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ABSTRACT

The increasing number of malware attacks poses a significant challenge to
cyber security. This paper proposes a methodology for static malware analysis
using biodiveristy-inspired metrics that is Gini coefficient, Simpson diversity,
and Shannon-Wiener index for malware detection. These metrics are used
to build the structural feature representation on the raw binary file as the
feature space. The effectiveness of these metrics are evaluated using multilayer
perceptron (MLP) neural network and extreme gradient boosting (XGBoost)
models. A deterministic algorithm is used to generate these features that
represent the feature signature of the executable file. Additionally, we
investigated the effectiveness of different byte sizes as the input feature for these
two classifiers. According to the results, Gini coefficient with on chunk size of
128 has successfully achieved average F1 score of more than 98.7% by using
XGBoost model.
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1. INTRODUCTION
Malware attack is one of the most significant and prevailing issues in information security. Accord-

ing to [1], there has been an increase of malicious tasks since Q1 2024. Hackers use malicious software to
cause harm to a computer or its users in the form of virus, worm, rootkit, key logger,trojan horse, ransomware,
and spyware. Traditional commercial anti-malware tools which use signature-based detection method are in-
famously inefficient when faced with newly launched (a.k.a. “zero-day”) malware. Essentially, this method
extracts unique byte sequences which define the malware’s signature in the file contents of previously seen
malware. However, this method is time-consuming and costly since it requires newly extracted signatures to
be compared against large databases of malicious signatures [2]. It also needs periodic update since malware
writers are constantly developing new codes to thwart detection. Hence, advanced protection technology using
machine learning (ML) is needed.

There are two methods for malware analysis, dynamic or static analysis. In dynamic analysis [3]–[5],
malware features such as runtime API or system call traces are generated by executing a malware file and
observing its behavior in a controlled environment, e.g. sandbox, to prevent infection and spreading during
analysis. In static analysis [6]–[8], malware features such as n-gram, image representation, opcode are gener-
ated without executing the malware file. Table 1 shows the summary of studies by the most current ones related
to our work.
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There exist several compelling works that used ML models for malware detection and classification.
These MLs differ mainly in the algorithms and the types of analysis used. The use of dynamic analysis such as
the [3] evaluated eight machines learning algorithms for malware detection through analysis of the frequency of
Windows API system function calls. The authors observed the behavior of malware in an isolated environment
by using Cuckoo [9]. The behavioral events reported by Cuckoo will be the feature to be fed into the ML mod-
els. The authors also applied Gini index in the decision tree model. Similar technique was conducted by Syeda
and Asghar [5] where applied both Chi2 and the Gini index to filter and select significant features before being
fed into six ML models. For static analysis, studies such as the [6] incorporated word embedding technique on
opcode sequence feature with long short-term memory (LSTMs) for malware classification. They used the 30
most frequent opcodes extracted after disassemble the executable files of 20 different malware families. Other
studies such as the [7], [8] compared models performance were also been examined for malware classification
and had shown promising results by using extreme gradient boosting (XGBoost). Hybrid work in [4] conducted
both static and dynamic malware analysis with different ML models. They obtained the best detection accuracy
rate of 91.9% on the static analysis dataset and 96.4% on the dynamic analysis dataset by using the XGBoost
algorithm. Their study indicates that combining static and dynamic analysis with ML is an effective approach
for identifying malware. Their results show that the efficacy of ML model is dependent upon the respective
algorithm and the type of data that the model is built upon.

Table 1. Malware detection related studies
Reference Analysis Feature Approach Dataset (size) Accuracy

[3] Dynamic API MLs Malpedia 7400 99.50%
[5] Dynamic API Random forest MalwareBazaar 582 96.00%
[10] Static Aggregation metrics ELM APK 600 82.50%
[8] Static String XGBoost EMBER 5000K 98.50%
[6] Static Opcode LSTM, CNN Malicia; previous study 25901 81.00%
[7] Static Entropy, Gini MLs, neural network VirusShare 938 92.17%
[11] Static Image CNNs, ELMs MalImg 9300 97.70%
[12] Static Image CNN Malimg 9435 98.82%
[13] Static Image CNN Malimg 9389 97.32%
[14] Static Entropy, image SNN Andro-Dumpsys 906 91.20%
[4] Both Function, API XGBoost VirusShare 2747-2937 96.48%

Lately, deep learning is gaining much popularity due to it’s supremacy in terms of accuracy when
trained with huge amount of data. Neural networks are a subset of ML, and the heart of deep learning algo-
rithms. There have been many studies that utilized neural networks by adding convolution and pooling layers.
The study [12]–[14], used variants of convolutional neural network (CNN) models with image-based and other
types of feature representation for malware detection. To overcome the android malware prediction model, [10]
studied the patterns of intermediate code and source code of an apk file by extracting 16 types of metrics, such
as mean, median, Gini index, and entropy. From their empirical study, extreme learning machine (ELM) with
polynomial kernels provides a better performance than other ML classifiers.

Regardless of using ML or deep learning as model classifiers, feature representation plays a crucial
role in malware detection. In static analysis, most of the malware come in the form of raw binary executable
file. To quantify the raw bytes, [15] introduced the diversity indexes to quantify the qualitative value of malware
data. The authors used [16] to compute the different diversity indexes such as Shannon index, Simpson, inverse
Simpson, and Fisher’s log. Their experimental results show that the ecological metric can be well used in
malware context to better understand the pattern in malware. Other studies such as in [17], [18] adopted
mathematical models of biodiversity in ecology for detection. Their studies demonstrated that biodiversity-
related metrics can improve their understanding of how diversity affects detection.

Inspired by the above related work, in this paper we explore the effectiveness of structural feature of
Gini index, Simpson diversity, and Shannon-Wiener index with multilayer perceptron (MLP) neural network
and XGBoost models. The rest of this paper is organized as follows. Construction of feature representation of
this study is described in section 2. The detailed results and discussion are presented in section 3. Conclusions
and suggested future work are discussed in section 4.
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2. METHOD
In this section, the proposed method is presented. A general flow of the proposed approach is shown

in Figure 1.

Figure 1. General architecture flow

2.1. Input files
The format of the input files used in this study was in Windows executable format. A total of 7,852

binary files were collected as the dataset of the input files. Table 2 lists the information about the malware fam-
ilies used in this study. These malware were collect from [19]. As for the corresponding benign files, we ran-
domly selected 1000 Windows applications with size 0.01∼94 MB from https://download.cnet.com. Figure 2
shows the distribution of the malware families on the selected dataset.

Table 2. Malware information
Family Type Size (MB) Sample

Bho Trojan 0.005 - 16.0 1,391
Ceeinject Virtool 0.004 - 7.67 1,077
Fakerean Rogue 0.003 - 21.9 1,016

Winwebsec Rogue 0.325 - 0.60 1,023
Zbot Trojan 0.031 - 0.37 1,039

Zeroaccess Trojan 0.048 - 0.28 1,306

Figure 2. Malware distribution use in the experiment (for colors)

2.2. File splitting
In this step, an input file was split into a series of chunks. To achieve this, technique [20] was adopted

for generating the proposed structural feature representation by splitting the entire file into fixed-byte of chunks.
A chunk is considered to be a string of non-overlapping consecutive bytes, where each chunk contains the same
number of bytes. To do this, a unanimous file length, F , and, therefore, the number of chunks, N , have to be
determined. We fixed the file length to be a power of 2, i.e. N = 2α for some α ∈ N :

α =
⌈
log

min{median(M),median(B)}
c

⌉
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For convenience purposes, steps to determine α are restated here as follows:
− Step 1: compute the median size of a group of malware files and benign files, M and B, respectively. Here,

differ from [20], median score is considered as it usually provides a better measure of center tendency of
sample size.

− Step 2: determine the minimum median size from these two groups.
− Step 3: divide the minimum median size by chunk size, says c = 256 bytes, this gives the D.
− Step 4: find the base-2 logarithm of value from previous step and take the largest whole integer.
− Step 5: if the whole integer in previous step is not a power of 2, reduce the D in step 3 by 1 and repeat step

4 until the condition met.
Different chunk sizes, that is, 128, 256, 512, 1,024, and 2,048 bytes were examined in this study. The sliding
window for each file splitting is the same length as the chunk sizes for convenient purpose. These chunks
provide granular variations and represent the structure of a file.

2.3. Feature generation
Based on [20], once the number of chunks, N , has been determined, a deterministic algorithm using

Procrustean notion is adopted to choose evenly spread chunks from each file to produce a vector of N chunks
in order. In other words, the number of chunks for a file is either reduced to or increased to N . An example is
provided here for illustration purpose. Given two files, P and Q, and a chunk size of c, with length(P ) = 10c
and length(Q) = 7c which means there are 20 chunks for P and 6 chunks for Q. Suppose that α = 3 is
chosen, then N = 2α = 8 chunks. Since P has number of chunks larger than N , it needed to be reduced from
from 10 to 8 chunks and for Q which is smaller than N , it needed to be increased from 7 to 8 chunks. In order
to choose these chunks, a subset of the current chunks using a jump factor is generated for each file. The chunk
index is initially set to 0, and it is incremented in every step by inc1 = 9/7 = 1.28 for P and inc2 = 6/7 = 0.85
for Q. The indices are selected using the floor of the accumulated jump value, so the chosen indices will be:

IP = (0, 1, 2, 3, 5, 6, 7, 9) IQ = (0, 0, 1, 2, 3, 4, 5, 6)

These indices give the location of chunk that needed to build the structural feature representation of a file.
Three biodiveristy-inspired metrics were adopted in this study to build the structural feature representation on
these chunks, namely, Gini coefficient, Simpson diversity, and Shannon-Wiener.

2.3.1. Gini coefficient
Gini coefficient also known as Gini index [21], named after Italian statistician Corrado Gini, is a way

to measure statistical dispersion inequality especially in economics and ecology [22]. The Gini coefficient is
defined as:

gini = t/(b2 ∗ a) (1)

where t is a list of difference among the elements of a list, b is the length of a list and a is mean value of that
list.

2.3.2. Simpson diversity
The Simpson diversity index [23] was introduced by Edward H. Simpson to measure the probability

of two samples will belong to the same group. The value of Simpson diversity ranges from 0 to 1, with 0
representing large diversity and 1 representing no diversity. The formula is given as:

D =

R∑
i=1

(
ni(n− 1)

N(N − 1)

)
(2)

where ni is the number of individuals in a group i, and N is the total number of groups in a sample.
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2.3.3. Shannon-Wiener
The Shannon-Weiner index [24] was developed from information theory and is based on measuring

uncertainty. The computational formula is:

H ′ =
N ln N −

∑
(niln ni)

N
(3)

where N is the total number of groups and ni is the number of individuals in group i. Each metric, which is
used to quantize the byte randomness in a chunk, will define the N -vector structural feature of a file. Thus, for
a given executable file, three different types of structural features were generated.

2.4. Classifiers
Next, each type of the structural feature generated from the previous step will be fed into two selected

classifiers, namely MLP neural network and XGBoost, respectively. All the experiments were conducted under
a Windows 10 64-bit operating system using the Python programming language (Scikit-learn library). A 10-
fold cross validation was performed to estimate the generalization performance of the proposed approach. The
prediction efficiency was measured in terms of accuracy rate, area under curve (AUC), and F1 score.

2.4.1. Multilayer perceptron
Based on the layer construction of MLP by [25], a 3-layer MLP model is constructed as having one

input layer, two hidden layers, followed by a output layer. After several experiments using 3 and 4 layers, we
decided to use the 3-layer MLP model as it gave better performance than the 4-layer model. In this study, the
first layer (input layer with linear layer), with N nodes, where N is the number of chunks generated during the
file splitting step. Activation function was set to the rectified linear unit (ReLU) to suppresses negative weights.
This process is repeated for another hidden layer by reducing the half of the previous nodes. The last layer is a
Sigmoid curve which allows binary prediction. Additionally, dropout layers with 0.2 is added between hidden
layers to prevent overfitting. The model was fed through and backpropagate of errors with 50 epochs. The
learning rate is 0.01 with binary cross entropy (BCE) as the loss function and stochastic gradient descent as the
optimizer.

2.4.2. XGBoost
XGBoost [26], is an implementation of gradient boosted decision trees (GBDTs). The XGBoost

provides a wrapper class to allow models to be treated like classifiers in the scikit-learn framework in Python.
There are many parameters for the XGBoost Classifier package. We kept them as in the default for simplicity
reasons and only set the objective=‘binary:logistic’. A 10-fold cross validation was performed on different
chunk sizes (i.e.: 128) of the proposed structural feature representation as mentioned in section 2.3.

3. RESULTS AND DISCUSSION
We want to study how effective are the proposed structural features in discriminating malware from

benign files in terms of accuracy, AUC, and F1 score. We consider a validation result of at least 90% as high
detection rate. Based on the findings, a discussion section is followed.

3.1. Results
Figures 3 shows the average time (in seconds) taken to generate chunk size of 128 and 2,048 bytes

of the proposed structural feature representations for the malware family. It is obvious that to extract smaller
chunk size, says 128 bytes, will take longer time compare to chunk size of 2,048 bytes. Based on the figure,
it can be observed that using the Simpson index to generate the structural feature is the fastest, followed by
Gini coefficient and Shannon-Weiner. It is surprising to notice that the time taken by Winwebsec family is
longer than the other families, such as the Bho which contains more samples than Winwebsec when using Gini
coefficient and Shannon-Weiner. One possible conjecture is that the Winwebsec family has file sizes that is
much larger than the other families.

3.1.1. MLP model
Table 3 shows the comparison of the best F1 score performance out of the 10-fold cross validation.

The highlighted bold indicates the highest score achieved among the six malware families on respective chunk
size. It is observed that Gini coefficient produced the highest F1 scores on Winwebsec family except with
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742 ❒ ISSN: 2252-8776

chunk size 256. As with chunk size 128, 512, 1,024, and 2,048 the MLP model can achieve 99.84%, 99.32%,
99.17%, and 98.75% F1 scores on Winwebsec, respectively.

Figure 3. Average time of feature generation of the malware family

Table 3. The best F1 score using the MLP model
Chunk size Family Feature type

Gini coefficient Simpson diversity Shannon Wiener
128 Bho 87.51 89.19 88.73

Ceeinject 89.37 90.27 92.23
Fakerean 87.86 90.44 89.62

Winwebsec 99.84 99.00 98.89
Zbot 96.93 98.07 97.72

Zeroaccess 99.22 99.49 97.71
256 Bho 87.32 89.35 86.10

Ceeinject 89.15 90.41 90.60
Fakerean 86.07 91.53 86.34

Winwebsec 99.36 99.52 98.73
Zbot 98.11 98.49 94.90

Zeroaccess 98.73 99.25 96.83
512 Bho 89.24 89.26 83.44

Ceeinject 88.52 87.77 87.36
Fakerean 90.85 91.09 83.24

Winwebsec 99.32 99.21 98.05
Zbot 96.84 98.13 92.04

Zeroaccess 98.57 98.85 91.55
1024 Bho 88.30 87.66 81.50

Ceeinject 84.53 85.46 80.26
Fakerean 90.06 91.00 81.69

Winwebsec 99.17 98.85 95.45
Zbot 96.78 97.52 90.55

Zeroaccess 97.81 98.08 85.39
2048 Bho 87.21 89.35 78.73

Ceeinject 86.07 84.98 64.07
Fakerean 90.63 92.15 83.75

Winwebsec 98.75 97.99 90.59
Zbot 97.11 97.00 85.40

Zeroaccess 96.87 97.86 79.95

Figure 4 depicts a closer look at the performance between two selected malware families, i.e.: Win-
websec and Bho. Based on the figure, the Winwebsec family in Figure 4(a) can easily be detected compared
with the Bho family in Figure 4(b) using Gini coefficient as feature representation. The Simpson diversity
index achieved stable performance across all chunk sizes. Table 4 shows the accuracy rate based on the best
F1 score achieved across the malware families. It measures how often the MLP model correctly predicts the
outcome. As the chunk size grows larger, the F1 score decreases by using Shannon-Wiener as the structural
feature representation.
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(a) (b)

Figure 4. The F1 score for (a) Winwebsec and (b) Bho families (see online version for colors)

Table 4. The accuracy rate based on the best F1 score
Chunk size Family Feature type

Gini coefficient Simpson diversity Shannon Wiener
128 Bho 84.54 87.04 86.76

Ceeinject 89.08 89.24 91.81
Fakerean 87.76 90.08 89.09

Winwebsec 99.83 99.01 98.84
Zbot 97.05 98.03 97.71

Zeroaccess 99.13 99.42 97.25
256 Bho 87.32 86.62 82.86

Ceeinject 88.44 89.88 90.20
Fakerean 85.45 91.40 86.66

Winwebsec 99.34 99.50 98.68
Zbot 98.03 98.36 94.93

Zeroaccess 98.55 99.13 96.53
512 Bho 86.90 87.46 82.31

Ceeinject 87.64 87.47 86.99
Fakerean 96.41 91.23 84.29

Winwebsec 99.34 99.17 98.02
Zbot 96.73 98.03 91.50

Zeroaccess 98.41 98.29 89.73
1024 Bho 86.35 85.65 78.83

Ceeinject 83.78 84.10 80.73
Fakerean 89.42 91.23 84.95

Winwebsec 99.17 98.84 95.38
Zbot 96.73 97.38 90.52

Zeroaccess 97.39 97.83 80.92
2048 Bho 84.81 88.02 71.86

Ceeinject 85.87 84.91 70.30
Fakerean 90.74 92.06 84.01

Winwebsec 98.68 98.02 90.28
Zbot 96.89 96.73 84.64

Zeroaccess 96.38 97.68 72.39

It is observed that the accuracy rates are consistent with the F1 score, where using Gini coefficient
can achieve the highest accuracy rate for the Winwebsec family except with chunk size 256. Among the six
families, Gini coefficient can effectively detect the malware from the benign file for the Winwebsec, Zbot, and
Zeroaccess. It implies that these three malware families can easily be detected using this Gini coefficient, but
not for the Bho, Ceeinject, and Fakerean when compared with the other two structural feature representations.

On average, feature representation using Simpson diversity shown relatively higher accuracy rate than
the Gini coefficient across all the malware families. A closer observation shows that this structural feature
representation can achieve more than 90% for four of the families except for the Bho and Ceeinject families.
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This shows that Simpson diversity demonstrated stronger discrimination for quantifying byte information.
Shannon-Wiener shown as the least significant structural feature representation in this study. The

lowest accuracy rate it can yield is 71.86% for the Bho family with chunk size 2,048 and the highest accuracy
rate it can yield is 98.68% for the Winwebsec family with chunk size 256. One can observe that as the chunk
size increases, the discrimination power for this feature representation becomes worse.

Figure 5 depicts the AUC performance based on the three proposed structural feature representations
in Figures 5(a) to 5(c). AUC represents the degree or measure of separability. It can be observed that there is
a clear distinction between AUC for certain types of malware families. For example, either both Gini coeffi-
cient and Simpson index yielded higher AUC for the Winwebsec, Zbot, and Zeroaccess, but not for the Bho,
Ceeinject, and Fakerean families. The performance of all three structural feature representations declines as
the number of chunk sizes increases.

(a)

(b) (c)

Figure 5. AUC performance: (a) Gini coefficient, (b) Simpson index, and (c) Shannon Wiener

3.1.2. XGBoost model
Table 5 shows the comparison of the best F1 score performance out of the 10-fold cross validation. The

highlighted bold indicates the highest score achieved on respective chunk size. It is observed that the average
precision and recall varies for each of the feature representation. By using the XGBoost model, Winwebsec
family achieved 100% F1 score with all the three proposed structural feature representations across all different
chunk sizes. Zeroaccess family, similar to the Winwebsec family, also reached F1 score of 100% for all the
chunk sizes except with chunk size 1,024.

In terms of feature performance, on average, Shannon-Wiener achieved more number of highest F1
score followed by Gini coefficient and Simpson diversity. However, the average F1 score is 98.26%. It is
followed by Gini coefficient and Simpson diversity, which yielded an average F1 score of 98.63%, 98.27%
respectively. In terms of chunk size, Shannon-Wiener and Simpson diversity demonstrated their discriminate
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power mostly with chunk size 256 and 512, respectively. As for Gini coefficient, it demonstrated its discrimi-
nate power mostly with chunk size 128 and 1,024.

Figure 6 depicts a closer look at the performance between two malware families, i.e.: Winwebsec and
Bho. Based on the figure, the Winwebsec family in Figure 6(a) can also be easily detected compared with
Bho family in Figure 6(b) using all the three proposed structural feature representations. However, for the Bho
family, Shannon-Wiener index performed best with chunk size 256 and 1,024 only. Both the Gini coefficient
and Simpson index produced best result with chunk size 512 and 2,048, respectively.

Table 5. The F1 score of the best model performance using the XGBoost model
Chunk size Family Feature type

Gini coefficient Simpson diversity Shannon Wiener
128 Bho 95.53 94.94 95.20

Ceeinject 98.24 97.52 97.41
Fakerean 99.09 98.13 97.69

Winwebsec 100.0 100.0 100.0
Zbot 99.54 99.53 100.0

Zeroaccess 100.0 100.0 100.0
256 Bho 96.24 96.84 97.57

Ceeinject 96.96 97.41 96.96
Fakerean 98.21 97.32 95.32

Winwebsec 100.0 100.0 100.0
Zbot 99.09 99.50 100.0

Zeroaccess 100.0 100.0 100.0
512 Bho 97.27 97.14 96.86

Ceeinject 95.37 95.85 95.85
Fakerean 97.32 97.67 97.75

Winwebsec 100.0 100.0 100.0
Zbot 99.54 100.0 99.50

Zeroaccess 100.0 100.0 100.0
1024 Bho 96.86 96.50 96.88

Ceeinject 95.39 96.10 94.68
Fakerean 98.65 97.65 98.21

Winwebsec 100.0 100.0 100.0
Zbot 99.06 99.38 99.50

Zeroaccess 100.0 99.28 99.63
2048 Bho 96.00 97.16 96.52

Ceeinject 94.49 93.10 94.82
Fakerean 98.64 97.65 98.18

Winwebsec 100.0 100.0 100.0
Zbot 99.09 99.49 99.50

Zeroaccess 99.59 100.0 100.0

(a) (b)

Figure 6. F1 score of comparison between (a) Winwebsec and (b) Bho families (see online version for colors)
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Table 6 shows the accuracy rate based on the best F1 score across the malware families. The high-
lighted bold indicates the significant rate achieved among the malware families on respective chunk size. It
is observed that both Shannon-Wiener and Gini coefficient have the most number of times to yield higher
accuracy rates across the malware families.

Figure 7 depicts the AUC performance based on the three structural feature representations as shown in
Figures 7(a) to 7(c). Here, it is clear that the Gini coefficient produced higher AUC for most of the chunk sizes
except with chunk size 512. On the other hand, Simpson diversity and Shannon-Wiener features performed
better with chunk size 512. Shannon-Wiener can yield high detection the Winwebsec, Zbot, and Zeroaccess
families with chunk size 2,048, that is, 100%, 99.01%, and 100%, respectively.

Table 6. The accuracy rate of the best model based on the F1 score
Chunk size Family Feature type

Gini coefficient Simpson diversity Shannon Wiener
128 Bho 95.53 94.94 95.20

Ceeinject 98.24 97.52 97.41
Fakerean 99.09 98.13 97.69

Winwebsec 100.0 100.0 100.0
Zbot 99.54 99.53 100.0

Zeroaccess 100.0 100.0 100.0
256 Bho 96.24 96.84 97.57

Ceeinject 96.96 97.41 96.96
Fakerean 98.21 97.32 95.32

Winwebsec 98.21 97.32 95.32
Zbot 100.0 100.0 100.0

Zeroaccess 99.09 99.50 100.0
512 Bho 97.27 97.14 96.86

Ceeinject 95.37 95.85 95.85
Fakerean 97.32 97.67 97.75

Winwebsec 100.0 100.0 100.0
Zbot 99.54 100.0 99.50

Zeroaccess 100.0 100.0 100.0
1024 Bho 96.86 96.50 96.88

Ceeinject 95.39 96.10 94.68
Fakerean 98.65 97.65 98.21

Winwebsec 100.0 100.0 100.0
Zbot 96.06 99.38 99.50

Zeroaccess 100.0 99.28 99.63
2048 Bho 96.00 97.16 96.52

Ceeinject 94.49 93.10 94.82
Fakerean 98.64 97.65 98.18

Winwebsec 100.0 100.0 100.0
Zbot 99.09 99.49 99.50

Zeroaccess 99.59 100.0 100.0

3.2. Discussion
While earlier studies have explored the impact of biodiversity-related metrics, they have not explicitly

studied their effectiveness for quantifying on the binary file. This study investigated the effectiveness of three
biodiversity-related metrics, namely Gini coefficient, Simpson diversity, and Shannon-Wiener, on binary file
for malware detection. The validation results from our study suggests that the computation steps to extract and
generate structural feature representation shall be considered if the performance speed is a concern. In this
study, the number of large files in the Winwebsec family may be contributing to the fact that it required more
feature generation time than the Bho family. Due to the computational steps in the Gini coefficient, it takes
longer time to generate the structural feature of a file.

Comparing the three structural feature representations based on the F1 score, our study suggests that
Gini coefficient with XGBoost can be an effective metric to quantify binary file for detection on average. This
may be due to the fact that this metric measures the probability for a value within a chunk bytes and the type of
malware family can also affect the performance. It is unclear the reason why Shannon-Wiener index produces
low performance in the experiment here. It is suspected that the computation of ln causes the diversity value
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too low that can not be distinguished with the benign file. However, further and in-depth studies may be needed
to confirm this.

There are some strengths of the approach proposed in this study. In general, binary static analysis has
the advantage over the disassembling process in terms of processing cost. By capturing the fine-grain structure
of a file, this approach is able to inspect the entire file without actually executing it. Furthermore, by adopt-
ing the advancements of ML algorithms, the proposed approach has the advantages in yielding effective results
with computing efficiency. By exploring different ways to quantize byte data, this approach is able to transform
randomness information in a byte chunk into feature representation for distinguish malware from benign files.
There exist some limitations of the present study. First, the need to extract and generate feature representation
may incur issue of effectiveness in zero-day attack. Second, MLP can require significant computational re-
sources such as memory and processing power. Third, there is no feature space reduction was conducted in this
study. By imposing a feature reduction step, the overall performance of both models can be studied, especially
the effect of the reduced feature space to double confirm the findings.

This study also explored a comprehensive study on the performance of two classifiers, namely MLP
and XGBoost. Our findings provide conclusive evidence that biodiversity-inspired metrics with ML models
is effective for malware detection. Based on the results, XGBoost has higher detection rate compare to MLP.
These results further support the common understanding that XGBoost, a gradient boosting framework, excel
in tabular dataset. For both MLP and XGBoost models, Bho and Ceeinject are the malware families that show
difficult to be detected.

(a)

(b) (c)

Figure 7. AUC performance: (a) Gini coefficient, (b) Simpson index, and (c) Shannon Wiener

4. CONCLUSION
This paper presented an approach of malware detection using metrics from ecology domain to con-

struct structural feature representation. Namely, Gini coefficient, Simpson diversity, and Shannon-Wiener
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indexes were used to quantify and enfold the raw bytes as feature for binary executable file. The proposed
structural features were successfully evaluated to achieve average F1 score more than 98.7% by using Gini
coefficient with XGBoost on chunk size of 128, which was better than using MLP model. Gini coefficient and
Shannon-Wiener both achieved accuracy rate of 95-100%, AUC of 93-100%, and F1 score of 95-100% with
chunk size of 128. By exploring the effectiveness of biodiversity-inspired metrics in quantifying byte infor-
mation, it builds an alternative approach for better malware detection. This research work can be followed up
in several different directions. First, it would be significant to study the effectiveness of structural features on
different types of ensemble learning models. Second, exploring cryptography technique in quantifying the raw
bytes as feature representation. Last, dimension reduction techniques can be considered to reduce the structural
feature space and reduce complexity during the pre-processing stage.
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