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 The increasing need for energy and the increasing cost of electricity have 
prompted the development of smart energy optimization systems that can 

help consumers reduce their electricity consumption and minimize costs. 

These systems are developed on the concept of a “smart grid” which is a 

digitalized and intelligent energy network that provides help in the efficient 
distribution of energy. Load forecasting plays a crucial role in the precise 

prediction of uncontrollable electrical load. Long-term load analysis predicts 

a load of more than one year and helps in the planning of power systems 

whereas short-term and medium-term load forecasting helps in the supply 
and distribution of load, maintenance of load system, ensuring safety, 

continuous electricity generation, and cost management. Machine learning 

(ML) focuses on the development of smart energy optimization systems by 

enabling intuitive decision-making and reciprocation to sudden variations in 
consumer energy demands. This study focuses on the consumption of 

consumer electricity and provides a solution regarding the optimized 

methods that will predict future consumption based on previous data and 

help in reducing costs and preserving renewable energy. This research 
promotes sustainable energy usage. The use of ML models enables 

intelligent decision-making and accurate predictions, making the system an 

effective tool for managing electricity consumption. 
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1. INTRODUCTION 

A smart grid (SG) is a futuristic energy infrastructure, showcased as an advanced technique to meet 

high-priority demands that creates and improves the quality of the modern human lifestyle [1]. The 

importance of SG technology cannot be overstated, especially in today’s world where energy is a critical 

component of increasing economy and social growth [2]. A SG enables utilities to observe and manage the 

distribution of energy, allowing for optimal allocation and utilization of resources [3]. In a SG, machine 

learning (ML) algorithms are used to analyze huge data generated by the grid, permitting the identification of 

patterns and anomalies [4]. Additionally, ML can be used to identify areas of the grid that are at risk of 

failure or outage, enabling proactive maintenance and reducing downtime. Effective management of the SG 

requires a combination of human expertise and advanced technological solutions, including ML [5]-[7].  

https://creativecommons.org/licenses/by-sa/4.0/
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A comparison is provided between every ML algorithm for load forecasting and the predicted trend is 

analyzed with the real trend. The comparison proved that the enhanced decision tree classifier (EDTC) model 

is more accurate and precise and has low loss. The accuracy of the model was 99.07% which is higher than 

the other algorithms [8]. The possible benefits of using ML techniques for SG analysis, including improving 

energy efficiency, reducing energy consumption, and optimizing energy management are demonstrated. The 

highlights consist of the challenges associated with implementing ML techniques for SG analysis and 

provides recommendations for overcoming these challenges [9]. The focus is on the energy usage reduction 

in the residential area by comparison of several highly accurate forecast algorithms. The result shows a 

comparison between general regression neural network (GRNN) and edited nearest neighbour (ENN) models 

and also shows the electricity cost prediction [10]. 

This study introduces a novel multidirectional long short-term memory (MLSTM) model for 

predicting the stability of SG, surpassing traditional models like gated recurrent unit (GRU), long short-term 

memory (LSTM), and recurrent neural network (RNN) in accuracy, precision, and loss metrics. Tested on the 

ML repository’s SG dataset, the MLSTM achieved significantly higher performance, suggesting future 

exploration in context-aware models for dynamic power management [11]. Estimation of the electricity 

generation in Cyprus is done by implementing four models’ artificial neural network (ANN), adaptive neuro 

neutrosophic inference system (ANNIS), support vector machine (SVM), and multiple linear regression 

(MLR) as long-term and short-term analysis. This research aims at better load prediction for electricity load. 

In the evaluation, SVM stands out of all the models used for the long-term whereas ANN is better in the 

short-term analysis [12]. For estimating the load forecasting of short-term electrical loads and mainly in load 

profiles of day-ahead forecasting which are of schools, industries, supermarkets, and residential data the 

methods used are support vector regression (SVR), linear regression (LR), multi layer perception (MLP), 

LSTM, random forest (RF), autoregressive integrated moving average (ARIMA), and K-nearest neighbour 

(KNN). Among all the methods, KNN was found to be the most suitable which is followed by SVR, LR, and 

ARIMA [13]. Two models were applied and tested for the data of electric load taken from a grocery store and 

library, then compared with the existing forecasting models. The logistic mixture vector autoregressive 

model (LMVAR) outperforms all the models [14]. A hybrid model, combining variational mode 

decomposition, SVR, self-recurrent mechanisms, chaotic mapping, and Cuckoo search algorithm 

improvements, outperforms other forecasting models. This shows efficacy in fields like stock price 

forecasting, offering advanced data analysis, enhanced accuracy, and effective boundary handling. Future 

work aims to integrate these techniques with other algorithms for broader applications [15]. The proposed 

statistical load forecasting (SLF) assesses risks in load demand profiles verified with international 

organization for standardization (ISO)-New England data, this outperforms benchmarks by providing precise 

prediction intervals and risk evaluations for smarter grid operations [16]. The empirical mode decomposition-

support vector regression-backpropagation in neural network (EMD-SVR-BPNN) model enhances load 

forecasting accuracy and fitting, effectively addressing data volatility and trend issues for power system 

stability [17]. 

A short-term load forecasting method was coined for Memorial University of Newfoundland using 

19 regression models, with gaussian process regression (GPR) models identified as the most effective due to 

their nonparametric, kernel-based approach. GPR excels in pattern recognition and extrapolation from small 

datasets, making rational quadratic and exponential GPR algorithms ideal for forecasting [18]. A relevance 

vector machine (RVM) based technique for short-term electricity load forecasting, integrating wavelet 

transform and feature selection this outperforms traditional methods by effectively handling noisy data and 

providing probabilistic predictions. When tested with New York independent system operator (NYISO) and 

ISO New England data, this shows potential for practical application and future pricing strategy optimization 

[19]. Demonstrated effectiveness on benchmarks and real-world data shows significant forecasting 

improvement, highlighting its importance for sustainable development [20]. The RF-moment generating 

function (MGF) response surface methodology (RSM) hybrid model combines RF and mean generating 

function for short-term load forecasting, significantly maximizing accuracy by optimizing input variables and 

using response surface methodology, especially in fluctuating data peaks and valleys [21]. The deep forest 

regression, designed for short-term power system load forecasting, outperforms traditional algorithms with its 

dual-procedure structure, minimizing mean absolute percentage error. It simplifies hyper-parameter settings, 

promising enhancements for mid and long-term forecasting through improved iterations [22]. The C# open 

source managed operating system (COSMOS) scheme combines deep neural network (DNN) models using a 

stacking approach for improved short-term building electric consumption forecasting and integrating models 

with varied hidden layers, tested on actual data, COSMOS outperforms traditional forecasting methods, 

offering a novel, accurate prediction tool for energy management systems [23]-[25]. 
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2. RESEARCH METHOD 

The dataset consists of power consumption records collected from various households over  

three years. The dataset was sourced from Kaggle’s dataset repository, specifically from the 

“Household_power_consumption” dataset provided by Ahmed [26]. The dataset is freely available for 

download and accessible for further analysis and research. Sub-metering allows for a detailed breakdown of 

energy consumption in different areas or specific appliances within a household or building [27]. Data 

cleaning is an important step in ensuring the integrity and accuracy of the dataset. In this study, the data-

cleaning process involved handling missing values, correcting inconsistencies, and addressing outliers. 

Techniques such as imputation and outlier detection were employed to mitigate the impact of missing or 

erroneous data points. Feature selection focuses on finding out the most relevant and explanatory variables 

for the analysis. In the context of household power consumption, features like “global active power”, “global 

reactive power”, “voltage”, and “global intensity” were selected based on their significance in capturing 

energy consumption patterns. Other features that were not deemed relevant to the research objectives were 

excluded to reduce noise and improve the efficiency of subsequent analyses. For the evaluation of the 

performance of models and to ensure their generalizability, the dataset was partitioned into two sets namely 

training and testing sets. The commonly used train-test split ratio of 80:20 was employed, ensuring that the 

models are trained on a sufficiently large portion of the data while still having unseen instances for 

evaluation. All the Training data was then used to train the used models to undergo evaluation to assess their 

performance in predicting suitable values. 

The models included RF regressor, vector regressor, and Seasonal autoregressive integrated moving 

average eith exogenous factors (SARIMAX). These models leveraged various features such as active power, 

reactive power, voltage, and intensity to forecast power consumption accurately. RF regressor is an efficient 

learning algorithm that uses ensemble learning to create a model that can predict a target value from a set of 

features [28]. A vector autoregressive (VAR) [29] model that used to predict multiple time series 

simultaneously. SARIMAX with exogenous variables, is an advanced statistical model used for forecasting 

time series data. It extends the ARIMA model by incorporating seasonality and external variables, 

determining to identify complex patterns and relationships within the data [30]. 

Figure 1 provides a detailed view of the minute trends of voltage over one year. It can be useful for 

analyzing patterns and identifying any significant changes or anomalies in the voltage over time. Figure 2 

presents a detailed view of the hourly trends of voltage over three years. It can be useful for analyzing 

patterns and identifying any significant changes or anomalies in the voltage over time. 
 

 

 
 

Figure 1. Minute trend of voltaage for the year 2007 for all the months 
 
 

 
 

Figure 2. Hourly trend of voltage over all the months for all years 



Int J Inf & Commun Technol  ISSN: 2252-8776  

 

Load forecasting of electrical parameters: an effective approach towards … (Debani Prasad Mishra) 

711 

3. RESULTS AND DISCUSSION 

3.1.  Analysis of graphs 

The developed system includes several graphs to analyze the pattern of power consumption in  

a household. This includes the representation of all the parameters like ‘global_active_power’, 

‘global_reactive_power’, and their distribution among months. Focusing on the ‘voltage’ parameter, to know 

the frequent changes and to identify changes; the time series graph for ‘voltage’ was plotted but the minute 

was unable to capture any trend then with the hourly conversion of the dataset again graph was plotted with 

the same parameter. In the new graph, we observed that a similar pattern of voltage fluctuation is carried out 

rather most likely in the month of summer. To know the daily usage pattern of a household then a specific 

date was randomly chosen, i.e., ‘2007-03-01’ and there was a significant change for a fixed interval of time 

i.e., ‘04:00-6:00’ and ‘15:00-17:00’. To study the pattern of seasonality the dataset was passed through for 

seasonal decomposition that delivered the trend, seasonality, and residuals on weekly terms. 

 

3.2.  Inference 

The initial phase of our research focused on leveraging ML models, including RF and DT 

regressors, to predict various components of household electricity consumption. Following this, we 

extended our analysis through the implementation of VAR and SARIMAX models, which are particularly 

well-suited for capturing the temporal dependencies and seasonal trends prevalent in time series data 

related to energy usage. Further detailed analysis is done for each method and the results obtained have 

been discussed. 

 

3.2.1. Random forest regressor results 
This model was trained to predict several key metrics related to household power consumption, 

including global_active_power, global_reactive_power, voltage, global_intensity, sub_metering_1, 

sub_metering_2, and sub_metering_3. The performance of these models varied across these different targets: 

global_active_power: the model achieved exceptionally high accuracy, with a mean squared error (MSE) of 

approximately 0.00026 and an R2 score close to 1 (0.9997), indicating nearly perfect predictions. 

global_reactive_power and voltage: these predictions were moderately accurate, with R2 scores of 0.564 and 

0.671, respectively. The errors were larger compared to global_active_power but still indicated a good level 

of prediction accuracy. Global_intensity: similar to global_active_power, the model performed extremely 

well, with an MSE of 0.0051 and an R2 score of 0.9997. Sub_metering_1, sub_metering_2, and 

sub_metering_3: the predictions for these targets were highly accurate, with R2 scores ranging from 0.898 for 

Sub_metering_1 to 0.983 for sub_metering_3, showcasing the model’s ability to accurately predict energy 

consumption in various categories. 

Subsequently, the decision tree (DT) regressor model was employed, offering a simpler, yet often 

effective, alternative for regression tasks. However, the performance of the DT regressor was notably inferior 

in this context, as evidenced by a higher MSE of 36.73, a significantly lower R-squared value of 0.07, and an 

increased root mean square error (RMSE) of 6.06. The diminished R-squared value particularly highlights the 

model’s limited capability in accounting for the variance observed in the target metrics, underscoring a 

substantial reduction in predictive accuracy compared to the RF regressor. 

 

3.2.2. SARIMAX results 
The application of a SARIMAX model for forecasting household ‘global_active_power’ 

consumption has shown promising results, with satisfactory accuracy as evidenced by the MSE and RMSE 

metrics. After preprocessing, which involved resampling to hourly frequencies and handling missing values, 

we focused on forecasting the ‘global_active_power’ using its previous hour’s value (‘Lag_1’) as an 

exogenous variable. The dataset was split into 80% of train and 20% of test sets to evaluate the model’s 

performance on unreviewed data. A SARIMAX model with the configuration (1, 1, 1) x (1, 1, 1, 24) was 

chosen, indicating the use of first-order autoregression, differencing, and moving average processes, along 

with their seasonal counterparts and a 24-hour seasonal period. 

The efficiency of the SARIMAX model was evaluated using MSE and RMSE metrics on the test 

set. The model achieved an MSE of 0.363 and an RMSE of 0.603. These metrics indicate the model’s 

accuracy in forecasting ‘global_active_power’ consumption. Figure 3 presents a comparison of actual 

‘global_active_power’ values against the forecasted values and visually represents the model’s 

performance. The forecast values are also compared with actual values. The forecast closely follows the 

actual data trends, demonstrating the model’s effectiveness in capturing the consumption pattern and 

predicting future values. 
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Figure 3. Actual vs forecast values for the SARIMAX model 
 

 

When comparing VAR and SARIMAX models for energy consumption forecasting, we got VAR 

values MSE 1.092 and RMSE 1.045; each shows unique strengths. VAR’s ability to model interdependencies 

among variables works well for certain metrics, like ‘global_active_power,’ but struggles with more complex 

or seasonal trends seen in ‘sub_metering_3’ and ‘sub_metering_4’. Conversely, SARIMAX excels in 

handling datasets with clear seasonal patterns and external impacts, thanks to its incorporation of seasonality 

and exogenous variables. While VAR offers deep insights into variable interrelations, SARIMAX’s 

adaptability makes it superior for complex, seasonally affected data. Choosing the right model depends on 

the dataset’s specific traits, considering that leveraging both could yield the most comprehensive 

understanding of energy consumption dynamics. Figure 4 shows a minute-wise trend of voltage for all the 

years. It highlights January, April, and July voltages in red, green, and blue respectively. The graph indicates 

significant variations in voltage during these periods, providing insights into power stability over time and 

also helping in the forecasting of future trends. 
 

 

 
 

Figure 4. Voltage trend for the months of January, April, and July for all years 
 

 

The research findings have significant implications for energy management and reducing household 

power consumption. By accurately predicting expected power consumption, households can proactively take 

necessary steps to decrease energy usage and optimize resource allocation. The predictive modeling approach 

enables the identification of energy-saving opportunities and empowers households to implement targeted 

measures for reducing power consumption. This dataset of a household suggests reducing the use of 

appliances during those two hours of peak session. The appliances can be replaced with more energy-

efficient appliances, use of solar energy can also reduce power usage. 

Table 1 presents the values obtained after testing various models such as decision forest (DF), RF, 

and VAR. It compares different parameters like global active power, global reactive power, voltage, global 

intensity, sub-metering 1, sub-metering 2, sub-metering 3, and sub-metering 4. Table 2 presents the MSE, 

RMSE, and R2 score values for global active power, global reactive power, voltage, global intensity, sub-

metering 1, sub-metering 2, sub-metering 3, and sub-metering 4 under the operation of SARIMAX model. 
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DT provided a straightforward, interpretable model but were outperformed in terms of accuracy by 

the more complex RFs. The latter showed a significant improvement in predictive accuracy, as evidenced by 

lower MSE and higher R-squared values, underscoring the value of ensemble learning in capturing the 

intricate patterns of energy consumption. Expanding our analysis to time series models, the VAR model 

captured the linear interdependencies among multiple time series but showed variability in performance 

across different metrics. It was particularly challenged by metrics demonstrating complex patterns or 

seasonal trends, where its predictive accuracy, as measured by MSE and RMSE, varied significantly. 

 

 

Table 1. Comparison of DF, RF, and VAR models 
Variable Model MSE RMSE MAE R2 score 

Global active power DF 0.000585 0.024198 0.014 0.999324 

Global active power RF 0.000574 0.023973 0.014 0.999337 

Global active power VAR 1.092 1.045010 0.805 - 

Global reactive power DF 0.003824 0.061796 0.039 0.112670 

Global reactive power RF 0.003815 0.061752 0.039 0.114825 

Global reactive power VAR 0.014 0.117615 0.089 - 

Voltage DF 6.359017 2.514952 1.766 0.352550 

Voltage RF 6.488995 2.546218 1.789 0.339316 

Voltage VAR 12.162 3.487420 2.763 - 

Global intensity DF 0.011127 0.105594 0.068 0.999267 

Global intensity RF 0.011338 0.106485 0.068 0.999253 

Global intensity VAR 19.115 4.372051 3.331 - 

Sub metering 1 DF 10682.528 103.362360 27.006 0.800698 

Sub metering 1 RF 11203.703 105.904540 27.538 0.790975 

Sub metering 1 VAR 39.654 6.297160 2.127 - 

Sub metering 2 DF 12800.620 113.143162 35.526 0.802282 

Sub metering 2 RF 11460.213 107.084791 34.536 0.822986 

Sub metering 2 VAR 30.836 5.552991 1.895 - 

Sub metering 3 DF 9596.198 97.960208 34.015 0.951974 

Sub metering 3 RF 8745.824 93.554123 32.926 0.956230 

Sub metering 3 VAR 84.554 9.195301 8.336 - 

sub metering 4 DF 13011.987 114.034235 41.016 0.949388 

sub metering 4 RF 11876.662 108.974627 39.570 0.953804 

sub metering 4 VAR 76.739 8.760105 6.455 - 

 

 

Table 2. Comparison of SARIMAX model 
Variable MSE RMSE R2 score 

Global active power 0.363479 0.602894 0.525965 

Global reactive power 0.011565 0.107556 - 

Voltage 7.674620 2.771110 - 

Global intensity 6.473471 2.544107 0.515130 

Sub metering 1 11.952510 3.457551 0.078765 

 

 

4. CONCLUSION 

This research highlights the significance of smart energy optimization in reducing electricity 

consumption and minimizing costs. In our comprehensive analysis of energy consumption data, we employed 

a variety of modeling techniques, including DT, RF, VAR, and SARIMAX, each offering unique insights 

into forecasting energy consumption metrics. In addition to employing various modeling techniques for 

forecasting energy consumption, we generated a series of graphs to visually explore and understand the 

patterns and behaviors of the energy consumption parameters. These visual analyses played a crucial role in 

comprehending the underlying trends, seasonal variations, and anomalies within the data, providing 

invaluable insights that informed our modeling strategies. Our investigation reveals the nuanced performance 

of these models across different parameters of energy usage, highlighting their potential applications and 

limitations. In conclusion, our exploration underscores the importance of the selection of appropriate 

modeling methods based on the characteristics of the dataset and the forecasting objectives. While ensemble 

methods like RFs offer superior accuracy in complex datasets, time series models like SARIMAX provide 

invaluable precision in data with seasonal influences and external factors. The integration of these modeling 

techniques, aligned with the dataset’s unique attributes, can empower us to make informed decisions, 

optimize energy consumption, and contribute to sustainable energy management practices. 
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