.654 6.297160 2.127 -
Sub metering 2 DF 12800.620 113.143162 35.526 0.802282
Sub metering 2 RF 11460.213  107.084791 34.536 0.822986
Sub metering 2 VAR 30.836 5.552991 1.895 -
Sub metering 3 DF 9596.198  97.960208  34.015 0.951974
Sub metering 3 RF 8745.824  93.554123  32.926  0.956230
Sub metering 3 VAR 84.554 9.195301 8.336 -
sub metering 4 DF 13011.987 114.034235 41.016 0.949388
sub metering 4 RF 11876.662 108.974627 39.570 0.953804
sub metering 4 VAR 76.739 8.760105 6.455 -

Table 2. Comparison of SARIMAX model
Variable MSE RMSE R? score
Global active power 0.363479  0.602894  0.525965

Global reactive power ~ 0.011565  0.107556 -

Voltage 7.674620  2.771110 -
Global intensity 6.473471 2544107 0.515130
Sub metering 1 11.952510 3.457551 0.078765

4. CONCLUSION

This research highlights the significance of smart energy optimization in reducing electricity
consumption and minimizing costs. In our comprehensive analysis of energy consumption data, we employed
a variety of modeling techniques, including DT, RF, VAR, and SARIMAX, each offering unique insights
into forecasting energy consumption metrics. In addition to employing various modeling techniques for
forecasting energy consumption, we generated a series of graphs to visually explore and understand the
patterns and behaviors of the energy consumption parameters. These visual analyses played a crucial role in
comprehending the underlying trends, seasonal variations, and anomalies within the data, providing
invaluable insights that informed our modeling strategies. Our investigation reveals the nuanced performance
of these models across different parameters of energy usage, highlighting their potential applications and
limitations. In conclusion, our exploration underscores the importance of the selection of appropriate
modeling methods based on the characteristics of the dataset and the forecasting objectives. While ensemble
methods like RFs offer superior accuracy in complex datasets, time series models like SARIMAX provide
invaluable precision in data with seasonal influences and external factors. The integration of these modeling
techniques, aligned with the dataset’s unique attributes, can empower us to make informed decisions,
optimize energy consumption, and contribute to sustainable energy management practices.
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