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 This article presents an innovative approach that solves the problem of 

generation scheduling by supplying all possible operating states for 

generating units for the given time schedule over the day. The scheduling 

variables are set up to code the load demand as an integer each day. The 

proposed adaptive particle swarm optimization (APSO) technique is used to 

solve the generation scheduling issue by a method of optimization 

considering production as well as transitory costs. The system and generator 

constraints are considered when solving the problem, which includes 

minimum and maximum uptime and downtime as well as the amount of 

energy produced by each producing unit (like capacity reserves). This paper 

describes the suggested algorithm that can be applied for unit commitment 

problems with wind and heat units. Test systems with 26 and 10 units are 

used to validate the suggested algorithm. 
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1. INTRODUCTION 

Generation scheduling is also called as unit commitment (UC) is a non-linear complex mixed-

integer optimization problem that aims to distribute the total demand across all generating units while 

minimizing operating expenses, including both production cost and transition cost. The UC process involves 

meeting time specific constraints, balancing load demand, accounting for system losses, and ensuring reserve 

capacity. A crucial step in solving the UC problem in determining the hourly operational status of each 

generating unit, which then guides the allocation of power and reserve capacity throughout the planning 

horizon.  

The maintenance of electrical network functionality is mostly the responsibility of UC [1]-[5]. 

Power system solution becomes more difficult as the number of producing units increases and the UC 

problems get exponentially more complex. Numerous strategies have been put forth to address the UC issue 

with the lowest operating cost feasible, increasing potential savings from the electricity network operator. 

However, there are differences in the accuracy and speed of their calculations. These methods can be 

separated into two categories: stochastic and deterministic search algorithms. Bound and branch methods 

(B&B), deterministic approaches include lagrangian relaxation differential evolution (LRDE), lagrangian 

relaxation (LR), and improved lagrangian relaxation (ILR) and dynamic programming (DP) [6]-[12]. 

For power systems of moderate size, these methods handle problems fast, accurately, and simply. 

For them, the challenges are in convergence, quality of solution, and intricacy. Some examples of heuristic or 

stochastic search methods are ant colony optimization, evolutionary programming, tabu search, and 
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simulated annealing, fuzzy adaptive PSO (FAPSO), hybrid PSO (HPSO), discrete PSO (DPSO), genetic 

algorithms, and multi-objective PSO. Using the two categories of algorithms outlined above, a few hybrid 

algorithms are also proposed [13]-[25]. These methods produce highly optimal outcomes while handling 

difficult linear and nonlinear restrictions. All these approaches, however, suffer from the accuracy issue. The 

computational time and solution quality are both adversely affected by the larger problem and more 

generating units. This work proposes new approach by generating unit with all possible states of combination 

of each particle at each time step. By using the proposed APSO to optimize these particle states instead of 

any other technique mentioned above, the power system operator can achieve excellent results. 

 

 

2. RESEARCH METHOD 

2.1.  Problem formulation 

The primary goal of the generation scheduling problem is to ascertain the commitment status of the 

available thermal units to reduce the total operational expenses, which comprise startup, shutdown and 

production costs. This function can be optimized while taking into account all generator and system 

constraints. 

 

2.1.1. Cost of production 

Minimizing the overall production cost throughout the scheduling period while adhering to a set of 

generator limitations is the main goal of the UC problem. In (1) provides PCi for unit i, the quadratic 

production cos. Where, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖are the coefficients of cost and 𝑝𝑖  is the active power output in MW of 

the committed unit i. 

 

𝑝𝑐 𝑖 = 𝑎𝑖 + 𝑏𝑖𝑝𝑖 + 𝑐𝑖𝑝𝑖
2 (1) 

 

2.1.2. Initial outlay 

The initial contribution is the next part of the function that is the goal. Depending on the TOff time 

(OFF), the starting cost can be determined by exponential starting cost and beginning (cold/hot) costs. The 

starting cost is referred to as a warm start if the cold start time is less than the total off-eak period (TOff). If 

not, they are considered a cold start. The initial cost SCi for each period t is obtained from (2). 

 

𝑆𝑈𝐶𝑖,𝑡 =  𝜎𝑖 +  𝛿𝑖 {1 − exp (
𝑇𝑜𝑓𝑓

𝜏𝑖
)} (2) 

 

𝜎𝑖 =  {
𝐶𝑜𝑙𝑑 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑠𝑡 𝐶𝑆𝐶𝑖   𝑤ℎ𝑒𝑛 𝑇𝑡

𝑜𝑓𝑓 
≥  𝐶𝑇𝑖

𝐻𝑜𝑡  𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑠𝑡 𝐻𝑆𝐶𝑖   𝑤ℎ𝑒𝑛 𝑇𝑡
𝑜𝑓𝑓 

≤  𝐶𝑇𝑖

(3)𝑇𝑖
𝑜𝑓𝑓

=  

 

 {
|𝐼𝑁𝑆𝑖| + 𝐷`1

𝑜𝑓𝑓
𝑖𝑓𝑢𝑛𝑖𝑡𝑖𝑠𝑂𝐹𝐹𝑎𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑜𝑛

𝐷1
𝑜𝑓𝑓

𝑖𝑓𝑢𝑛𝑖𝑡𝑔𝑒𝑡𝑠𝑂𝐹𝐹𝑓𝑟𝑜𝑚𝑖𝑡𝑠𝑂𝑁𝑠𝑡𝑎𝑡𝑒
 (3) 

 

The subsequent parameters are employed in this formulation, i denotes the cooling time constant; 

Di
off denotes the off time before unit i comes into commitment; HSCi stands for hot startup expenses; CSCi 

for chill start-up expenses; and CTi stands for chill-start time. Limitation on the equilibrium of power. 

Capacity balance constraints ensure that the total power produced by each type of generating unit equals the 

power load for each time period. 

 

∑ 𝑃𝑖,𝑡𝑈𝑖,𝑡
𝑁
𝑖=1 = 𝑃𝐷,𝑡 + 𝑃𝐿,𝑡                𝑡 = 1,2,3 … … 𝑇 (4) 

 

The variables PL,t and PD,t represent the total losses and power demand at hour t in MW. 

 

2.1.3. The rolling reserve limit 

A rolling reserve is the underused capacity of grid energy assets that can momentarily offset 

frequency changes or power outages. Historically, huge synchronous generators were equipped with rotating 

reserves. PRR represents the rolling reserve at time t and the ith generator's upper bound limit is denoted by 

Pmax. 

 

∑ 𝑃𝑖
𝑚𝑎𝑥𝑈𝑖,𝑡 ≥ 𝑃𝐷,𝑡 + 𝑃𝐿,𝑡 + 𝑃𝑅𝑅,𝑡           𝑡 = 1,2,3, … 𝑇

𝑁

𝑖=1
 (5) 
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2.1.4. Zone of prohibited operation 

Certain operating zones prevent the generators from producing real power because of mechanical 

stress or subsynchronous oscillations, which cause the unit to completely shut down. The reason behind the 

discontinuity in the fuel-cost curve is these regions, also referred to as prohibited operating zones. In zone of 

prohibited operation (POZ), generators are prohibited in real time. While pozi and npoz stand for units having 

forbidden zones and the number of restricted operating zones, respectively, Pi
u and Pi

l denote the maximum 

and minimum values of the ith generator within the prohibited operating areas. 

 

𝑃𝑖,𝑡 ∈ {                 𝑝𝑖,𝑝𝑜𝑧𝑖

𝑢 ≤ 𝑝𝑖 ≤ 𝑝𝑖
𝑚𝑎𝑥

𝑝𝑖,𝑚−1
𝑢 ≤𝑝𝑖≤𝑝𝑖,𝑚

𝑙

𝑝𝑖
𝑚𝑎𝑥≤𝑝𝑖≤𝑝𝑖,1

𝑙

 (6) 

 

m = 2,3,…,𝑝𝑜𝑧𝑖  when, 𝑈𝑖,𝑡=1 

i = 1,2,…..,𝑛𝑝𝑜𝑧 

 

2.1.5. Boundary constraint of the generator 

The limitations of the upper and lower bounds specified here must be operated by the committed 

generators. 

 

𝑝𝑖
𝑚𝑎𝑥 ≥ 𝑝𝑖,𝑡 ≥ 𝑝𝑖

𝑚𝑖𝑛                        𝑤ℎ𝑒𝑛 𝑈𝑖,𝑡 = 1 (7) 

 

2.1.6. Minimum uptime/downtime limit 

According to (8) the generators need a minimum amount of time to start during the cooling phase 

and stop during the running condition. 

 

}
(𝑈𝑖,𝑡−𝑈𝑖,𝑡−1)(𝑇𝑜𝑛(𝑡−1)−𝑀𝑈𝑇𝑖)≥0

(𝑈𝑖,𝑡−𝑈𝑖,𝑡−1)(𝑇𝑜𝑛(𝑡−1)−𝑀𝑈𝑇𝑖)≤0
 (8) 

 

Ton indicates the time the unit was turned on before the hour, and MUTi and MDTi is the lowest upper/lower 

time limit in hours for the ith unit. Ton/Toff's value is represented as, 

 

}
𝑇𝑜𝑓𝑓(𝑡)=(1+𝑇𝑜𝑓𝑓(𝑡−1)(1−𝑈𝑖,𝑡)

𝑇𝑜𝑛(𝑡)=(1+𝑇𝑜𝑛(𝑡−1)𝑈𝑖,𝑡
 (9) 

 

2.1.7. Limitation on ramp rate 

In mathematics, a generator's ramp up/down limit is expressed as, 

 

}                   
   [𝑝𝑖,𝑡−1−𝑈𝑅𝑖(1+𝑈𝑖,𝑡−1)(𝑈𝑖,𝑡+1)]≤𝑝𝑖,𝑡

[𝑝𝑖,𝑡−1−𝐷𝑅𝑖(1+𝑈𝑖,𝑡)(𝑈𝑖,𝑡−1)]≤𝑝𝑖,𝑡
 (10) 

 

2.2.  Solution using APSO 

The robustness and adaptability of stochastic optimization methods are making them increasingly 

attractive for solving non-linear optimization issues. A popular swarm-based, bio-inspired technique for 

solving optimization issues is called PSO. It is easy to use and highly efficient. Using velocities similar to 

birds, the population-based PSO algorithm modifies the starting population to determine the best route to take 

in order to arrive at the target. Similar to other population-based techniques, the conventional PSO can be 

limited to local minima.  

The inertia weight and the random variables C1 and C2 are the primary determinants of the 

orientation of the solution search space in PSO. It is possible for the updated particles to become stuck in the 

local optimal solution when they fail to follow the leader. In this work, the quasi-oppositional learning 

technique proposed by Kumar and Babu [7] is integrated with the mutation operator. It was introduced to 

increase PSO's search capabilities and population variety. The formula provides the quasimutation operator, 

 

Xi
q0

= rand (Xi
C, Xi

0) (11) 

 

Xi
C =

Xi
max+Xi

min

2
 (12) 

 

𝑋𝑖
0 = 𝑋𝑖

𝑚𝑎𝑥 + 𝑋𝑖
𝑚𝑖𝑛 − 𝑋𝑖 (13) 
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where 𝑋𝑖
𝑚𝑖𝑛𝑎𝑛𝑑𝑋𝑖

𝑚𝑎𝑥 are the minimum and maximum bound limits of ith individual’s search space; 𝑋𝑖 is the 

individual and 𝑋𝑖
0 is the opposite individual; Xiq

0 is a uniformly distributed random number between Xi
C and 

Xi
0. 

The generation of quasi-opposite individuals is based on the leap rate (Lr). Although the technique 

does not entirely converge to the global optimum, it does converge rapidly to smaller values of Lr. Similarly, 

because of the wider search space, algorithms with larger Lr values may take a long time to converge. The 

jump rate selection should prevent early convergence and offer sufficient notable changes at baseline.  

As a result, the adaptive hop rate that this study employed to account for these issues is stated as:  

 

Lr = Lr,max −
Lr,max− Lr,min

itermax
× iter (14) 

 

where, Lr,min=0.01, Lr,max=0.5, iter is the current iteration, and itermax is the maximum iteration. To avoid 

premature convergence Lr is high at the starting and it is progressively reduced to improve the convergence 

rate. 

The suggested algorithm uses the conventional PSO with the integration of quasi-oppositional 

learning-based mutation along with the adaptive leap rate, hence, it is called APSO. The pseudo code of the 

proposed APSO is given in Pseudocode 1. 

 

Pseudocode 1. APSO pseudocode 
Pseudo code: Adaptive Particle Swarm Algorithm 

1. Initialize Xi, Vi, iteration, pbest, gbest 

2. Generate random particles(P) 

3. For each particle (i) 

4.       Calculate fitness function (fi) 

5.       Update pbest, gbest 

6. End for 

7. While iteration 

8.       For each particle I 

9.       Update Xi, Vi 

10.       If Xi > limit, then Xi = limit 
11.       Calculate fitness function fi 
12.      Update pbest, gbest 
13.      End for   
14. End while 
15. Check if any search agent goes beyond the search space and amend it 
16. Calculate the leap rate Lr by equation 15 
17. If rand (0, l) < Lr 
18. Compute quasi-opposite individual for integer variable by Equation 12 
19. End 
20. Calculate the fitness of each search agent 
21. Update X* if there is a better solution 
22. Update the value of F and Return 
23. End  

 

 

3. RESULTS AND DISCUSSION 

MATLAB 9.4 (R2018a) contains the software for the suggested approach to addressing the UC 

problem. It runs on an Intel Core i5 with a CPU speed of 1.6 GHz and 8 GB of RAM running Windows 10. 

The suggested approach is tested on two test cases, and the outcomes are contrasted with a number of 

existing methods from the literature. Test case 1 is a rather conventional 10-unit system with a quadratic cost 

function and a rotating reserve. Test case 2 uses a 26-unit RTS system with a rotating reserve. 

 

3.1.  Test case 1 

The data for the 10-unit system is presented in reference [7]. A spinning reserve of 10% of the 

system demand is established for that hour, while adhering to the MUT/MDT constraint. Since the valve-

point and ramp rate constraints are not taken into account in this instance, the outcomes can be contrasted 

with those from previous research. Test case 1 employs a 10-unit system that consistently accommodates a 

variety of loads. The test system data is sourced from the literature references [7] and [12]. 

The stochastic nature of the meta-heuristic algorithms necessitates statistical analysis for validation. 

Table 1 presents the average, standard deviation, best, and worst results from 25 separate experiments. The 

table shows how close to the optimal cost the average cost achieved for several test cases is. The solution 

precision would be more advantageous for a complicated system with more units than for a system with 

fewer units. The Table 1 also shows the comparison of the results with other optimization algorithms. Ramp-
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rate limitations cause the computation time to grow. Comparable to other methods documented in the 

literature, the average computing time increases linearly with the number of units. The statistical analysis is 

presented in Table 1. The convergence characteristics of the proposed method is plotted in Figure 1.  

Figure 2 shows the variation of spinning reserve and load demand. It's evident that spinning reserve 

will be accessible following the unit commitment procedure. A variation of total cost with respect to iteration 

is plotted in Figure 3, which shows the exploration and exploitation characteristics of the proposed algorithm.  

The load shared by each unit to meet the committed load of that hour is displayed in Figure 4. It makes it 

evident that the equality constraint is satisfied for all the hours. Figure 4 provides information regarding the 

total cost incurred for every iteration. 

 

 

Table 1. An analysis comparing the 10-unit system's total cost 
Total cost ($) APSO PSO SSA 

On Average (25 TRIAL CASE) 569687.2 564101 563945 
WORST 575760 564110 563959 

BEST 566136 564091 563937 

 

 

 
 

  

Figure 1. Convergence characteristics of 10-unit 

system 

Figure 2. The 10-unit system's load requirement 

 

 

  
 

Figure 3. Total expense incurred in a ten-unit 

system 

 

Figure 4. Power output in a system with ten units 

 

 

3.2.  Test case 2 

A 26 unit system is considered as a second test case. Test system data for 26 unit system is taken 

from [7]. Using 26-units system, the generation scheduling problem is optimized using the APSO method. 

Table 2 tabulates the average, worst, and best results from the 25 trail runs. It is evident from the results that 
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the suggested approach is also more dependable for larger systems. The 26-unit system's convergence 

characteristics are displayed in Figure 5. A graph comparing the load requirement and a load requirement 

with a constraint (a spinning reserve) is displayed in Figure 6.  

 

 

Table 2. Statistical results obtained for the 26-unit system 
Total cost ($) APSO 

Best 29,915 

Average (25 trial case) 345,536 
Worst 354,733 

 

 

  
 

Figure 5. Convergence characteristics of 26 unit 

 

Figure 6. System's load demand 

 

 

4. CONCLUSION 

The challenging UC problem necessitates algorithms capable of effectively generating optimal 

outcomes concerning initial and operational costs. In comparison to other approaches, the advantageous 

characteristics of the proposed methodology yield enhanced tabulated results for UC. Recently, a population-

based stochastic optimization technique known as logical state PSO has been introduced for the generation of 

discrete state particles. For certain intricate issues, such as UC in actual power systems, this PSO method 

delivers search results that are on par with or superior to those obtained from alternative stochastic 

optimization methods. Furthermore, the use of special convergence values can expedite the behavior of 

convergence, assisting particles in meeting the equality demand constraint and removing superfluous reserve 

allocation. The current study suggests that, in order to promote convergence and variety, the conventional 

public service requirement should be modified. Consequently, the algorithm can provide high-quality results 

and scan the search field quickly. A further adjustment to the suggested algorithm would take wind energy 

components into account, resulting in a stochastic unit commitment problem. Multiple restrictions are used in 

the suggested solution to the unit commitment problem in the existing system. By adding another variable 

source (renewable energy like solar or wind), we can produce a stochastic unit commitment problem. An 

uncontrolled power system's stochastic unit commitment problem can be created using the suggested 

algorithm. The power company controls distribution, maintains poles and wires, and bills customers for these 

services in a liberalized market.  
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