Enhancing database query interpretation: a comparative analysis of semantic parsing models

Gunjan Keswani, Manoj B. Chandak

Department of Computer Science and Engineering, School of Computer Science and Engineering, Ramdeobaba University, Nagpur, India

Article Info

Article history:

Received Aug 18, 2024 Revised Dec 10, 2024 Accepted Jan 19, 2025

Keywords:

Deployment complexity NoSQL databases Query accuracy Scalability Semantic parsing

ABSTRACT

The rapid proliferation of NoSQL databases in various domains necessitates effective parsing models for interpreting NoSQL queries, a fundamental aspect often overlooked in database management research. This paper addresses the critical need for a comprehensive understanding of existing semantic parsing models tailored for NoSQL query interpretation. We identify inherent issues in current models, such as limitations in precision, accuracy, and scalability, alongside challenges in deployment complexity and processing delays. This review is pivotal, shedding light on the intricacies and inefficiencies of existing systems, thereby guiding future advancements in NoSQL database querying. This methodical comparison of these models across key performance metrics-precision, accuracy, recall, delay, deployment complexity, and scalability-reveals significant disparities and areas for improvement. By evaluating these models against both individual and combined parameters, we identify the most effective methods currently available. The impact of this work is far-reaching, providing a foundational framework for developing more robust, efficient, and scalable parsing models. This, in turn, has the potential to revolutionize the way NoSQL databases are queried and managed, offering significant improvements in data retrieval and analysis. Through this paper, we aim to bridge the gap between theoretical model development and practical database management, paving the way for enhanced data processing capabilities in diverse NoSQL database applications.

This is an open access article under the CC BY-SA license.

467

Corresponding Author:

Gunjan Keswani Department of Computer Science and Engineering School of Computer Science and Engineering, Ramdeobaba University Nagpur, India

Email: keswanigv@rknec.edu

1. INTRODUCTION

The advent of NoSQL databases marked a paradigm shift in data storage and retrieval, catering to the growing demand for scalability, flexibility, and speed in handling large volumes of unstructured data. However, the efficient interpretation of NoSQL queries remains a challenging frontier, largely due to the complexity and diversity of NoSQL data models. The criticality of this issue is amplified by the increasing reliance on NoSQL databases across various sectors, from web applications to big data analytics. This necessitates the development of advanced semantic parsing models that can accurately, efficiently, and effectively interpret NoSQL queries.

Existing semantic parsing models, while having made significant strides in recent years, still grapple with various limitations. These include issues related to precision and accuracy, which are paramount in

Journal homepage: http://ijict.iaescore.com

468 □ ISSN: 2252-8776

ensuring that query results are reliable and relevant. Furthermore, the recall of these models, or their ability to retrieve all relevant data points, is another area of concern, particularly in scenarios involving complex queries. Delays in query processing, stemming from inefficiencies in the parsing models, can lead to bottlenecks, adversely affecting the performance of real-time applications. Additionally, the complexity of deploying these models and their scalability in handling growing data volumes pose significant challenges.

The impact of this work extends beyond the theoretical realm, offering practical implications for database management. By pinpointing the most effective parsing models, we contribute to enhancing the efficiency and effectiveness of NoSQL databases. Overall, this paper aims to bridge the gap between current model capabilities and the evolving needs of NoSQL database management. We provide a roadmap for future research and development, with the ultimate goal of advancing the field of database query interpretation and management.

The motivation behind this research stems from the rapidly evolving landscape of database technology, where NoSQL systems have emerged as a cornerstone for managing large-scale, unstructured, and semi-structured data. Despite their growing popularity, a significant gap exists in the effective interpretation of NoSQL queries. This gap is primarily due to the diversity of NoSQL data models and the lack of specialized semantic parsing models that can accommodate their unique characteristics. The need for high precision, accuracy, and speed in querying these databases is more pressing than ever, given their extensive use in critical applications ranging from e-commerce platforms to real-time analytics in IoT devices.

2. LITERATURE REVIEW

An extensive summary of various models can be observed from Table 1 in Appendix. The Table 1 summarizes a diverse range of research works in the fields of databases and natural language processing [1]-[50].

3. METHOD

This paper uses a systematic approach toward the comparative analysis of semantic parsing models applied to the interpretation of NoSQL database queries. It evaluates the existing models against strategic performance metrics such as precision, accuracy, delay, deployment complexity, and scalability. A wide literature review was conducted to identify the state-of-art models in the area of text-to-SQL, NLIDB, and schema design for NoSQL databases. The models were chosen for how relevant they are in handling natural language queries and whether their unique features regarding NoSQL databases can be managed. For conducting a strong comparison, the study had a designed metric-based evaluation framework. Each of these models was tested based on performance parameters which came under five categories, namely: very low (VL, 0-10), low (L, 10-20), medium (M, 20-40), high (H, 40-80), and very high (VH, 80-100). Such a rating scheme allowed the results from different types of models to be normalized and combined with equal representation for comparison. Data was accumulated from experiments that were carried out in the form of previously conducted studies, which included public datasets like Spider, WikiSQL, and CoSQL. These datasets were chosen as they are widely utilized in the literature and pertain to cross-domain natural language-to-SQL translation tasks. The evaluation process took place over three phases. In the first phase, models were evaluated individually, regarding how well they performed within the domain for which they were originally envisioned; this meant collecting accuracy, precision, and recall scores directly from published papers. Cross-domain testing: This involved the performance of the models on datasets outside the domain of the main application to prove scalability and adaptability. This comprised the third phase, which included an analysis of processing delay, deployment complexity, as well as scalability based on the models' architecture and computational requirements. A qualitative assessment throughout the analysis addressed deployment constraints and real-time usability in large-scale NoSQL database environments.

4. RESULTS AND DISCUSSION

4.1. Introduction

The authors researched semantic parsing models with the intent of filling in the missing gap found in previous studies, which did not well address the issues NoSQL databases present. Actually, work previously done on structured databases and text-to-SQL systems considered no complexity that comes from the less structured and flexible schemas NoSQL introduces. This clearly depicts that there were huge gaps between the current models and the desired precision and scalability. The applications of these models are mostly very low within the NoSQL environment.

4.2. Summarizing key findings

Based on the empirical analysis, some major key findings are that schema inference models, like the ones in [1], have very high precision, at times going up to 100%, making them very suitable for schema-structure interpretation in NoSQL databases with a high degree of correctness and effectiveness. Other examples are the models, such as cross-domain text-to-SQL [7] and elastic data conversion framework [22], which exhibited excellent scalability when performing well in a wide range of domains with different kinds of datasets in the evaluation, thus supporting their applicability in large-scale NoSQL systems. Many models, RDF querying [2] and ontology-based knowledge bases [3], exhibited considerable limitations concerning scalability and complexity of deployment, which indeed made them less suitable for real-time query processing in expansive NoSQL infrastructures and scenarios.

4.3. Interpreting results

Such results compared to prior work found that transformer-based models like the unified framework with self-attention [31] and transformer-based seq-to-seq for text-to-SQL [45] are in a position to outperform classical parsing methods. Not only have these models allowed transformer-based models to better handle complex natural language queries through self-attention mechanisms but also ensured significant high accuracy levels of 80-100 in cross-domain tasks in both accuracy and scalability. However, the earlier versions such as SQLNet [38] and Seq2SQL [39] suffered from scalability and adaptability problems, especially when implemented within a NoSQL scenario where the rigidity of the data structure is not so rigid. These conclusions are in line with other recent research that reveals the first natural language-to-SQL methods cannot compete with messy data examples.

4.4. Addressing limitations

Although promising, a few limitations were realized. The first weakness was the inherent bias of the test datasets. Although test datasets like Spider and WikiSQL are very much welcomed, they do have a considerable inclination towards structured queries and relational databases, which could not be able to simulate the complexity NoSQL environments. This could make limited applicability in generalizing findings from the study. In fact, the computational overhead introduced by transformer-based models is manageable in structured environments, but it may lead to delays in real-time querying of NoSQL databases, especially as the scale of the data increases in processing.

4.5. Implications for future research

Future research needs to cross these limitations and set up more-specific models that can best cater to the demands of NoSQL databases, especially those characterized by highly flexible or dynamic schemas. New benchmark datasets that reflect the richness of NoSQL data models, such as document stores and key-value databases, would make it a more challenging undertaking in regard to the evaluation of these models. Support for more effective cross-domain functionality of models without demanding extensive retraining may make them scale better and applied in real-time.

4.6. Conclusion

In conclusion, this study has evidence that while great strides have been made in structured databases, the NoSQL environment is not one in which these semantic parsing models have achieved consistent results. High precision and scalability shown by schema inference and transformer-based models indicate that these are the approaches most likely to lead to advances in NoSQL query interpretation. However, proper optimization of such models for the specific characteristics of the NoSQL systems, in that with unstructured, dynamic, and heterogeneous samples of data, is very much needed in the future developments to fully unleash their potential.

5. CONCLUSION

This paper provides an overview of complete analyses for a wide range of semantic parsing models while interpreting NoSQL database queries and identifies both strengths and weaknesses of the approaches in light of key performance metrics such as precision, accuracy, recall, delay, cost, and scalability.

The results indicate that while schema inference and transformer-based approaches seem to achieve high precision and scalability, existing models suffer from adapting the unstructured nature of the NoSQL database, especially the relational one. Though natural language interfaces and text-to-SQL models have greatly improved query handling in structured environments, they are inherently missing flexible and dynamic schemas that are inherently characteristic of NoSQL systems. As a result, even though the design and deployment of customized NoSQL parsing models is highly improved, there is still much improvement required in the development of the same.

470 ☐ ISSN: 2252-8776

FUNDING INFORMATION

No funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

Name of Author	C	M	So	Va	Fo	I	R	D	O	E	Vi	Su	P	Fu
Gunjan Keswani	\checkmark	✓			✓	✓			✓	✓				
Manoj B. Chandak	✓					✓				✓		✓		
C : ConceptualizationM : MethodologySo : SoftwareVa : ValidationFo : Formal analysis	 I : Investigation R : Resources D : Data Curation O : Writing - Original Draft E : Writing - Review & Editing 				g	Vi : Visualization Su : Supervision P : Project administration Fu : Funding acquisition				1				

CONFLICT OF INTEREST STATEMENT

No conflict of interest.

DATA AVAILABILITY

Data availability is not applicable to this paper as no new data were created or analyzed in this study. All data supporting the findings of this study are available in the published literature, which has been properly cited in the references.

REFERENCES

- [1] P. Koupil, S. Hricko, and I. Holubová, "A universal approach for multi-model schema inference," *Journal of Big Data*, vol. 9, no. 1, p. 97, Aug. 2022, doi: 10.1186/s40537-022-00645-9.
- [2] W. Ali, M. Saleem, B. Yao, A. Hogan, and A. C. N. Ngomo, "A survey of RDF stores & SPARQL engines for querying knowledge graphs," *VLDB Journal*, vol. 31, no. 3, pp. 1–26, May 2022, doi: 10.1007/s00778-021-00711-3.
- [3] C. Lei, A. Quamar, V. Efthymiou, F. Özcan, and R. Alotaibi, "HERMES: data placement and schema optimization for enterprise knowledge bases," VLDB Journal, vol. 32, no. 3, pp. 549–574, May 2023, doi: 10.1007/s00778-022-00756-y.
- [4] L. Dou et al., "UniSAr: a unified structure-aware autoregressive language model for text-to-SQL semantic parsing," International Journal of Machine Learning and Cybernetics, vol. 14, no. 12, pp. 4361–4376, Dec. 2023, doi: 10.1007/s13042-023-01898-3.
- [5] Y. Foufoulas, E. Zacharia, H. Dimitropoulos, N. Manola, and Y. Ioannidis, "DETEXA: declarative extensible text exploration and analysis through SQL," *International Journal on Digital Libraries*, vol. 25, no. 3, pp. 457–469, Sep. 2023, doi: 10.1007/s00799-023-00358-1.
- [6] C. Wei, S. Huang, and R. Li, "Enhance text-to-SQL model performance with information sharing and reweight loss," Multimedia Tools and Applications, vol. 81, no. 11, pp. 15205–15217, May 2022, doi: 10.1007/s11042-022-12573-0.
- [7] B. B. Naik, T. J. V. R. Reddy, K. R. V. karthik, and P. Kuila, "An SQL query generator for cross-domain human language based questions based on NLP model," *Multimedia Tools and Applications*, vol. 83, no. 4, pp. 11861–11884, 2024, doi: 10.1007/s11042-023-15731-0.
- [8] S. Swamidorai, T. S. Murthy, and K. V. Sriharsha, "Translating natural language questions to SQL queries (nested queries)," Multimedia Tools and Applications, vol. 83, no. 15, pp. 45391–45405, Oct. 2024, doi: 10.1007/s11042-023-16987-2.
- [9] B. K. Saha, P. Gordon, and T. Gillbrand, "NLINQ: A natural language interface for querying network performance," Applied Intelligence, vol. 53, no. 23, pp. 28848–28864, Dec. 2023, doi: 10.1007/s10489-023-05043-z.
- [10] M. A. Jose and F. G. Cozman, "A multilingual translator to SQL with database schema pruning to improve self-attention," International Journal of Information Technology (Singapore), vol. 15, no. 6, pp. 3015–3023, Aug. 2023, doi: 10.1007/s41870-023-01342-3.
- [11] A. Solanki and A. Kumar, "A system to transform natural language queries into SQL queries," *International Journal of Information Technology (Singapore)*, vol. 14, no. 1, pp. 437–446, Feb. 2022, doi: 10.1007/s41870-018-0095-2.
- [12] M. Spasić and M. V. Janičić, "Verification supported refactoring of embedded sql," *Software Quality Journal*, vol. 29, no. 3, pp. 629–665, Sep. 2021, doi: 10.1007/s11219-020-09517-y.
- [13] S. J. Qiao et al., "Cardinality estimator: processing SQL with a vertical scanning convolutional neural network," Journal of Computer Science and Technology, vol. 36, no. 4, pp. 762–777, Jul. 2021, doi: 10.1007/s11390-021-1351-7.
- [14] A. P. Marathe, "Towards intelligent database systems using clusters of SQL transactions," *Knowledge and Information Systems*, vol. 65, no. 7, pp. 2863–2894, Jul. 2023, doi: 10.1007/s10115-023-01850-5.
- [15] R. Ma, X. Han, L. Yan, N. Khan, and Z. Ma, "Modeling and querying temporal RDF knowledge graphs with relational databases," *Journal of Intelligent Information Systems*, vol. 61, no. 2, pp. 569–609, Oct. 2023, doi: 10.1007/s10844-023-00780-6.
- [16] B. Namdeo and U. Suman, "Schema design advisor model for RDBMS to NoSQL database migration," *International Journal of Information Technology (Singapore)*, vol. 13, no. 1, pp. 277–286, Feb. 2021, doi: 10.1007/s41870-020-00515-8.
- [17] L. Liu, "Design of NoSQL database in oral English teaching based on 5G network and AI recognition," Soft Computing, vol. 27, no. 14, pp. 10337–10345, Jul. 2023, doi: 10.1007/s00500-023-08306-6.

- [18] R. Jemmali, F. Abdelhedi, and G. Zurfluh, "DLToDW: transferring relational and NoSQL databases from a data lake," SN Computer Science, vol. 3, no. 5, p. 381, Jul. 2022, doi: 10.1007/s42979-022-01287-7.
- [19] A. Maté, J. Peral, J. Trujillo, C. Blanco, D. García-Saiz, and E. Fernández-Medina, "Improving security in NoSQL document databases through model-driven modernization," *Knowledge and Information Systems*, vol. 63, no. 8, pp. 2209–2230, Aug. 2021, doi: 10.1007/s10115-021-01589-x.
- [20] S. El-Mahgary, E. Soisalon-Soininen, P. Orponen, P. Rönnholm, and H. Hyyppä, "OVI-3: A NoSQL visual query system supporting efficient anti-joins," *Journal of Intelligent Information Systems*, vol. 60, no. 3, pp. 777–801, Jun. 2023, doi: 10.1007/s10844-022-00742-4.
- [21] A. Hillenbrand, U. Störl, S. Nabiyev, and M. Klettke, "Self-adapting data migration in the context of schema evolution in NoSQL databases," *Distributed and Parallel Databases*, vol. 40, no. 1, pp. 5–25, Mar. 2022, doi: 10.1007/s10619-021-07334-1.
- [22] T. K. Dang, T. M. Huy, L. H. Dang, and N. Le Hoang, "An elastic data conversion framework: a case study for MySQL and MongoDB," SN Computer Science, vol. 2, no. 4, p. 325, Jul. 2021, doi: 10.1007/s42979-021-00716-3.
- [23] C. Forresi, E. Gallinucci, M. Golfarelli, and H. Ben Hamadou, "A dataspace-based framework for OLAP analyses in a high-variety multistore," VLDB Journal, vol. 30, no. 6, pp. 1017–1040, Nov. 2021, doi: 10.1007/s00778-021-00682-5.
- [24] A. Rani, N. Goyal, and S. K. Gadia, "Big social data provenance framework for zero-information loss key-value pair (KVP) database," *International Journal of Data Science and Analytics*, vol. 14, no. 1, pp. 65–87, Jun. 2022, doi: 10.1007/s41060-021-00287-9.
- [25] R. Cao et al., "A heterogeneous graph to abstract syntax tree framework for text-to-SQL," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13796–13813, 2023, doi: 10.1109/TPAMI.2023.3298895.
- [26] R. Z. Wang, Z. H. Ling, J. B. Zhou, and Y. Hu, "A multiple-integration encoder for multi-turn text-to-SQL semantic parsing," IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 29, pp. 1503–1513, 2021, doi: 10.1109/TASLP.2021.3070726.
- [27] M. Paganelli, P. Sottovia, K. Park, M. Interlandi, and F. Guerra, "Pushing ML Predictions Into DBMSs," *IEEE Transactions on Knowledge and Data Engineering*, vol. 35, no. 10, pp. 10295–10308, Oct. 2023, doi: 10.1109/TKDE.2023.3269592.
- [28] T. Bai, Y. Ge, S. Guo, Z. Zhang, and L. Gong, "Enhanced Natural Language Interface for Web-Based Information Retrieval," IEEE Access, vol. 9, pp. 4233–4241, 2021, doi: 10.1109/ACCESS.2020.3048164.
- [29] Z. Brahmia, F. Grandi, and R. Bouaziz, "τJOWL: a systematic approach to build and evolve a temporal OWL 2 ontology based on temporal JSON big data," Big Data Mining and Analytics, vol. 5, no. 4, pp. 271–281, Dec. 2022, doi: 10.26599/BDMA.2021.9020019.
- [30] V. Wudaru, N. Koditala, A. Reddy, and R. Mamidi, "Question answering on structured data using NLIDB approach," in 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Mar. 2019, pp. 1–4, doi: 10.1109/ICACCS.2019.8728487.
- [31] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, "RAT-SQL: relation-aware schema encoding and linking for text-to-SQL parsers," in *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 2020, pp. 7567–7578, doi: 10.18653/v1/2020.acl-main.677.
- [32] T. Yu, "Learning to map natural language to executable programs over learning to map natural language to executable programs over databases databases," 2021. https://elischolar.library.yale.edu/gsas dissertations (accessed May 04, 2024).
- [33] U. Brunner and K. Stockinger, "ValueNet: a natural language-to-SQL system that learns from database information," in 2021 IEEE 37th International Conference on Data Engineering (ICDE), Apr. 2021, pp. 2177–2182, doi: 10.1109/ICDE51399.2021.00220.
- [34] Y. Gan et al., "Natural SQL: making SQL easier to infer from natural language specifications," Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021, 2021.
- [35] C. J. Baik, "Maximizing user domain expertise to clarify oblique specifications of relational queries," 2020.
- [36] Y. Gan, X. Chen, and M. Purver, "Exploring underexplored limitations of cross-domain text-to-SQL generalization," EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, pp. 8926–8931, 2021, doi: 10.18653/v1/2021.emnlp-main.702.
- [37] P. Ni, R. Okhrati, S. Guan, and V. Chang, "Knowledge graph and deep learning-based text-to-GraphQL model for intelligent medical consultation chatbot," *Information Systems Frontiers*, vol. 26, no. 1, pp. 137–156, Feb. 2024, doi: 10.1007/s10796-022-10295-0.
- [38] X. Xu, C. Liu, and D. Song, "SQLNet: generating structured queries from natural language without reinforcement learning," 2017, doi: 10.48550/arxiv.1711.04436.
- [39] E. Ersoy and H. Sözer, "Using artificial neural networks to provide guidance in extending PL/SQL programs," Software Quality Journal, vol. 30, no. 4, pp. 885–916, Dec. 2022, doi: 10.1007/s11219-022-09586-1.
- [40] M. Johnson et al., "Google's multilingual neural machine translation system: enabling zero-shot translation," Transactions of the Association for Computational Linguistics, vol. 5, pp. 339–351, Dec. 2017, doi: 10.1162/tacl_a_00065.
- [41] W. Zaremba, I. Sutskever, and O. Vinyals, "Recurrent neural network regularization," arxiv, 2014, [Online]. Available: http://arxiv.org/abs/1409.2329.
- [42] L. Dong and M. Lapata, "Language to logical form with neural attention," 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers, vol. 1, pp. 33–43, 2016, doi: 10.18653/v1/p16-1004.
- [43] R. Liu, T. Wang, Y. Yang, and B. Yu, "Database development based on deep learning and cloud computing," *Mobile Information Systems*, vol. 2022, pp. 1–10, Apr. 2022, doi: 10.1155/2022/6208678.
- [44] W. Zhang et al., "Deep neural network-based SQL injection detection method," Security and Communication Networks, vol. 2022, pp. 1–9, Mar. 2022, doi: 10.1155/2022/4836289.
- [45] K. Xu, Y. Wang, Y. Wang, Z. Wang, Z. Wen, and Y. Dong, "SeaD: end-to-end text-to-SQL generation with schema-aware denoising," Findings of the Association for Computational Linguistics: NAACL 2022 - Findings, pp. 1845–1853, 2022, doi: 10.18653/v1/2022.findings-naacl.141.
- [46] T. Wolfson, D. Deutch, and J. Berant, "Weakly supervised text-to-SQL parsing through question decomposition," in Findings of the Association for Computational Linguistics: NAACL 2022, 2022, pp. 2528–2542, doi: 10.18653/v1/2022.findings-naacl.193.
- [47] N. Deng, Y. Chen, and Y. Zhang, "Recent advances in text-to-SQL: a survey of what we have and what we expect," Proceedings International Conference on Computational Linguistics, COLING, vol. 29, no. 1, pp. 2166–2187, 2022.
- [48] T. J. Revanth, K. V. Sai, R. Ramya, R. Chava, V. Sushma, and B. S. Ramya, "NL2SQL: natural language to SQL query translator," *Lecture Notes in Electrical Engineering*, vol. 790, pp. 267–278, 2022, doi: 10.1007/978-981-16-1342-5_21.
- [49] M. S. Geetha, R. Yashwanthika, M. S. Sri, and M. Sudiksa, "GenSQL—NLP-based SQL generation," Lecture Notes on Data Engineering and Communications Technologies, vol. 93, pp. 279–288, 2022, doi: 10.1007/978-981-16-6605-6_20.

[50] E. Ersoy and H. Sözer, "Using artificial neural networks to provide guidance in extending PL/SQL programs," *Software Quality Journal*, vol. 30, no. 4, pp. 885–916, Dec. 2022, doi: 10.1007/s11219-022-09586-1.

APPENDIX

Table 1. Comparative analysis of existing models

Method used	Table 1. Comparative a	Advantages	Research gap
Schema Inference [1]	This work addresses the inference	- Inference of a common schema for	- Specific to multi-model
benema inference [1]	of a common schema for multi-	multi-model data.	data, may not be suitable
	model data, including local integrity	- Handling of overlapping models	for single-model
	constraints and inter-model	and data redundancy.	scenarios.
	references. It handles overlapping	- Efficient processing of significant	section.
	models, data redundancy, and large	data amounts.	
	data efficiently.	data diffoditis.	
RDF Querying [2]	This survey reviews techniques and	- Comprehensive review of RDF	- Limited to local
RDI Quelying [2]	systems for querying RDF	querying techniques.	querying, not distributed
	knowledge graphs, with a focus on	- Emphasis on local (single-	settings.
	local (single-machine) settings. It	machine) settings.	soungs.
	also discusses contemporary	- Discussion of research challenges.	
	research challenges in SPARQL	Discussion of research chancinges.	
	query engines.		
Ontology-Based KBs	HERMES is introduced for	- Querying domain-specific KBs	- Complex to implement
[3]	querying domain-specific	with multiple backends and query	for large-scale KBs.
[5]	knowledge bases stored in multiple	languages.	for large scale RDs.
	backends with different query	- Data placement optimization	
	languages. Challenges of data	Schema optimization, including	
	placement and schema optimization	property graph schemas.	
	are addressed.	property graph selicinas.	
Text-to-SQL Parsing	UNISAR is presented as a structure-	- Use of an off-the-shelf language	- May not outperform
[4]	aware autoregressive language	model architecture.	specialized models in
ניו	model for text-to-SQL parsing,	- Incorporation of structure	specific settings.
	achieving high performance under	-aware extensions.	specific settings.
	various settings.	- High performance in different	
	various seeings.	text-to-SQL scenarios.	
Metadata Enrichment	A text analysis framework	- Scalable framework for text	- Limited to metadata
[5]	implemented in extended SQL is	mining in databases.	enrichment, may not cover
[5]	introduced for metadata enrichment	- Declarative nature of SQL for	all text mining tasks.
	in digital libraries. The framework	easy workflow creation.	un text mining tusks.
	offers scalability and ease of use.	- Significant speedup compared to	
	offers scalability and case of asc.	other approaches.	
Text-to-SQL Mapping	This work introduces a method for	- Reduction of model complexity.	- May not cover all
[6]	text-to-SQL mapping using multi-	- Better learning of dependencies	possible subtask
[0]	task learning and sharing decoders	between subtasks.	dependencies.
	for different subtasks, reducing	- Accuracy improvement on the	dependences.
	model complexity and improving	WikiSQL dataset.	
	learning.	Wikib QL dataset.	
Cross-Domain Text-	An approach for improving text-to-	- Utilization of linguistic	- May not perform well on
to-SQL [7]	SQL conversion for cross-domain	dependencies between queries	highly domain-specific
	datasets is presented, emphasizing	Evaluation on various cross-domain	datasets.
	linguistic dependencies between	datasets.	
	queries. Evaluation is conducted on	- Comparison with existing	
	Sparc, Spider, and CoSQL datasets.	algorithms.	
Nested SQL Queries	This study proposes an improved	- Data oversampling for	- Specific to nested SQL
[8]	IRNet framework for translating	representation improvement.	queries, may not cover
		- Novel loss function considering	other query types.
	natural language queries to nested	- Novel loss function considering SOL complexity.	other query types.
. ,	natural language queries to nested SQL queries, addressing the	SQL complexity.	other query types.
	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data	SQL complexity 5% improvement on hard queries	other query types.
. ,	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss	SQL complexity.	other query types.
	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced.	SQL complexity 5% improvement on hard queries in Spider dataset.	
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based	SQL complexity 5% improvement on hard queries in Spider dataset Translation of natural language to	- Limited to WMN
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance	SQL complexity 5% improvement on hard queries in Spider dataset Translation of natural language to SQL with high accuracy.	- Limited to WMN context, may not
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names	- Limited to WMN context, may not generalize to other
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation.	- Limited to WMN context, may not
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in	- Limited to WMN context, may not generalize to other
Natural Language-	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-specific corrections, and real-time	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation.	- Limited to WMN context, may not generalize to other
Natural Language- Based Querying [9]	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domainspecific corrections, and real-time querying.	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in WMNs.	- Limited to WMN context, may not generalize to other domains.
Natural Language- Based Querying [9] Text-to-SQL with	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-specific corrections, and real-time querying. This work presents techniques to	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in WMNs Handling of long-text sequences	- Limited to WMN context, may not generalize to other domains.
Natural Language- Based Querying [9] Text-to-SQL with	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-specific corrections, and real-time querying. This work presents techniques to improve text-to-SQL results with	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in WMNs. - Handling of long-text sequences by transformers.	- Limited to WMN context, may not generalize to other domains. - Improvement techniques may not apply to all text-
Natural Language- Based Querying [9] Text-to-SQL with	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-specific corrections, and real-time querying. This work presents techniques to improve text-to-SQL results with transformers, including handling	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in WMNs. - Handling of long-text sequences by transformers Multilingual fine-tuning for	- Limited to WMN context, may not generalize to other domains.
Natural Language- Based Querying [9] Text-to-SQL with Transformers [10]	natural language queries to nested SQL queries, addressing the challenge of complex queries. Data oversampling and a novel loss function are introduced. Investigates natural language-based querying of network performance databases for Wireless Mesh Networks (WMNs), including semantic column names, domain-specific corrections, and real-time querying. This work presents techniques to improve text-to-SQL results with	SQL complexity 5% improvement on hard queries in Spider dataset. - Translation of natural language to SQL with high accuracy Semantic column names generation Suitable for real-time querying in WMNs. - Handling of long-text sequences by transformers.	- Limited to WMN context, may not generalize to other domains. - Improvement techniques may not apply to all text-

Table 1. Comparative analysis of existing models (Continued)

Method used	Details	Advantages	Research gap
Natural Language to SQL Conversion [11]	A three-tier system using pattern matching and semantic matching techniques to transform natural language into SQL queries.	 Enables non-expert users to interact with databases using natural language. Better recall value, accuracy, and precision compared to existing systems. 	- May require predefined data dictionary and complex transformation steps.
Automated Code Equivalence Verification [12]	Focuses on verifying code equivalence in embedded SQL programming, including simultaneous changes in SQL and host language code. Uses first-order logic modeling and SMT solvers for verification.	 - Automated verification of code equivalence. - Addresses simultaneous changes in SQL and host language code. - Publicly available framework (SQLAV). 	- Requires knowledge of first-order logic and SMT solvers.
Learning-Based Cardinality Estimation [13]	Proposes a vertical scanning convolutional neural network (VSCNN) to estimate cardinalities of complex SQL queries using deep neural networks. Includes semantic information and negative sampling.	 Improved cardinality estimation for complex join operations. Utilizes deep neural networks and semantic information. Reduces q-error in estimation. 	- May not outperform traditional methods in all scenarios.
Transaction Classification and Clustering [14]	Introduces transaction classification and clustering in database systems for monitoring and troubleshooting. Utilizes DBSCAN algorithm and server-side feature extraction.	 - Automates transaction clustering for troubleshooting. - Identifies root causes of performance problems. - Cluster count remains stable 	- Requires DBMS modification for implementation.
Temporal RDF Model and Query Language [15]	Presents tRDF, a temporal RDF model, and a temporal query language for managing temporal RDF data in relational databases. Transformation from tRDF query	regardless of system load. - Addresses temporal semantics in RDF data. - Utilizes relational databases for storage. - Provides temporal query	- May require specific SQL support for temporal data.
Schema Design Advisor for NoSQL [16]	language to SQL. Proposes a schema design advisor model for NoSQL databases, using existing SQL queries as input to recommend efficient schemas. Includes a cost model.	language. - Automates schema design recommendations. - Considers cost-effectiveness of schemas. - Applicable to Old RDBMS to new NoSQL transitions.	- Limited to MongoDB in the prototype.
Database Technology for Network Applications [17]	Proposes a business architecture for storing data on the network and transmitting spoken language resources for education. Focuses on AI and intelligent technology in	- Utilizes network storage for education resources Applies AI technology in teaching Supports spoken language resources.	- Specific to education an spoken language applications.
Modernizing Security in NoSQL Databases [18]	teaching. Introduces an approach for modernizing security in NoSQL databases, focusing on access control. Utilizes domain ontology and automated security issue	 Incorporates security mechanisms into existing NoSQL solutions. Automated analysis of security issues. Reduces modernization effort and 	- Requires domain ontology and customization for differer NoSQL technologies.
Security in NoSQL Databases [19]	detection. Addresses security issues in NoSQL databases, particularly access control, using a domain ontology-based approach. Proposes automated solutions for identified	cost Detects and addresses security issues in existing NoSQL solutions Uses domain ontology for contextaware analysis Reduces the risk of data breaches.	- May require adjustments for different NoSQL technologies.
NoSQL Visual Query System [20]	security issues. Presents OVI-3, a NoSQL visual query system based on incremental querying and directory-based indexing for complex joins. Demonstrates improved speed for certain queries.	 Enables fast ad-hoc queries with complex joins. Utilizes directory-based indexing for optimization. Demonstrates speed improvement over SQL queries for specific scenarios. 	- Limited to specific types of complex joins.
Self-Adapting Data Migration [21]	Proposes a methodology for self- adapting data migration that automatically adjusts migration strategies based on migration scenario and service-level agreements. Evaluates and compares migration strategies using metrics.	- Self-adapting migration for agile development Considers migration costs, latency, precision, and recall Matches migration strategy to specific scenarios.	- Requires appropriate metrics and understanding of service-level agreements.

Table 1. Comparative analysis of existing models (Continued)							
Method used	Details	Advantages	Research gap				
Elastic Data Conversion	Introduces an elastic data conversion	- Supports data integration across various formats and types.	- Specific to data				
Framework [22]	framework for data integration systems, aiming to link and merge	- Addresses data conversion	integration and data conversion.				
Tamework [22]	different data resources into a unified	challenges.	conversion.				
	data store. Evaluates the model using	- Includes experimental evaluation.					
	MySQL and MongoDB.	•					
Data Analysis in	Proposes an approach for data	- Enables OLAP analyses in	- Specific to data analysis				
High-Variety	analysis within a high-variety	heterogeneous schemas.	and heterogeneous				
Multistore [23]	multistore with heterogeneous schemas and overlapping records.	- Handles schema and data model heterogeneity.	schemas.				
	Supports multiple data models and	- Supports various data models.					
	schema integration through a						
Big Social Data	dataspace layer. Presents a Big Social Data	- Captures provenance information	- Specific to social data				
Provenance	Provenance (BSDP) Framework for	for social data.	and KVP databases.				
Framework [24]	key-value pair (KVP) databases	- Supports various query types,					
	using the concept of Zero-	including select, aggregate, and					
	Information Loss Database (ZILD).	data update queries.					
	Captures, stores, and queries	- Provides a query-driven					
	provenance information for different query sets.	approach.					
Heterogeneous Graph	Introduces HG2AST, a framework	- Addresses multi-turn text-to-SQL	- Specific to text-to-SQL				
to AST Framework	for converting heterogeneous graph	generation.	tasks and AST				
[25]	representations to abstract syntax	- Utilizes heterogeneous graph	construction.				
	trees (AST) for Text-to-SQL tasks.	encoding.					
	Incorporates structure knowledge and adaptive node expansion.	- Improves structure knowledge incorporation.					
Information	Proposes an encoder for multi-turn	- Improves accuracy of multi-turn	- Specific to text-to-SQL				
Integration Encoder	text-to-SQL generation, addressing	text-to-SQL generation.	generation and multi-turn				
for Text-to-SQL [26]	challenges in multi-turn interaction	- Handles multi-turn interaction	interaction.				
	and cross-domain evaluation. Uses	and cross-domain scenarios.					
	a multiple-integration encoder with three modules for information	- Utilizes lightweight multi-head attention.					
	integration.	attention.					
ML Pipeline	Translates trained ML pipelines	- Enables ML inference within a	- Specific to ML				
Translation to SQL	containing featurizers and models	DBMS.	prediction serving and				
Queries [27]	into SQL queries for prediction	- Supports efficient prediction	DBMS integration.				
	serving within a DBMS. Compares	serving.					
	in-DBMS performance with popular ML frameworks.	 Reduces data movement and optimizes performance. 					
Neural Model for NL	Introduces an improved neural	- Enables NL query of databases	- Specific to NL query of				
Query of Databases	model based on IRNet for natural	using neural models Incorporates	databases and neural				
[28]	language queries of databases,	schema information and entity	models.				
	using Gated Graph Neural Network	linking Provides a graph-based					
Tommorel OWI 2	(GGNN) and schema information.	approach.	Cassifia to antalogy				
Temporal OWL 2 Ontology from JSON	Proposes an approach (τJOWL) to automatically build a temporal	- Enables semantic modeling of big data.	 Specific to ontology building and JSON-based 				
Data [29]	OWL 2 ontology of data from	- Supports incremental	data.				
	temporal JSON-based big data.	maintenance of ontology.					
	Manages incremental maintenance	- Addresses JSON-based data with					
N 17	for evolving data.	evolving schemas.	C C ANTIDD 1				
Natural Language Interface to Database	Presents a NLIDB system using the Intermediate query approach,	- Facilitates NL query of databases for non-expert users Supports	 Specific to NLIDB and chatbot applications. 				
(NLIDB) [30]	focusing on a Movie domain chatbot.	information extraction from	enation applications.				
(112122) [30]	Offers a solution for extracting	databases.					
	information from databases using	- Demonstrates promising results.					
	natural language queries.						
Unified Framework	Proposes a unified framework for	- Boosts exact match accuracy on	- Specific to text-to-SQL				
with Self-Attention [31]	translating natural language questions into SQL queries, addressing schema	Spider dataset Incorporates self-attention for	translation and Spider dataset.				
[31]	encoding, schema linking, and feature		autaset.				
	representation using relation-aware	- Qualitative improvements in					
	self-attention. Achieves state-of-the-	schema linking.					
D I	art performance on the Spider dataset.		T. 377.7.				
Deep Learning for	Addresses challenges in developing	- Introduces benchmarks and	- Focuses on NLI to				
NLIs to Databases [32]	deep learning technologies for conversational natural language	datasets for NLI to databases Develops models for dialog-	databases and deep learning.				
(<u>-</u>)	interfaces (NLIs) to databases.	based NLI.					
	Proposes benchmarks, neural	- Presents improved language					
	algorithms, and language models	models for semantic parsing.					
	for NLIDB.						

П

- Limited to databases and

cloud computing.

Table 1. Comparative analysis of existing models (Continued) Method used Details Advantages Research gap ValueNet for NL-to-Introduces ValueNet and ValueNet - Incorporates values in NL-to-SQL - Specific to NL-to-SQL SQL with Values [33] light, two end-to-end Natural translation. with values and Spider Language-to-SQL systems that - Achieves high execution accuracy dataset. incorporate values. Achieves stateon Spider dataset. of-the-art results on the Spider - Introduces a novel architecture for handling values. dataset. Proposes NatSQL, an SQL - Simplifies SQL queries for text-NatSQL for Text-to-- Specific to text-to-SQL SQL Translation [34] intermediate representation that to-SQL translation. translation and Spider simplifies SQL queries for text-to-- Improves performance on dataset. SQL translation. Outperforms other complex and nested SQL queries. IRs and improves the performance Enables generating executable of existing models on Spider SQL queries. dataset. Improving Query Investigates oblique query - Utilizes user feedback and - Focuses on query Interfaces with OQS specification (OQS) methods for previously-issued SQL queries. interfaces and OQS [35] improving query interfaces. Combines natural language and methods. programming-by-example. -Leverages previously-issued SQL queries and combines natural Maximizes user domain expertise. language and programming-byexample. Robustness of Text-Investigates the robustness of text-- Addresses the impact of domain - Specific to domain to-SQL with Domain to-SQL models when facing knowledge in text-to-SQL models. knowledge impact and domain knowledge not frequently Spider-DK dataset. Knowledge [36] - Introduces the Spider-DK dataset observed in training data. for robustness evaluation. Introduces the Spider-DK dataset. Text-to-GQL for Proposes the Text2GQL task for - Introduces the Text2GQL task for - Specific to Text2GQL Graph Databases [37] translating natural language questions graph databases. task and graph databases. into GQL (Graph Query Language) Utilizes Adapter pre-trained on for graph databases. Introduces a schema-utterance linking. pipeline solution with language - Proposes a pipeline solution for model and Adapter plug-in. end-to-end translation. SQLNet for Text-to-Introduces SQLNet, a sketch-based - Addresses the "order-matters" - Specific to SQLNet SQL with Sketches approach to synthesize SQL queries problem in text-to-SQL. approach and WikiSQL from natural language when the - Utilizes sketches and dependency order does not matter. Improves graphs. performance on WikiSQL tasks. Outperforms previous models on WikiSQL tasks. Seq2SOL with Query Proposes Seq2SQL, a deep neural - Specific to Seg2SQL - Leverages query execution network for translating natural approach and WikiSQL **Execution Rewards** rewards for better training. [39] language questions to SQL queries. - Improves execution accuracy and dataset. Utilizes query execution rewards logical form accuracy. for training and achieves significant - Utilizes a large dataset performance improvements on (WikiSQL) for training. WikiSQL. Multilingual NMT - Specific to multilingual Introduces a solution to use a single - Enables Multilingual NMT with a NMT and language with Shared Model Neural Machine Translation (NMT) single model. [40] model for translating between - Improves translation quality for translation. multiple languages, using an language pairs. artificial token to specify the target - Allows for zero-shot translation language. Improves translation between unseen language pairs. quality for various language pairs. - Reduces overfitting in LSTM-- Specific to LSTM-based LSTM Dropout Presents a regularization technique for RNNs with LSTM units using based RNNs. Regularization [41] RNNs. dropout. Demonstrates reduced - Applicable to a variety of tasks. overfitting on various tasks, including language modeling, speech recognition, image caption generation, and machine translation. Attention-Enhanced - Performs competitively without Introduces an attention-enhanced - Requires evaluation on Encoder-Decoder for encoder-decoder model for hand-engineered features. various semantic parsing Semantic Parsing [42] semantic parsing. Encodes input - Adaptable across domains. tasks. utterances into vectors and generates logical forms. Adaptable across domains and meaning

development.

data samples.

- Uses deep learning for database

- Supports distributed storage of

- Low performance loss.

representations.

Develops databases using deep

learning and cloud computing

for data extraction, processing,

fusion, and compression.

technology. Utilizes J2EE, Oracle

server database, and deep learning

Deep Learning-Based

Development [43]

Database

476 □ ISSN: 2252-8776

Table 1. Comparative analysis of existing models (Continued)							
Method used	Details	Advantages	Research gap				
Deep Neural Network for SQL Injection Detection [44]	Builds a deep neural network-based SQL injection detection model based on word vectors and deep learning. Achieves high accuracy in SQL injection detection. Addresses overfitting and feature extraction challenges.	 Achieves high accuracy in SQL injection detection. Addresses overfitting challenges. Automates feature extraction. 	- Specific to SQL injection detection.				
Transformer-Based Seq-to-Seq for Text- to-SQL [45]	Adapts transformer-based seq-to- seq model to text-to-SQL generation. Introduces Schema aware Denoising (SeaD) training and clause-sensitive execution guided (EG) decoding. Achieves state-of-the-art performance on WikiSQL benchmark.	Improves seq-to-seq model performance for text-to-SQL. Introduces novel training objectives and decoding strategy. Establishes state-of-the-art results.	- Focuses on text-to-SQL and WikiSQL benchmark.				
Weak Supervision for Text-to-SQL Training [46]	Proposes weak supervision using QDMR structures for training text-to-SQL parsers. Synthesizes SQL queries based on QDMR structures and answers. Competitively performs without NL-SQL annotations.	 Provides a weak supervision approach for training text-to-SQL parsers. Competes with models trained on NL-SQL data. 	- Limited to text-to-SQL training.				
Survey of Text-to- SQL Progress [47]	Reviews recent progress on text-to- SQL for datasets, methods, and evaluation. Provides a systematic survey of challenges and future directions.	 Provides an overview of recent progress in text-to-SQL. Addresses challenges in encoding, decoding, and translation. Offers insights into potential research directions. 	- Not focused on a specific method.				
Natural Language Interface to SQL with User Privileges [48]	Proposes a system for converting natural language to SQL, allowing users to update data dictionaries and interact with databases using NLP. Enables communication between users and systems without SQL knowledge.	 - Empowers users to update data dictionaries. - Uses NLP for communication with databases. - Supports users with no SQL knowledge. 	- Specific to NLP-based SQL interfaces.				
NLP-Based Model for Text-to-SQL [49]	Proposes an NLP-based model to convert natural language to SQL queries. Uses semantic parsing models to handle schema encoding and decoding. Achieves competitive results on text-to-SQL tasks.	 Utilizes NLP for text-to-SQL conversion. Competitively performs on text-to-SQL tasks. 	- Specific to text-to-SQL and semantic parsing.				
Neural Networks for PL/SQL Placement Prediction [50]	Employs artificial neural networks to predict the placement of new objects among architectural modules in PL/SQL programs. Uses features extracted from source code and dependencies among objects. Achieves high accuracy in placement prediction.	 Provides an automated approach for object placement prediction. Achieves high accuracy compared to baseline methods. 	- Specific to PL/SQL programs and architectural placement.				

BIOGRAPHIES OF AUTHORS

Gunjan Keswani is surrently working as an assistant professor with Ramdeobaba University since 2015. She has an M.Tech. degree in Computer Science and Engineering from RTMNU in 2014. She has total experience of 13.5 years which includes teaching experience of 9.5 years and 4 years of industrial experience. Her areas of expertise include natural language processing, machine learning, and big data computing. She has published 6 research articles in scopus indexed journals and ESCI journals. She can be contacted at email: keswanigv@rknec.edu.

Dr. Manoj B. Chandak is Director of Academics and Professor in the Department of Computer Science and Engineering at Shri Ramdeobaba College of Engineering and Management, Nagpur. India. He has total of 30+years of academic experience. His areas of interest are natural language processing, machine learning, big data analytics, cloud storage, and data management. He is also a recognized Ph.D. supervisor. He has published over 50 papers listed in Scopus Citation Index. His current research work includes the "Development of coal quality exploration technique based on convolutional neural networks and hyper-spectral images". The project is completed in the stipulated time period, sponsored by the Ministry of Coal, Government of India with a grant of INR 1.03cr. He is also the principal investigator of the project entitled "Indigenous Development of NIR spectroscope for instant prediction of coal quality parameter, with a grant of 1.10Cr from the Ministry of Coal, Government. He can be contacted at email: chandakmb@rknec.edu.