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 With advances in machine learning (ML) and deep learning (DL), the future 

of thyroid disease diagnosis and prognosis looks very bright. The integration 

of various data such as imaging and medical record data has increased the 
accuracy of the model. Advanced DL models such as convolutional neural 

network (CNN) and recurrent neural network (RNN) further improved 

disease detection in precision medicine. However, some of the major 

disadvantages of effective clinical integration include unbalanced samples, 
unclear sampling, having to communicate in different populations, decreased 

physician confidence due to the vagueness of current models therefore, and 

few studies available to identify thyroid comorbidities such as polycystic 

ovary syndrome (PCOS) and thyroid eye disease (TED) in a variety of 
different populations to develop the line. It is important to focus future 

research activities on model definition and validation an improving and thus 

the diagnosis and prognosis of thyroid comorbidities is of utmost 

importance. What this will bring is ML and DL, an opportunity to make very 
significant improvements in the diagnosis, treatment, and management of 

thyroid diseases, thereby improving patient outcomes and health care by 

seeking crystals as a group they work interdisciplinary to collaborate in 

developing flexible solutions, sharing knowledge, and responding to these 
stated deficiencies. 
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1. INTRODUCTION 

About 200 million people worldwide suffer from thyroid disease, iodine deficiency affects more 

than 40% of the world population and is a major cause of thyroid problems. In India, thyroid disease affects 

about 10% of the population, including women aged 17 to 54 years, are more affected [1], [2]. Because 

iodine deficiency impairs thyroid hormone production, it contributes to significant increases in morbidity and 

mortality worldwide [3]. Triiodothyronine (T3) and thyroxine (T4) regulate metabolism and affect bodily 

functions including heart rate and temperature. Hormone abnormalities caused by an underactive thyroid can 

lead to symptoms such as high blood pressure, poor circulation, and high cholesterol [4]. At least 1 in 8 

women have an underactive thyroid, making it more common in women. Bauer et al. [5] hypothyroidism is 

severely underdiagnosed in 20% of postmenopausal women, making it more difficult to diagnose 

psychosocial issues caused by thyroid dysfunction [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Both hypothyroidism and hyperthyroidism can lead to thyroid eye disease (TED), which affects eye 

health and has symptoms such as macular degeneration and vision loss. They can also lead to disorders such 

as polycystic ovary syndrome (PCOS) characterized by insulin resistance and hormonal imbalances [7], [8]. 

Figure 1 shows the architecture of thyroid prediction system. 

 

 

 
 

Figure 1. Architecture of thyroid prediction system 

 

 

Various diseases such as eye boldness, cancer, heart problems, infertility, and PCOS can be caused 

by any thyroid problem. PCOS is a hormonal disorder diagnosed early mostly, so they will heal quickly and 

avoid any side effects [9]. Another thing to note is the overall increase in the prevalence of thyroid 

dysfunction worldwide, which is 8 times more common in women than in men [10]. Both sex and age play 

an important role in susceptibility to thyroid disease and the fact that risk increases with age makes this age 

group more susceptible to thyroid disease [11]. These individuals have an increased risk of thyroid cancer 

even if they have a prior medical history of thyroid conditions [12]. The field of thyroid disease detection has 

seen, among other things, promising developments in health informatics, especially in machine learning 

(ML) algorithms [13]. To improve the accuracy of the study, researchers used two learning techniques 

including deep-contractile neural networks (DCNN), and supervised learning to process medical images [14]. 

These enhancement techniques aim to reduce the potential for bias in the data and increase the accuracy of 

the diagnosis of thyroid disease [15]-[17]. Table 1 shows the features of thyroid tests. 

 

 

Table 1. Thyroid test features 
S. No. Feature Level 

1 Free T3 (FT3) 2.2-4.0 pg/mL 

2 T3 triiodothyronine tests 100-200 ng/dL 

3 Free T4 (FT1) 0.9-1.7 ng/dL 

4 Test T4 (FT4) Low refers to hypothyroidism 

5 Thyroid-stimulating hormone (TSH) It is produced by the pituitary to regulate thyroid hormone 

(blood TSH levels determined by laboratory tests) 

 

 

ML and DL models have been developed to accurately diagnose multidimensional and globally 

diverse thyroid problems. The use of subjective clinical symptoms and laboratory results in current 

diagnostic procedures can lead to errors or delays. Utilizing large patient databases with symptomatic and 

medical information, these systems aim to increase diagnostic accuracy. Issues of data imbalance, noise, and 

interpretability of the model require robust solutions. To increase acceptance and improve patient outcomes 

and health care efficiency through the use of sophisticated computerized thyroid disease diagnosis, general 

coverage is required in population and health care. 
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2. LITERATURE REVIEW 

Tyagi et al. [18] suggests that ML predicted thyroid disease by focusing on the organ controlled by 

the thyroid gland. The two main types of thyroid problems are hyperthyroidism and hypothyroidism. 

Healthcare organization data has been processed previously, mostly ML for disease detection. Data were 

provided by the University of California Irvine repository. The study compares support vector machine 

(SVM) and K-nearest neighbor (KNN) algorithms for thyroid disease prediction. 

Unnikrishnan and Menon [19] examined the prevalence of thyroid disorders in India, where an 

estimated 42 million people are affected. The report, which discusses five key conditions—namely 

hypothyroidism, hyperthyroidism, Goiter, Hashimoto's thyroiditis, and thyroid cancer-shows the regional 

variance brought about by iodine deficiency. Further, it discusses the efforts to achieve a standardized reference 

range of thyroid hormone for pregnant women and children as part of improving diagnosis and treatment. 

Rehman et al. [20] evaluate KNN algorithms based on the detection of thyroid disease from the full 

KEEL repository dataset and hospital dataset from Pakistan. In their work, three KNN variations with other 

clinical features such as pulse rate, BMI, and blood pressure were tested to achieve the accuracy of detecting 

the disease. The findings indicate that the combination of these functions like Euclidean and Cosine distance 

with their selection chi-square based has enhanced the classification performance and therefore draw 

attention to feature selection importance during thyroid diseases prediction. 

Chaganti et al. [21] presents a unique ML approach for thyroid disease prediction, which focuses on 

the early detection and classification of conditions such as cancer, hyperthyroidism, and hypothyroidism. The 

study uses various algorithms that include logistic regression (LR), random forest (RF), convolutional neural 

networks (CNNs), and SVM, evaluates performance using metrics such as accuracy, precision, recall, and F1 

as well as scores that reflect the potential to improve study accuracy and patient outcomes. 

This study [22] has proposed a ML algorithm to classify thyroid diseases. Given the challenges of 

using large health data, this article focused on ML methods. Using the data collected from Iraqis in the study, 

some tissues indicate hyperthyroidism, thyroid dysfunction, and hypothyroidism. ML techniques such as 

SVM, RF, KNN, Naïve Bayes (NB), and multilevel perceptron were used to identify thyroid groups. 

Comparative effectiveness studies were also conducted. However, the classification accuracy needs to be 

increased. 

K-nearest algorithm for screening thyroid disorders [23]. This study uses real-time data from 

Pakistan hospital and KEEL dataset repository data set to test three selection methods: KNN feature 

selection, chi-square-based feature selection, and uncertain feature selection. It measures things like heart 

rate, BMI, and blood pressure. Among the tested methods, chi-square-based feature selection proved to be 

very accurate and successful, especially for recently added variables. 

Thyroid disease prediction using different ML algorithms has been analyzed in [24], this work used 

a unique set of data from the UCI archive to test the accuracy of decision trees (DT) , KNN, and LR in 

predicting prediction if thyroid problems are, it exceeds DT and LR at least with an accuracy of 96%. A ML 

model was used by [25] to distinguish patients with hyperthyroidism from hypothyroidism. The results of 

this study are expressed as an accuracy chart: prediction accuracy for hypothyroidism was 90.9% and for 

hyperthyroidism was 93.8%. 

The extreme gradient boosting (XGBoost) model was used by [26] to predict thyroid status in the 

knowledge discovery dataset from UC Irvin based on the observed model in China. Tiwari et al. [27] 

introduced an epidemiological model to predict the occurrence of COVID-19 cases in India. The diagnosis of 

thyroid disease was studied in [28]. Expert algorithms were used to analyze symptoms and make predictions 

about the disease [29]. Simplified swarm optimization (SSO) was used to analyze the function of the thyroid 

gland. The SSO was developed by the authors on a dataset obtained from the UCI [30]. 

Learning vector quantization techniques, radial basis functions, and backpropagation [31] used 

artificial neural networks (ANN) to predict thyroid disease. In contrast [32] ANN and SVM were tested for 

thyroid disease detection, in [33] along with diabetes and malignancy used similarity measures to identify 

patterns associated with thyroid problems. Several ML techniques were used to classify thyroid detection 

with high accuracy: logistic regression scored 98.7% in disease classification, and modified fuzzy hyper line 

segment clustering neural network (MFHLSCNN) showed improved clustering skills over multilayer 

perceptron (MLP) and linear discriminant analysis (LDA) hypothyroid disease with an accuracy score of 

99.62% in prediction [34]. 

 

 

3. DATASET OF THYROID DISEASE 

Datasets for thyroid disease prediction by ML and DL methods include data sets including textual 

image-based datasets from various sources. The groups provide a comprehensive view of thyroid disease, in 

which complex patterns and relationships that predict thyroid disease status occur. It helps to develop 

recognizable patterns [19], [21]. Table 2 shows sample dataset features and sample count.  
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Table 2. UCI thyroid dataset 
Features Sample count 

31 9172 

 

 

Features and structural abnormalities of the thyroid gland have been revealed in image-based  

data from research databases and medical libraries, such as computer tomography (CT) and magnetic 

resonance imaging (MRI), and ultrasound ML and DL models need such images to remove these to better 

identify the recognizable symptoms of thyroid diseases. Combining text-based and image-based data to 

create a comprehensive collection that accurately reflects the complexity of thyroid disease will help develop 

reliable predictive models. The UCI repository provides text-based data and ultrasound images for disorders 

of hyperthyroidism and hypothyroidism for these datasets of 9,172 samples each with 31 unique 

characteristics enable feature importance analysis for optimal classification of thyroid diseases [35], as shown 

in Table 3 [21], [36]. 

 

 

Table 3. Types of data sample attributes 
S. No. Attributes Definition Type 

1 Sex Sex patient identifies (String) 

2 Age Patient age (Integer) 

3 Thyroxine The patient is taking thyroxine (Boolean) 

4 Query on thyroxine The patient is taking thyroxine (Boolean) 

5 On antithyroid meds The patient takes antithyroid medications (Boolean) 

6 Sick The patient is ill (Boolean) 

7 Pregnant The expectant patient (Boolean) 

8 Query hypothyroid The patient thinks they may have hypothyroidism. (Boolean) 

9 Query hyperthyroid The patient thinks they may have hyperthyroid. (Boolean) 

10 TSH measured Measured TSH in the blood (Boolean) 

11 T3 measured Measured T3 in the blood (Boolean) 

12 TT4 measured Measured TT4 in the blood (Boolean) 

13 T4U measured Measured T4U in the blood (Boolean) 

14 FTI measured Measured FTI in the blood (Boolean) 

15 TBG measured Measured TBG in the blood (Boolean) 

 

 

Table 4 [21] presents an imbalanced class distribution for the thyroid health data set, with multiple 

samples not classified in any one class. As outlined in the method, feature selection and preprocessing were 

performed to balance the dataset for analysis. Patients without thyroid disease make up the majority of the 

“no condition” group, although severe patients with non-thyroid symptoms have had altered thyroid levels 

due to chronic conditions [10], [37], [38]. 

 

 

Table 4. Classification contained within the dataset 
S. No. Class Definition Details 

1 - Absence of condition The patient has no normal thyroid disease/report. 

2 A Increased protein interaction Protein binding facilitates mass assembly [39]. 

3 B Under-replaced Levothyroxine medications for hypothyroidism usually work well by 

replenishing the deficiency of thyroxine hormone [38]. 

4 C Coexisting non-thyroid 

conditions 

The term “non-thyroid disorder” refers to chronic diseases or hormonal 

changes that have nothing to do with pancreatic thyroid dysfunction [40]. 

5 D Over-replaced Reduce allocation errors by using low TSH and T4 abnormalities to identify 

patients with inadequate replacement and overreplacement to replace T4-TSH 

deficiency [9]. 

6 E Discordant assay results Early detection of test interruptions helps to avoid inappropriate patient care 

caused by abnormal thyroid function tests [41]. 

7 F Hyperthyroid Sleep issues, restlessness, tremors, skin and hair changes, palpitations, rapid 

heartbeat, and muscle weakness are all symptoms of hyperthyroidism [9], [42]. 

8 G Primary hypothyroid Damage to the thyroid gland, usually caused by the immune system or after 

radioiodine, radiation, or surgery, is the primary cause of hypothyroidism [42]. 

9 H By replacement therapy Thyroid hormone treatment, also known as hypothyroidism, is often 

recommended when the thyroid does not produce enough hormones. 

Sometimes it could also help control goiter growth [9], [43]. 

10 I Under-replaced Rare: used to assess the extent of thyroid goiter [43]. 

11 J Compensated hypothyroid In subclinical hypothyroidism, serum TSH levels are elevated, also known as 

compensatory hypothyroidism, while serum-free thyroxine (FT4) levels are 

normal [44]. 

 



Int J Inf & Commun Technol  ISSN: 2252-8776  

 

Advanced predictive models for thyroid disease comorbidities using … (Mohammed Yacoob B. A.) 

677 

Out of the 9,172 patient records in the dataset, 6,771 are classified as normal, indicating no thyroid 

condition. The new records included 346 patients with compensated hypothyroidism, 233 patients with 

primary hypothyroidism, 456 patients with non-thyroid disease, and 359 patients with compensated high-

protein-binding hypothyroidism. Sample counts and classification categories for the data set are summarized 

in Table 5. For balance, 400 samples were randomly selected from 6,771 normal records, and new classes 

were switched to ensure that at least each class contained 200 samples. Table 5 provides information on the 

balanced data, while Table 6 provides sample information. The diagnosis of hypothyroidism is made based 

on laboratory blood tests, which require careful evaluation of basic parameters and hormone levels possible 

misdiagnosis and inappropriate treatment due to small statistical changes in thyroid hormone levels to 

increase the accuracy [21]. 

 

 

Table 5. Balanced dataset for the classification of thyroid diseases 
S. No. Class Count after preprocessing Final 

1 Normal 6,771 400 

2 Increased binding protein 346 346 

3 Present non-thyroidal ailment 436 436 

4 Primary hypothyroid 233 233 

5 Compensated hypothyroid 359 359 

 

 

Table 6. Count of images and diseases 
S. No. Classification of a disease Number of images 

1 Normal thyroid 88 

2 Hyperthyroid 77 

3 Hypothyroid 110 

4 Thyroid nodule 146 

5 Thyroiditis 74 

6 Thyroid cancer 99 

 

 

3.1.  Data collection 

Many academic databases like Kaggle, UCI, PubMed, IEEE Xplore, and Google Scholar were 

searched to assemble materials for this survey article. The data sets were acquired from reputable open data 

portals, government databases, and institutional repositories emphasizing the diversity of subject categories, 

historical periods, and geographical scope of the data. The selection criteria adopted in ensuring the inclusion 

of relevant and high-quality datasets that would enable a comprehensive understanding of the subject matter 

were quite stringent [1], [2], [19], [23]. 

 

3.2.  Data preprocessing 

Preparing unprocessed data for use in a ML model is known as data preprocessing. When running a 

ML project, it is common to encounter very dirty or unstructured raw data. Real-world data often contain 

noise and missing values, making them unsuitable for direct incorporation into ML models. Consequently, 

data preprocessing is essential for data cleaning and transformation, qualifying ML models for their 

maximum accuracy and efficiency [45]. 

 

 

4. ALGORITHMS IN DEEP LEARNING AND MACHINE LEARNING 

Algorithms for computer learning and DL are needed, eliminating the need for explicit design. 

These algorithms can use hierarchical mental models to interpret design information [46]. DL techniques 

based on neural networks improve data classification and prediction accuracy, which is crucial for reliable 

disease diagnosis in modern medicine. The health service produces a lot of information in addition to medical 

examinations and patient records. Medical data sets are systematically analyzed using ML techniques, which 

offer analytical methods [47]. 

Accurate modeling and disease model classification are achieved through DL algorithms, which 

facilitate research objectives and treatment hypotheses ML enables automated data analysis and prediction, 

and DL provides improved it has data acquisition, storage, and computing power [48]. Since unstructured 

data makes it difficult to reveal important risk detection characteristics, DL makes feature engineering work 

automatically by going through multiple layers, thus highlighting the importance of the user’s involvement. 

Figure 2 shows a comparison between ML and DL architectures. The entire figure shows the difference 

between a simple and a deep neural network. Figure 2(a) shows a simple neural network used by ML where 

feature extraction is separate from classification. Figure 3(b) shows a deep neural network that integrates 
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feature extraction and classification to create a highly automated approach. Figures 2(a) and 2(b) show the 

three classifications of layers in deep neural networks as follows:  

i) The function of the input layer is to store input data. 

ii) The number of hidden layers is variable, but its functionality is critical to the network. 

iii) Output layer, which handles data classification and prediction. 

Several input, output, and hidden layers that make up the DL process are shown. The more 

sophisticated characteristics that each layer acquires enable deeper insights to be gained from the data. They 

increase the layer depth and thicken the materials. On the other hand, Figure 3 summarizes the evolution of 

AI and is divided into Figure 3(a): performance timeline of ML (1980) and DL (2006). Figure 3(b): 

hierarchical representation (AI → ML → DL → CNN). Figures 3(a)-3(c): effect of data volume on ML/DL 

performance. (Figures 3(a) to 3(c)) DL outperforms classical ML in processing large data sets and greater 

accuracy while generating more sophisticated neural networks with characteristics collected from human data 

uses, which limits scalability and speed [49]. 

While DL algorithms have undoubtedly improved performance and attracted interest in predictive 

applications in many industries, including healthcare and medicine, ML needs to support performance and 

accuracy standards same rigor. The results of the study highlight the importance of ML, because of its 

consistent ability to produce more accurate and precise results [47]. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. ML and DL (a) different layers and work process ML (simple neural network) and  

(b) different layers and work process DL (deep neural network) 

 

 

   
(a) (b) (c) 

 

Figure 3. Evolution of AI: (a) performance timeline of ML (1980) and DL, (b) hierarchical representation  

(AI → ML → DL → CNN), and (c) effect of data volume on ML/DL performance 
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An overview of ML methods, association algorithms, and widely used DL algorithms and 

architectures are discussed in Tables 7 and 8 [21]. DL models are an integrative subset of ML. This example 

involves data processing through multilevel networks, where the results of the previous level are used as 

signals for the results of the next level [50]. The availability of large label datasets, more powerful parallel 

computing hardware (e.g., graphics processing units), and faster algorithms have all contributed to the rapid 

implementation of DL [51]. DL techniques can solve the challenges that the AI community has been dealing 

with for years. This is because using a significant number of layers improves the quality of the universal 

approximation and facilitates the identification of connected elements from data at different levels of 

hierarchy and abstraction [52]. In radiology, CNNs are considered highly sophisticated DL algorithms, which 

are used for computer vision tasks including detection, classification, and segmentation [53], [54]. CNN 

relies on 4 middle concepts-local connections, shared weights, pooling, and the incorporation of multiple 

layers-all of which drastically beautify the precision and effectiveness of the general machine [52]. The 

classification task or prediction task uses fully connected layers with iterative operation and pooling [54], 

[55]. Several layer structures are available, and several deep neural network architectures such as GoogleNet 

[56], AlexNet [57], VGGNet [58], and ResNet [59]  have been successfully used in image analysis. 

 

 

Table 7. Algorithms 
S. No. Algorithms Features 

Supervised learning 

1 LR Regression is used in the method, where the feature is considered as the independent variable 

and the class as the dependent variable. A linear classifier does not perform well on 

nonlinearly separable data. 

2 DT The method achieves objective values through a flowchart-like tree model; This model works 

well for segmentation but is not suitable for regression or price trend forecasting. 

3 NB classifier The algorithm based on Bayes theorem is a simple probabilistic classification technique that 

assumes feature independence and uses maximum likelihood estimation for reliable results 

with small data sets. 

4 KNN classifier Useful for classification and regression, but computationally demanding, this method acts as 

an instance-based classifier, classifying unknown data according to its similarity to known 

data. 

5 SVM The algorithm divides the input data into two groups based on several factors using a 

multidimensional hyperplane using statistical methods, which is suitable for regression and 

classification applications. 

6 RF The approach that combines decision trees and cluster classification to aggregate findings by 

averaging the resulting trees performs well but runs the risk of overfitting when dealing with 

chaotic data. 

7 ANN This method has input, hidden, and output layers. To classify new data with a learning 

algorithm, the hidden feature mimics neurons and requires a large amount of annotations. This 

method is effective for nonlinear relationships. 

Unsupervised learning 

8 K-means For large data sets with a predefined number of clusters, the method computes the distance 

between data points and centroids for classification, comparing between-cluster and inter-

cluster differences to optimize the classification. 

9 Clustering methods The algorithm aims to efficiently search clusters or variants for classification, thereby 

reducing the amount of data required. 

 

 

Table 8. Deep learning architectures 
S. No. Architecture Definition 

1 AlexNet One of the basic schemes of high-performance distribution is distinguished by the use of dropouts, 

data enhancement, and rectified linear unit (ReLU) activation functions. 

2 GoogleNet Develop a basic design that integrates the results of operations applied to the input data; specializing 

in the distribution of images. 

3 VGGNet It uses a small amount of depth and small pore particles. 

4 ResNet Using skip structures to combine input and processed data, helps the network gain knowledge of 

residues and complexity. 

5 R-CNN DL methods for analyzing search tasks using bivariate networks with a well-designed model trained 

for the classification task. 

6 YOLO A flexible and fast one-level interface capable of facilitating real-time discovery and segmentation. 

 

 

5. RESULTS 

A study comparing ML algorithms on thyroid disease prediction evaluated the performance of 

several ML algorithms [34]. The authors pooled data on 106 patients using DTs, RFs, and LR, among other 

methods. The RF was more accurate in predicting thyroid disease at 94.7% sensitivity and 94.5% specificity. 
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“In silico models for predicting interference of molecular origin events associated with thyroid 

hormone homeostasis” [60]. [61]. A variety of ML methods including RFs, SVM, and neural networks were 

applied to the training data sets along with traditional statistical methods [62], [63]. Three data balance 

methods were used to connect the ToxCast database with the scholar’s research boom. The models were 

tested with independent molecular-based data sets. Performance was improved by using multiple neurons, 

especially for low-input targets. The averages had robust F1 values: 0.81 for thyroid peroxidase inhibition 

(TPO) and 0.83 for peroxisome proliferator-activated receptor (TR) activation. After parameter changes, the 

other models also performed well, reaching F1 values of up to 0.77. Recent surveys on the thyroid are shown 

in Table 9. 

 

 

Table 9. Recent survey on thyroid disease [9] 
Ref. Sample size Source of dataset Models Class Metrics Results 

[9] 6,356 samples Image dataset CNN-based ResNet and 

stochastic gradient descent 

(SGD) 

5 Accuracy Accuracy 94% 

[20] 690 samples,  

13 attributes 

Pakistan district 

headquarters teaching 

hospital and KEEL 

repository datasets 

KNN with and without chi-

square-based feature selection 

3 Accuracy KNN 98% 

[21] 9,172 samples, 

31 attributes 

UCI cleveland RF, AdaBoost, GradBoost, 

long short-term memory 

(LSTM) 

4 F1-score, 

recall, 

precision 

RF- 99% accuracy 

and CNN -94% 

precision 

[22] 1,250 samples, 

17 attributes 

Hospital and lab SVM, RF, DT, NB, LR, 

KNN, MLP, LDA 

3 Accuracy DT 90.13%, SVM 

92.53%, RF 91.2%, 

NB 90.67%, LR 

91.73%, LDA 83.2% 

KNN 91.47%, MLP 

96.4% 

[27] 215 samples 

with 5 

attributes 

UCI cleveland KNN, XGBoost, LR, DT 3 Accuracy KNN 81.25% and 

XGBoost 87.5% 

[34] 7,200 samples,  

21 attributes 

UCI cleveland SVM, MLR, NB, and DT 2 Accuracy MLR 91.59%, SVM 

96.04%, NB 6.31%, 

DT 99.23%, 

Sensitivity (94.7%), 

[64] 3,162 attributes UCI cleveland Extra-trees, CatBoost, light 

GradBoost, ANN, KNN, RF, 

DT 

4 Accuracy Accuracy-95.7% 

[9], 

[61] 

N/A ToxCasts RF, LR, XGB, SVM, ANN 2 F1-score (TR) RF-81% and 

(TPO) XGB-83% 

[9], 

[61] 

7,247 samples,  

21 attributes 

UCI cleveland Grey wolf optimization 

(GWO), improved GWO 

(IGWO), hybrid firefly 

butterfly optimization 

(HFBO) 

3 Accuracy, 

specificity, 

sensitivity 

Sensitivity (99.2%), 

accuracy (99.28%), 

specificity (94.5%) 

 

 

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

The future of thyroid marker detection and prediction seems more promising when robots can learn 

ML and disseminate this information DL, for example, have been demonstrated that in combination with 

other data, such as photographs and medical records, can increase model accuracy. Advanced DL models 

such as CNN and RNN have improved the evaluation of personalized medicine. However, many common 

issues, such as sample imbalances, unclear models, generalizations across different populations or ethnic 

groups, and many models that are currently obscure, constrain practitioners to have little confidence in 

hospitals. For example, there has been little research on the prognosis of common thyroid comorbidities in 

people with thyroid disease, including PCOS and TED. Thus, to overcome these obstacles, research should 

be conducted on ways to improve model interpretation capabilities; validation in different population 

mixtures; a system that integrates multiple data sets is essential for holistic forecasting; and, at the same time, 

they need to ensure that the ability to detect and predict other thyroid disorders is more effective.  

To implement ML and DL in the healthcare industry, interdisciplinary teams need to work together to 

exchange information and develop user-friendly solutions. To further improve the diagnosis, treatment, and 

management of thyroid disease, these deficiencies need to be corrected for both ML and DL and their 

associated comorbidities. This will dramatically improve patient outcomes and healthcare efficiency. 
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