
International Journal of Informatics and Communication Technology (IJ-ICT)
Vol. 14, No. 2, August 2025, pp. 393∼404
ISSN: 2252-8776, DOI: 10.11591/ijict.v14i2.pp393-404 ❒ 393

Categorizing hyperspectral imagery using convolutional
neural networks for land cover analysis

Assia Nouna1,2, Soumaya Nouna2, Mohamed Mansouri2, Achchab Boujamaa2
1Laboratory LAMSAD, ENSA Berrechid, Department of Mathematics and Informatics, Hassan First University of Settat,

Berrechid, Morocco
2Laboratory LAMSAD, ENSA Berrechid, Hassan First University of Settat, Berrechid, Morocco

Article Info

Article history:

Received Aug 30, 2024
Revised Nov 28, 2024
Accepted Dec 15, 2024

Keywords:

Convolutional neural network
Deep learning
HSI classification
Hyperspectral images
K-nearest neighbors
Support vector machine

ABSTRACT

Categorizing hyperspectral imagery (HSI) is crucial in various remote sensing
applications, including environmental monitoring, agriculture, and urban plan-
ning. Recently, numerous approaches have emerged, with convolutional neu-
ral network (CNN)-based algorithms demonstrating remarkable performance in
HSI classification due to their ability to learn complex spatial-spectral features.
However, these algorithms often require significant computational resources and
storage capacity, which can be limiting in practical applications. In this study,
we propose a novel CNN architecture tailored for HSI classification within the
spectral domain, focusing on optimizing computational efficiency without com-
promising accuracy. The architecture leverages advanced spectral feature extrac-
tion techniques to enhance classification performance. Experimental evaluations
on multiple benchmark hyperspectral datasets reveal that the proposed approach
not only improves classification accuracy but also achieves a superior balance
between performance and computational demand compared to traditional meth-
ods like K-nearest neighbors (KNN) and other deep learning-based techniques.
Our results demonstrate the potential of the proposed CNN model in advancing
the field of HSI classification, offering a viable solution for real-world applica-
tions with constrained computational resources.
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1. INTRODUCTION
Remote sensors capture hyperspectral imagery (HSI) [1], which contain several hundred as many

channels of observation at highly spectral resolution. The richness of the spectral information present in HSI
allows for the development of numerous traditional classification approaches, including K-nearest neighbors
(KNN), logistic regression, and minimum distance [2]. In recent times, there have been proposed some im-
proved methods for extracting features and advanced classifiers, for instance, the spectral and spatial classifi-
cation [3] and Fisher’s local discriminant analysis, which have shown to be more effective.

The support vector machine (SVM) [4] is widely regarded as a reliable and effective approach to the
tasks of hyperspectral classification, mainly when dealing with limited training samples. SVM functions by
seeking an optimal decision hyperplane that can separate two-class data by utilizing a high-dimensional feature
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space included in the kernel. Several adaptations to the SVM for the classification of HSIs have been introduced
in the current literature to enhance classification performance [5], [6].

The classification of remote sensing data has been explored using neural networks, like the multi-
layer perceptron (MLP) [7] and the radial basis function neural networks. Ratle et al. [8], a semisupervised
neural network framework was proposed for HSI classification on a large scale. However, in remote sensing
classification tasks, SVM has been shown to outperform classical neural networks in classification accuracy
and computational cost. Despite this, [9] considers that deep neural network (DNN) architecture as a powerful
classification model that can compete with SVM in terms of classification performance.

Deep learning methods have shown great potential in various domains. Convolutional neural networks
(CNNs) [9] are particularly effective for processing visual-related tasks within deep learning. CNNs are a
class of multilayer models that take inspiration from biological neural networksthat can be end-to-end trained,
starting with the raw pixels of the image and ending with the classifier. The CNN concept was initially presented
in [10], further developed by [11], and refinement and simplification in subsequent work [12].

Recently, CNNs have achieved better results some of the conventional approaches, including the hu-
man performers [13], in a variety of tasks related to vision, such as classification of images [14], [15], detection
of objects, the labeling of scenes, classification of house numbers, and recognition of faces. Additionally,
CNNs have also applied to speech recognition [16] and proved to be effective models for understanding visual
image content. In a study by [17], researchers utilized CNNs for HSI classification [18], [19], specifically using
stacked autoencoders (SAEs) to extract distinctive features. These findings confirm that CNNs are an efficient
class of models for solving visual-related problems and can produce state-of-the-art results in visual image
classification. It has been shown that CNNs are superior in classification performance compared to traditional
SVM and DNNs on tasks related to images [20], [21]. There is a lack of literature on the application of CNNs
with multiple layers for HSI classification [22], as CNNs have primarily been used in visual-related problems
[23]-[25].

The paper demonstrates that hyperspectral data can be accurately classified using CNNs with a suit-
able layer architecture. Through experiments, it was observed that traditional CNN models, like the LeNet-5
based on two convolutional layers, are unsuitable. Instead, a 20-layer CNN architecture with supervised HSI
classification weights was proposed, which was proven to be a more effective and straightforward approach.
Our proposed method has been proven to outperform the traditional KNN and conventional deep learning ar-
chitectures through various experiments. To our knowledge, this is -one of the first times a multi-layer CNN has
been utilized for the HSI classification, resulting in outstanding results. This paper is structured into different
sections. Section 2 provides a concise overview of CNNs, where the traditional CNN structure and -their for-
mation process are discussed. In section 3, we conduct experiments to compare the efficiency of our approach
to K-nearest neighbor (KNN) and DNN using commonly used datasets. The paper concludes by summarizing
the obtained results in section 4.

2. DESCRIPTION OF METHODOLOGY
This study presents a novel CNN architecture specifically designed for HSI classification within the

spectral domain. The methodology consists of three primary phases: (i) An introduction to CNNs, empha-
sizing their suitability for processing spectral data and their advantages over traditional classification methods
like KNN; (ii) A detailed exploration of HSI classification techniques using CNNs, highlighting the integration
of spectral features; and (iii) A comprehensive description of the proposed CNN model, including its archi-
tecture, training strategy, forward propagation, and backpropagation mechanisms. The training phase utilizes
a carefully curated set of hyperspectral datasets, applying rigorous preprocessing and evaluation protocols to
ensure high accuracy and robust performance. Experimental results demonstrate the proposed method’s supe-
rior classification accuracy and efficiency compared to conventional approaches, establishing its potential for
advanced remote sensing applications. This section provides a step-by-step account of the experimental setup,
implementation details, and validation metrics to ensure replicability and transparency of the research findings.

2.1. Convolution neural network
CNNs produce feed-forward neural networks composed of diverse layers of convolution, layers of

maximum pooling, and layers of fully connected. A CNN can benefit from local spatial correlation by imple-
menting a specific pattern of the local connections among the neurons in the adjacent layers. The convoluted
layers are alternated by layers of maximum pooling, reproducing the complex and simple nature of the cells of
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the mammalian visual cortex. A CNN is composed of a pair or several pairs of maximum pooling and convo-
lution layers and results in a fully connected neural network. The convolutional network architecture can be
found in Figure 1.

In other words, inside the DNN, every hidden activation xi can be calculated simply by taking the
entire input X and multiplying it by the W weights inside this layer. But inside CNN, every hidden activating
is calculated using the multiplication of the short input by the W weights. Then W weights are then distributed
over all the input areas. The neurons which are on the identical layer are given identical weights. Weight
sharing is a fundament of CNNs, as it reduces the overall number of training components and results in better
model performance and more efficient training. Usually, the convolutional layer is succeeded by a maximum
pooling layer.

A CNN detects features across the input data by replicating weights. However, when an input image
is shifted, the feature detecting neuron also shifts. To address this, we use pooling to render characteristics
invariant to location. This is achieved by summarizing multiple neuron outputs in convolutional layers with the
pooling function, typically maximal. The max pooling function retrieves a maximum data value of an input,
partitioning the input data into the non-overlapping window and outputting the maximal values within every
sub-region. This enables the complexity of the calculation for the higher layers to be reduced and the invariance
of the translation to be ensured. Finally, to enable the classification, a CNN’s calculation chain ends with a fully
connected network integrating the information on all the locations of all the feature maps in the lower layer.

Figure 1. U-Net architecture

2.2. HSI classification based on the CNN
CNN HSI classification is a technique used to classify HSIs using CNN. HSIs are multidimensional

data that contain information about the reflectance or emission of light at different wavelengths of the electro-
magnetic spectrum. These images have many applications in areas such as environmental monitoring, mining
exploration and urban planning.

The CNN model is trained to classify each pixel in the HSI into one of several predefined classes. The
model takes the HSI as input and applies convolutional filters to extract features from the spectral data. These
features are then passed through several layers of the network, including pooling layers, fully connected layers,
and activation functions, to reduce the dimensionality and classify the pixels into their respective classes.

The main advantage of using CNN-Based HSI Classification is that it can automatically learn relevant
features from the input data, eliminating the need for manual feature extraction. This approach allows for
improved accuracy in classification, as the model can identify subtle differences in the spectral characteristics
of different classes. Additionally, CNN-Based HSI Classification can handle high-dimensional data, which
makes it well-suited for processing HSIs.

Overall, the HSI classification based on CNN is a powerful and efficient technique for the analysis of
HSIs and has many practical applications in various fields, including remote sensing, agriculture, and geology.

2.3. The proposed HSI classification based on CNN
2.3.1. The architecture of proposed CNN

The CNN depends on the way in which convolutional and maximum pooling layers are constructed
and the way in which networks are formed. So, the procedure adopted for HSI classification in the proposed
work can be illustrated by using Figure 2.
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Figure 2. The proposed CNN classifier architecture

Within our architecture, the HSI data is first taken into account and normalized. Hyperspectral data
are split into training and test data with merged features and are delivered as inputs to the CNN algorithm to
achieve classification. The CNN architecture is composed primarily of tree groups (C1, C2, C3) of convolution
layers, each group C1 contains four layers, so in total we have twelve layers (c1, c2.....c12) and tree pooling
layers (P1, P2, P3). Finaly the filters used in the 3 groups are currently K1 = 128, K2 = 64, and K3 = 32
respectively.

We considered the input training data size as (X1, Y1, 1), when we applied the first step with the first
group of convolutional layer C1 with K1 filter, the data are transformed into (X1, Y1,K1) and (X2, Y2,K2)
where X2 = X1

2 and Y2 = Y1

2 . After applying the second step with the second group of convolutional layer
C2 with K2 filter, the data are transformed into (X2, Y2,K2) and (X3, Y3,K2) where X3 = X2

2 and Y3 = Y3

2 .
Lastly, the data become (X3, Y3,K3) after applying the third step with the third group of convolutional layer
C3 and pooling layers P3.

The finished output is classified with the SoftMax function. Moreover, the dropout and batch normal-
ization (BN) layers are employed on the suggested network.

2.3.2. Training approaches
In this section, we outline the techniques we employed to train the space of parameters for the algo-

rithm proposed for the CNN classifier. Firstly, every trained parameter with our CNN is randomly initialized to
values from −1 to 1. The formation process comprises two main stages: forward propagation and Backprop-
agation. During a forward propagation stage, CNN computes a classification output of an input data based on
the current set of parameters. Inside a subsequent Back propagation stage, trainable parameters are updated to
minimize the difference between the real and desired classification outputs. The ultimate aim of this process is
to reduce the discrepancy between the two outputs as much as possible.

A. Forward propagation:
The input layer of our CNN (with L+ 1 layers and L = 19) consists of v1 elements, while the output

layer comprises v20 elements. Additionally, there are a number of hidden elements present in the convolutional
layer C, pooling layer P , and fully connected layer F . These layers are commonly referred to as hidden layers.
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Supposing that ai is the input of the i layer, so we calculate ai+1 as,

ai+1 = gi(zi) (1)

where

zi = WT
i ai + bi (2)

and the WT
i weight matrix for the i layer operates for the entry data, while the bi vector of additive bias is

used for the same layer. The g activation function used in the C -layers and F -layer is the ReLu function. The
max(z) function is applied in the P -layer. Since our CNN classifier is designed to classify multiple classes.
Finaly the output of layer F used a SoftMax function. This model is defined as a SoftMax regression model.

y =
1∑v11

h=1 e
WT

L,haL+bL,h


eW

T
L,1aL+bL,1

eW
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L,2aL+bL,2

...
eW

T
L,v20
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 (3)

In each iteration, the probability of all classes is represented by the final probability indicated in the output

layer as the y output vector, which is obtained by multiplying the a input vector with L+ 1 (y = aL+1).

B. Back-propagation:
In the process of back-propagation, the trainable parameters undergo updates through the utilization

of the gradient descent technique. This approach involves the minimization of a cost function, coupled with the
computation of the partial derivative of said function concerning each trainable parameter.

Once a CNN classifier’s architecture and associated trainable parameters are defined, we have the
ability to construct it and reload any saved parameters for the purpose of classifying HSI data. The classification
process is analogous to the forward propagation step, whereby we can determine the classification outcome.

3. EXPERIMENTAL EVALUTION AND ANALYSES
This study focused on evaluating the effectiveness of a novel CNN architecture for HSI classification,

addressing a gap in previous research where computational efficiency and spectral feature extraction were often
overlooked. The first section, study area and data collection, describes the use of the Pavia University dataset,
predominantly consisting of vegetation regions, to assess the classification performance of the proposed model.
The second section, results and analysis, demonstrates that the proposed CNN method significantly improves
classification accuracy for 5 out of 9 classes, particularly for vegetation types, compared to traditional KNNs
methods. These results suggest a strong correlation between spectral feature extraction and improved classifi-
cation outcomes, without compromising computational efficiency. The final section, findings and comparisons,
shows that the proposed method outperforms existing techniques in terms of accuracy and computational re-
quirements, while addressing the limitations of focusing on a single dataset. Future studies could extend this
approach to more diverse environments, confirming its robustness and exploring optimization strategies under
resource-constrained conditions. Overall, this work highlights the potential for CNN-based HSI classification
to revolutionize remote sensing applications by enhancing accuracy without increasing resource demands.

3.1. Study area and data collection
3.1.1. Hyperspectral imaging

Hyperspectral remote sensing is the extraction of information from objects or sceneries on the Earth’s
surface using light collected by airborne or spaceborne sensors. Small, commercial, high spatial, and spectral
resolution instruments have been increasingly used in lab-scale applications (industries also including environ-
mental management, agriculture, urban planning, and military applications) using hyperspectral sensing and its
imaging modality, hyperspectral imaging.

Millions of spatial coregistered images corresponding to various spectral channels compensate hy-
perspectral data. A HSIs structure is as follows: each pixel is represented like vector of the B-dimensional
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characteristics along the spectral dimension, which is referred to as the substance spectrum within that pixel.
This abundance of data in each spatial area improves an ability to discern between various physical materials.
As a result, hyperspectral photography opens up new avenues for the classification of pictures, a critical step in
a vast range of applications such as precision agriculture.

3.1.2. Data set of hyperspectral images
The studies used Pavia data sets, each presenting an urban region, a spatial resolution of 1.3m per

pixel, and several bands of 103 bands. The following section presents this data set.
Pavia is a dataset acquired over the city of Pavia, Italy, utilizing the ROSIS sensor and a ground sample

distance (GSD) of 1.3 m. In Figure 3, Pavia University (103 bands, 610 340px) and Pavia Center (102 bands,
1096 715px) are the two sections. In this art, we will use the first part of the data (the Pavia University) which
contains 9 categories of interest labeled throughout half of the surface (see in Table 1). They are made up of
various urban components (including bricks, asphalt, and metals), as well as water and plants. As it is one of
the largest labeled HSI datasets and enables the evaluation of the usage of HSI for future applications, it has
long been one of the key reference datasets.

Figure 3. Pavia University composite image

Table 1. 9 classes of Pavia
Label Class Samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3682
9 Shadows 947

In the original recorded image, there are 115 data channels (with a spectral range of 0.43 to
0.86 m). The studies were conducted using the remaining 103 bands after the 12 most noisy channels were
deleted (see in Figure 4).

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 393–404



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 399

Band - 90 Band - 91 Band - 31 Band - 102 Band - 8

Band - 48 Band - 67 Band - 61 Band - 93 Band - 75

Figure 4. Bands of Pavia University

3.2. Result and analysis
3.2.1. Get the data ready for training and testing

Once the data has been integrated, it must be fed into the CNN network. Before this step, it is important
to split the data into training and testing sets and to remove any background pixel samples. In the case of the
Pavia University data, 1, 64, 624 pixels were removed for each band. This preparation process helps reduce the
computing burden and more information can be found in Table 2.

Table 2. The number of training and test samples in the Pavia dataset
Label Class Samples Training Test

1 Asphalt 6631 4641 1990
2 Meadows 18649 13054 5604
3 Gravel 2099 1469 630
4 Trees 3064 2144 920
5 Painted metal sheets 1345 941 404
6 Bare soil 5029 3521 1508
7 Bitumen 1330 932 398
8 Self-blocking bricks 3682 2578 1104
9 Shadows 947 663 284

Total 42776 29943 12833

3.2.2. Description of program
The program is written in Python using the Keras API, which is a high-level neural networks API that

can run on top of TensorFlow. The Sequential class is imported from the Keras library and is used to initialize
a sequential model. The model consists of multiple layers, including Conv1D, BN, MaxPooling1D, Dropout,
and Dense (see in Table 3).
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Table 3. Model layers
Layer (type) Output shape Param #

inputLayer (Conv1D) (None, 101, 128) 512
Batch-normalization (Batch-normalization) (None, 101, 128) 512

Layer1 (Conv1D) (None, 99, 128) 49,280
Layer2 (Conv1D) (None, 97, 128) 49,280
Layer3 (Conv1D) (None, 95, 128) 49,280
Layer4 (Conv1D) (None, 93, 128) 49,280

MaxPooling Layer1 (MaxPooling1D) (None, 46, 128) 0
Dropout1 (Dropout) (None, 46, 128) 0
Layer5 (Conv1D) (None, 44, 64) 24,640
Layer6 (Conv1D) (None, 42, 64) 12,352
Layer7 (Conv1D) (None, 40, 64) 12,352
Layer8 (Conv1D) (None, 38, 64) 12,352

MaxPooling Layer2 (MaxPooling1D) (None, 19, 64) 0
Dropout2 (Dropout) (None, 19, 64) 0
Layer9 (Conv1D) (None, 17, 32) 6,176

Layer10 (Conv1D) (None, 15, 32) 3,104
Layer11 (Conv1D) (None, 13, 32) 3,104
Layer12 (Conv1D) (None, 11, 32) 3,104

MaxPooling Layer3 (MaxPooling1D) (None, 5, 32) 0
Dropout3 (Dropout) (None, 5, 32) 0

Flatten (Flatten) (None, 160) 0
DenseLayer (Dense) (None, 25) 4,025
OutputLayer (Dense) (None, 10) 260

Conv1D is a one-dimensional convolutional layer that applies a convolution operation on the input
data with a specified number of filters and kernel size. The activation function used for the convolutional
layers is ReLU. BN is used to normalize the input data by adjusting and scaling the activations of the previous
layers. MaxPooling1D is used to reduce the spatial size of the data by taking the maximum value within a
specified pool size. Dropout is used to prevent over fitting by randomly dropping out a certain percentage of
the input units. Flatten is used to convert the multidimensional input data into a one-dimensional array. Dense
is a fully connected layer that applies a linear operation on the input data. The output layer uses the soft-max
activation function to output the probability distribution of the classes. The model is then summarized using
the model.summary() function, which outputs the layers, shapes, and parameters of the model.

3.2.3. Findings and comparisons
This study investigated the effectiveness of a novel CNN architecture for HSI classification, focusing

on improving accuracy and computational efficiency. While earlier studies have successfully applied CNNs to
HSI classification, they often focus on spatial feature extraction or dimensionality reduction without addressing
the balance between high classification accuracy and resource efficiency. This gap becomes critical when
applying these methods to large-scale datasets or edge computing environments, where computational resources
are limited.

Once the data was input into the CNN architecture (Figure 2), the model followed a standard train-
ing procedure with 100 epochs, a batch size of 256, categorical cross entropy loss, and an Adam optimizer.
Table 3 outlines the specifications of each CNN layer, providing a detailed breakdown of the architecture. The
Pavia University dataset was used for evaluating the classification accuracy, and the results were compared
against the traditional KNN classifier. Tables 4 and 5 summarize the classification accuracy for each class,
showing that the proposed method significantly outperformed KNN in 5 out of 9 classes, achieving comparable
results in 2 classes, while no notable low accuracy was observed in the remaining classes.

Our key findings indicate that the proposed CNN method consistently yields higher classification ac-
curacy for vegetation classes, such as wheat and corn, compared to KNN. This higher accuracy correlates with
the ability of CNNs to extract complex spectral features, which is critical for distinguishing subtle variations in
crop types. The classification maps (Figures 5 and 6) demonstrate a clear advantage of the proposed method,
particularly in identifying and classifying vegetation areas with high precision, as confirmed by the ground
truth data.
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Table 4. Accuracy for proposed method on Pavia data sets
Method Accuracy

Our proposed method CNN 0.95
KNN 0.87

Table 5. Accuracy per class for the data of the University of Pavia in comparison of our method
with the KNN method

Label Class KNN Porposed method
1 Asphalt 0.92 0.96
2 Meadows 0.94 0.97
3 Gravel 0.75 0.83
4 Trees 0.91 0.96
5 Painted metal sheets 0.95 1.0
6 Bare soil 0.74 0.93
7 Bitumen 0.83 0.91
8 Self-blocking bricks 0.81 0.88
9 Shadows 0.98 1.0

Figure 5. Pavia University classification map Figure 6. Clasification for our proposed method map

When comparing these results to other studies, our method shows that improved spectral feature ex-
traction does not negatively impact computational efficiency, a key limitation in previous works. For
example, unlike studies focusing on spatial features alone, our method exploits spectral domain data,
enabling superior performance in classification without the heavy computational burden typically associated
with CNNs.

However, this study was limited to the Pavia University dataset, which primarily contains vegeta-
tion data. The potential impact of this limitation is that our findings may not generalize to datasets con-
taining more diverse or urban environments. Further research is needed to validate the method’s robustness
across different types of hyperspectral data and environments. Our results suggest that the proposed CNN
method is more resilient to spectral noise and outperforms traditional classifiers in vegetation-related classifi-
cation tasks. Future studies could explore the application of this architecture to other hyperspectral datasets, fo-
cusing on optimizing CNN performance under limited computational resources while maintaining
high accuracy.
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In conclusion, the findings from this study provide strong evidence that the proposed CNN architecture
for HSI classification offers a balanced approach, enhancing classification accuracy in complex spectral datasets
without increasing computational costs. These improvements could significantly benefit remote sensing appli-
cations, particularly in agriculture and environmental monitoring, where efficient and accurate classification is
crucial.

4. CONCLUSION
In this study, a new technique using CNNs for classifying HSIs is presented. First, the data is normal-

ized to retrieve both spatial and spectral features. A resulting HSI image is then combined with the original
input HSI and fed into a proposed CNN, which comprises three sets of pooling and convolution layers. To im-
prove the method’s accuracy, we have incorporated BN and dropout mechanisms. The classification approach
is evaluated on three standard datasets and has been shown to outperform existing state-of-the-art approaches.
Future work will concentrate on reducing an algorithm’s running time and applying a proposed method to a
broader range of HSI datasets using 2D and 3D CNNs.
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