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 In the upcoming era, the forthcoming sixth-generation (6G) wireless 

communication network will demand highly efficient technology to support 

extensive capacity, ultra-high speeds, low latency, scalability, and 

adaptability. While the current fifth-generation (5G) wireless communication 

system relies on OFDM technology, the evolution towards a beyond 5G 

wireless communication system necessitates a new OFDM framework. This 

study introduces a novel OFDM system that integrates the discrete 

Contourlet transform. A comparative analysis has been conducted among the 

proposed system, conventional OFDM, and curvelet-based OFDM systems. 

The results indicate that the proposed system offers improvements in bit 

error rate (BER), reduced computational complexity, decreased peak-to-

average power ratio (PAPR), and enhanced power spectrum density (PSD) 

when contrasted with both the traditional and curvelet-based systems. 
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1. INTRODUCTION 

In 1957, the notion of transmitting a set of orthogonal subcarriers was introduced with the aim of 

efficiently sending these subcarriers without any overlap or disturbance [1], [2]. Initially, this idea was 

executed through the discrete fourier transform (DFT), which was suggested in 1971 [3]. Subsequently, the 

fast fourier transform (FFT) was utilized, leading to the emergence of the orthogonal frequency division 

multiplexing (OFDM) system as a promising field for exploration and analysis. Numerous publications have 

delved into subjects associated with this system [4]-[7]. 

As per references [1]-[4], OFDM represents a form of multicarrier modulation system (MCM) that 

employs an orthogonal multicarrier to concurrently transmit data devoid of any inter-carrier interference 

(ICI). While OFDM systems were integral to fifth-generation (5G) and earlier iterations, more sophisticated 

OFDM systems are imperative to meet the requisites of sixth-generation (6G) and forthcoming generations. 

The conventional OFDM system, grounded in the DFT, facilitates the successful transmission of multiple 

orthogonal data streams without overlapping symbols or inter-channel interference, thereby optimizing the 

data rate within the linear bandwidth [8]. The schematic for orthogonal parallel data transmission using DFT 

is depicted in Figure 1. Assuming x(n) signifies the discrete-time rendition of a time-domain signal, x(t), the 

DFT transformation for x(n) in the frequency domain (FD), labeled as X(k), can be articulated as: 

https://creativecommons.org/licenses/by-sa/4.0/
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𝑋(𝑘)  =  ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=−0
 , 𝑘 = 0,1,2,⋯ ,𝑁 − 1 (1) 

 

To obtain the inverse discrete-time domain signal (x(n)), which is the transformation of X(k) back 

into the discrete domain, the following equation can be utilized: 

 

𝑥(𝑛)  =  
1

𝑁
∑ 𝑋(𝑘)𝑒𝑗

2𝜋𝑘𝑛

𝑁

𝑁−1

𝑘=0
 , 𝑛 = 0,1,2,⋯ ,𝑁 − 1 (2) 

 

 

 
 

Figure 1. Block diagram of parallel and orthogonal data transmission 

 

 

Considering a sequence of transmitted data as d0, d1, . . .dm, along with the discrete impulse response 

of the transmitter filter as ai(n). The transmission channel's discrete impulse response as h(n), and the discrete 

channel's noise as g(n), it can also be taking into account the receiver filter's discrete impulse response as 

bi(n), and a sequence of estimated received data as d^
0, d^

1, . . .d^
m. Under these conditions, the expression for 

the transmitted signal can be derived using: 

 

𝑥(𝑛)   =   
1

𝑁
∑ 𝑎𝑘𝑒

𝑗
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑘=0
 (3)  

 

The signal that is ultimately received at the output can be described as: 

 

𝑦(𝑛)   =   
1

𝑁
∑ ℎ(𝑛, 𝑙)𝑥(𝑛 − 𝑙) +  𝑔(𝑛)𝑁−1
𝑘=0   (4) 

 

The signals received, denoted as y(n), including y1(n), y2(n), . . . ym(n) are orthogonal, it implies 

that they are mutually perpendicular to one another. 

 

∫ 𝑤𝑖(𝑛)𝑤𝑖(𝑛 − 𝑘𝑇)𝑑𝑡
∞

−∞
=  0  ,    𝑘 = ±1,±2,⋯ (5) 

 

Where, 𝑤𝑖(𝑛) = ∫ 𝑑𝑖ℎ(𝑛 − 𝜏)𝑎𝑖(𝜏)𝑑𝜏
∞

−∞
. In the discrete time domain, the correlation between di, ai and h(n) 

will result in convolution, whereas in the discrete frequency domain, it will be represented by multiplication. 

If we assume flawless channel estimation and removal of noise, then the signal received can be expressed as: 

 

𝑌𝑚   =  𝑋𝑚𝐻𝑚  +  𝑔𝑚 (6) 

 

Numerous alternative transformation methods have been suggested after the advent of the FFT. 

These encompass the modulated lapped transform (MLT), discrete cosine transform (DCT), discrete wavelet 

transform (DWT), wavelet packet transform (WPT), complex wavelet transform (CWT), complex wavelet 

packet transform (CWPT), dual-tree complex wavelet transform (DTℂWT), and curvelets transform (CurT). 

Moreover, a novel transformation approach known as the discrete Contourlet transform (DConT) has been 

employed in this investigation. 

The MCM systems are broadly divided into wired and wireless systems, as illustrated in Figure 2. 

Wireless systems employ block-transform methods for their execution, such as FFT, MLT, DCT, WT, and 

FDCurT. The WT-based systems can be further segmented into DWT, WPT, CWPT, and DTℂWT. 
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Similarly, the CurT-based systems fall into two categories: FDCurT via USFFT and FDCurT via Wrapping. 

In this research, our attention is directed towards the DConT-based system as a transformative proposition in 

this work. 
 

 

 
 

Figure 2. Classification of the MCM systems 
 

 

2. THE CONSIDERED SYSTEMS MODEL 

2.1.  The conventional system 

The OFDM system is based on the DFT, which involves both forward and inverse transformations 

[3]-[8]. In the transmitter, the inverse DFT (IDFT)is used, while the receiver utilizes the forward DFT. 

Assuming that there are N subcarriers, let dN be the complex discrete transmitted data. The output of the 

IDFT results in the transmitted signal x(n), which can be expressed as follows: 

 

𝑥(𝑛)   =   
1

√𝑁
∑ 𝑑𝑘𝑒

𝑗
2𝜋𝑛

𝑁  ;  𝑘 = 0,1,2,⋯ ,𝑁 − 1
𝑁−1

𝑘=0
 (7) 

 

Suppose that the channel impulse response is denoted as h(n) and the additive white Gaussian noise is 

represented by g(n). On the receiving end, the signal received is referred to as y(t). 

 

𝑦(𝑛)   =   
1

√𝑁
∑ 𝑑𝑘𝑒

𝑗
2𝜋𝑛

𝑁 ∗ ℎ(𝑛) + 𝑔(𝑛)
𝑁−1

𝑘=0
 (8) 

 

By utilizing the orthogonality characteristic, it is possible to detect the transmitted signal x(n) at the 

receiver end through DFT when considering perfect channel estimation. This can be achieved based on the 

information obtained from the received signal y(n). 

 

𝑎𝑘   =   ∑ 𝑦(𝑛)𝑒−𝑗
2𝜋𝑛

𝑁

𝑁−1

𝑘=0
  (9) 

 

The retrieval of the complex set of transmitted data, in a discrete format (bN), is achievable through the 

implementation of the subsequent approach: 

 

𝑎𝑘   =   ∑ 𝑑⌢𝑘
𝑁−1
𝑘=0   (10) 

 

2.2.  MLT, DCT, and wavelet-based systems 

In OFDM systems utilizing MLT, the IFFT function was replaced with the inverse MLT (IMLT) 

function for transmission purposes. Conversely, the forward MLT function was used on the receiver side 

instead of the DFT function [9]-[11]. To denote this substitution, βF[n] and β1[n] were used as representations 

of the forward and inverse MLT functions, respectively. For the N subcarriers, if 𝜑[𝑛] =   − sin [
(2𝑛+1)𝜋

4𝑁
] 

then: 
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𝛽𝐹[𝑛]   =   𝜙[𝑛]√
2

𝑁
 cos [

𝜋

𝑁
(
2𝑛+2𝑘+𝑁+2

2
)]  (11) 

 

If we denote the resulting signal at the output of the IMLT as x(n), it can be expressed as follows: 

 

𝑥(𝑛)  =   ∑ 𝑑𝑘
𝑁−1
𝑘=0 𝛽𝑙[𝑘]  ;  𝑘 = 0,1,2,⋯ ,𝑁 − 1 (12) 

 

In (13) and (14) represent the received signal y(t) and the output signal ak attained through MLT on the 

receiving end, respectively. 

 

𝑦(𝑛)  =   ∑ 𝑑𝑘
𝑁−1
𝑘=0 𝛽𝑙[𝑘] ℎ(𝑛) + 𝑔(𝑛) (13) 

 

𝑎𝑘  =   ∑ 𝑦(𝑛)𝑁−1
𝑘=0 𝛽𝑙[𝑘] (14) 

 

Research has shown that in order to utilize OFDM-based DCT, it is necessary to apply the forward 

DCT function (represented as ηF[n]) on the transmitter side and the inverse DCT function (represented as 

ηI[n]) on the receiver side [12]-[15]. This ensures optimal performance of the system while maintaining 

efficiency and accuracy. 

 

𝜂𝑙  =  

{
 

 √
1

𝑁
  ;  𝑘 = 0          

√
2

𝑁
 cos [𝜋𝑛 (

2𝑘+1

2𝑁
)]   ;  𝑘 = 1,2,3,⋯ , 𝑛 − 1

 (15) 

 

After the transmission of the signal x(n), the signal y(n) is received and then the data is estimated 

accordingly. 

 

𝑥(𝑛)  =   ∑ 𝑑𝑘
𝑁−1
𝑘=0 𝜂𝑙[𝑘] ;  𝑘 = 0,1,2,⋯ ,𝑁 − 1 (16) 

 

𝑦(𝑛)  =   ∑ 𝑑𝑘
𝑁−1
𝑘=0 𝜂𝑙[𝑘] ∗ ℎ(𝑛) + 𝑔(𝑛) (17) 

 

𝑎𝑘 =   ∑ 𝑦(𝑛)𝑁−1
𝑘=0  𝜂𝐹[𝑘] (18) 

 

For the OFDM based on wavelet transform actually, various families of the wavelet transform were 

adopted in the OFDM system. Starting from the DWT [16]-[19], and then the WPT [20]-[23]. After that the 

CWPT [24]-[26], and finally the DTℂWT [27]-[36]. For the DWT, let ζ(n) be the wavelet function, and l be 

the compression factor. x(n) at the output of the inverse DWT (IDWT) is: 

 

𝑥(𝑛)  =  ∑ ∑ 2𝑙 2⁄ 𝑑𝑙
𝑚𝜁(2𝑙 2⁄ 𝑛 − 𝑚)

∞

𝑚=0

∞

𝑙=0
 (19) 

 

At the receiving end, the signal that has been received can be denoted as y(n) given in (20), whereas 

the signal that has been estimated at the output of DWT can be expressed as given in (21): 

 

𝑦(𝑛)  =  𝑥(𝑛) ∗ ℎ(𝑛)  +  𝑔(𝑛) (20) 

 

𝑎𝑙
𝑚  = 𝑑̂𝑙

𝑚  =  ∑ 2𝑙 2⁄ 𝑦(𝑛)𝜁(2𝑙 2⁄ 𝑛 − 𝑚)
𝑁−1

𝑘=0
 (21) 

 

In the context of DWPT, given the DWPT function ψk(n), input data di, and input data constellation z i,j, the 

resulting output signal x(n) obtained through the inverse DWPT (IDWPT) can be calculated as: 

 

𝑥(𝑛)  =  ∑ ∑ 𝑧𝑖,𝑗 𝜓𝑗(𝑛 − 𝑖𝑀)
𝑀−1

𝑗=0
𝑖

 (22) 

 

The signal that is received at the receiver side, y(t), can be expressed in writing as: 

 

𝑦(𝑛)  = 𝑥(𝑛)  ∗  ℎ(𝑛) +  𝑔(𝑛)  =  ∑ ℎ(𝑘)  𝑥(𝑛 − 𝑘) +  𝑔(𝑛)
𝑘

 (23) 
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The estimation of the di can be achieved by taking the inner product (‹ . , . ›) of functions, which is performed 

at the end of the process. 

 

𝑎𝑖  =   〈𝑥(𝑛 − 𝑘) , 𝜓𝑖(𝑛)〉 (24) 

 

Incorporating the intricate iteration of wavelet transformation, the OFDM system utilized three 

distinct methods - the CWT, CWPT, and DTℂWT. The transmission of signal x(n) was penned down 

utilizing the CWT and CWPT models. 

 

𝑥(𝑛)  =  ∑ ∑ 𝑑𝑚 (𝑘)𝛾𝑙,𝑚(𝑛 − 𝑘𝑇)
∞

𝑘=0

𝑀

𝑚=𝑖
 (25) 

 

The function γl,m(n) of either the CWT or the CWPT determines the received signal y(n), represented in 

equation (20). Subsequently, the result yields an estimation of the data. 

 

𝑑̂𝑖(𝑛)  =∑ ∑ 𝑦(𝑛)𝛾∗ 𝑙,𝑚(𝑛 − 𝑘𝑇)
∞

𝑘=0

𝑀

𝑚=𝑖
  (26) 

 

Upon careful analysis, it has been discovered that the forward transform (ϒ) for the DTℂWT can be 

represented in the following manner: 

 

ϒ  = [
𝐹ℎ
𝐹𝑔
]   (27) 

 

The real and imaginary DTℂWT are represented by Fh and Fg respectively. To obtain the inverse DTℂWT 

(DTℂWT), the following formula can be used: 

 

ϒ−1  = [𝐹ℎ
−1 𝐹𝑔

−1] (28) 

 

Subsequently, the signal x(n) that has been transmitted will appear at the output of the inverse 

Discrete Time Complex Wavelet Transform (IDT-CWT) in the following manner: 

 

𝑥(𝑛) =  ϒ−1 𝑑𝑛 (29) 

 

In (20) provides the value of the received signal, y(n). Considering perfect channel estimation and noise 

elimination, the data estimated by DTℂWT can be obtained from the output. 

 

𝑎𝑘 =   ∑ ϒ ∗ 𝑦(𝑛)𝑁−1
𝑘=0   (30) 

 

2.3.  The curvelet transfrom based system 

Since the curvelets transform (CurT) was introduced  [37]-[39], it approved that it’s a very effective 

technique in different fields including image processing, seismic processing, turbulence analysis in fluid 

mechanics, solving of partial different equations, compressed sensing or compressive sampling, and recently 

in the wireless communications [40]-[42]. 

Figure 3 illustrates the fast discrete curvelet transform (FDCurT) and its forward and reverse 

conversions utilizing wrapping based on the FFT. The forward conversion includes the conversion of data 

into the frequency domain through FFT. Subsequently, the data is multiplied by a sequence of window 

functions. The FFT coefficients are then 'wrapped' or folded into a rectangular form before being applied to 

the inverse FFT (IFFT). The curvelet coefficients are derived by executing the IFFT on the windowed data. 

The reverse transformation undoes the steps of the forward conversion process. 

Assume that φμ is the curvelet function then the curvelet coefficient (Cμ) can be obtained by the 

inner product between the signal x(t) and the curvelet function as: 

 

𝐶𝜇 =   〈𝑥(𝑡), 𝜑𝜇〉  (31) 

 

The signal x(t) can be recovered back again by (32). 

 

𝑥(𝑡) =  ∑𝐶𝜇𝜑𝜇(𝑡) (32) 
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For the OFDM based on CurT, the transmitted signal x(t) at the output of the inverse assume that the 

CurT (ICurT) is: 

 

𝑥(𝑛) =  ∑ 𝑑𝑘𝜑𝜇(𝑛)
𝑁−1

𝑘,𝑛=0
 (33) 

 

The received signal y(n) is given as in (20). At the output of CurT, the estimated data under perfect channel 

estimation and noise elimination can be given by the inner product between the signal y(n) and the curvelet 

function as: 

 

𝑎𝑘 =   〈𝑦(𝑛), 𝜑𝜇(𝑛)〉  (34) 

 

 

 
 

Figure 3. The forward and the inverse wrapping FDCurT 

 

 

2.4.  The proposed system 

The drawbacks related to wavelet transform have been overcome by using the contourlet transform 

(ConT) [43]. The ConT [44] is a promising transformation that has been used in many fields including signal 

processing, seismic processing, and image processing [45]-[49]. To address the constraints of the wavelet 

transform, the ConT was introduced [43]-[44]. This innovative technique has been applied in diverse fields 

such as signal processing, seismic processing, and image processing [45]-[49]. Furthermore, in this study, it 

was utilized within wireless communications. The forward (decomposition) DConT is constructed by 

combining the Laplacian pyramid (LP) and the directional filter bank (DFB), as depicted in Figure 4. The 

output from the LP serves as the input to the DFB, resulting in a dual-iterated filter bank structure 

representing the discrete contourlet filter bank. Conversely, the inverse (reconstruction) DConT (IDConT) 

involves reversing the process of the forward DConT (FDConT), as illustrated in Figure 5 [44], [50]. 

 

 

 
 

Figure 4. The Decomposition ConT 
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Figure 5. The reconstruction ConT 
 

 

Figure 6 shows the DConT-based OFDM system. For the proposed system, the Inverse DConT 

(IDConT) is used on the transmitter side while the forward DConT (FDConT) is used on the receiver side. 

Assume that the ConT function is giving by: 

 

𝜁𝑟,𝑝,𝜃(𝑥) =  
1

√𝑟
𝜁 [

𝑎1cos𝜃+𝑎2sin𝜃−𝑝

𝑟
] (35) 

 
Moreover, the forward and the inverse ConT can be given respectively by: 

 

𝜁(𝑟, 𝑝, 𝜃) =  ∫ 𝜁𝑟,𝑝,𝜃(𝑥)𝑓(𝑥)𝑑𝑥 (36) 

 

𝑓(𝑥) =  ∫
∫ ∫ 𝜁(𝑟,𝑝,𝜃)𝜁𝑟,𝑝,𝜃(𝑥)𝑑𝑟

∞

0

∞

−∞

𝑟3

2𝜋

0

𝑑𝑝
𝑑𝜃

4𝜋
 (37) 

 

where r is the scaling factor, p is the translation factor, and θ is the orientation factor. In the proposed system 

the discrete version of ConT has been used, and the integration in the continuous time ConT will be 

converted to summation in the discrete-time ConT. On the transmitter side, the IDConT is used, while the 

receiver side utilizes the FDConT.  

 

 

 
 

Figure 6. Block diagram of the OFDM based on the DConT 

 

 

Assuming that there are N subcarriers, let dN be the complex discrete transmitted data. The output 

of the inverse discrete ConT results in the transmitted signal x(n), which can be expressed as follows: 
 

𝑥(𝑛) =  ∑ ∑ 𝜁𝑟,𝑝,𝜃(𝑚)
∞

0

2𝜋

0
 𝑑𝑁(𝑛) (38) 

 

At the receiver's end, the received signal y(n) will be as given in (20), the signal y’(n) at the output of the 

forward discrete ConT is: 
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𝑦′
(𝑛)

=  ∑ ∑ 𝜁𝑟,𝑝,𝜃(𝑚 − 𝑘𝑇)
∞

0

2𝜋

0
 𝜁(𝑟, 𝑝, 𝜃)𝑦(𝑛) (39) 

 

Figure 7 summarizes the set of transformations that were used in the OFDM system including the proposed 

ConT. 
 

 

 
 

Figure 7. Block diagram of the OFDM based on numerous transformation methods 
 

 

3. SIMULATION PROCEDURE 

The flowchart depicted in Figure 8 outlines and encapsulates the simulation methodologies adopted 

in this study, with MATLAB® being the platform for implementation. The proposed system underwent a 

comparative analysis with both the conventional system reliant on the FFT-OFDM and the system based on 

the fast discrete curvelets transform utilizing the unequispaced fast fourier transform (USFFT) (CurT-OFDM). 

 

 

 
 

Figure 8. Simulation procedures flow chart 

 

 

The performance evaluation of these three systems was conducted under the AWGN channel 

setting, focusing on aspects such as computational complexity, bit error rate (BER), and peak-to-average 

power ratio (PAPR). Utilizing 64 subcarriers and two modulation schemes (binary phase shift keying (PSK) 

and eight-phase shift keying (PSK)), the simulation parameters are succinctly outlined in Table 1. 
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Table 1. The simulation parameters 
Parameters Discerption 

Modulation type BPSK, 8 PSK 
Channel AWGN channel 

Cyclic prefix 1/4 

Number of symbols 104 symbols 
Number of subcarriers 64 subcarriers 

PAPR threshold 2 dB 

FFT OFDM system Using the FFT 
CurT OFDM system Using the USFFT 

ConT OFDM system Using the pyramidal directional filter bank (PDFB) 

 

 

4. RESULTS AND DISCUSSION 

To compare the proposed system with the conventional system based on the FFT and the OFDM 

system based on the CurT, the following considerations are taking into account: two types of modulation 

(BPSK and 8 PSK) have been used in this work under the AWGN channel using 64 and 256 subcarriers, with 

a 2 dB PAPR threshold, 104 symbols, ¼ cyclic prefix, and 52 bit per OFDM symbol.  

 

4.1.  The computational complexity 

Computational complexity is an essential factor in the system’s design, therefore in this work, this 

factor has been taken into account. Considering N is the number of subcarriers (subchannels), the traditional 

system i.e. OFDM based on the FFT and the OFDM based on the CurT have a computational complexity of 

order O(N log N). At the same time, the proposed OFDM system i.e. OFDM based on the ConT has a 

computational complexity of order O(N) [44]. The first blue curve represents the FFT-based OFDM system, 

the second black curve represents the CurT-based OFDM system, and the third red curve represents the 

ConT-based OFDM system. For N=256 subcarriers, OFDM based on the FFT and the OFDM based on the 

CurT needs 1,420 operations while the OFDM based on the ConT needs only 256 operations for the same 

number of subcarriers. This means the OFDM based on the ConT achieved the lowest computational 

complexity as shown in Figure 9. 
 

 

 
 

Figure 9. Computational complexity for the considered systems 
 

 

4.2.  The bit error rate 

The BER serves as a crucial metric for assessing system efficacy, indicating the likelihood of errors 

in transmitted data. Figure 10 illustrates the BER for the evaluated systems employing BPSK with 64 

subcarriers, while Figure 11 displays the BER for the systems using 8 PSK with the same number of 

subcarriers. In these figures, the first blue curve corresponds to the FFT-based OFDM system, the second 

black curve represents the CurT-based OFDM system, and the third red curve depicts the ConT-based OFDM 

system. Observing Figures 10 and 11, it is evident that the OFDM system based on ConT demonstrates 

superior BER performance when compared to both the FFT-based system and the CurT-based system. 
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Figure 10. BER for the considered systems using BPSK 
 

 

 
 

Figure 11. BER for the considered systems using 8 PSK 
 

 

4.3.  The complementary cumulative distribution function 

This section showcases the complementary cumulative distribution function (CCDF) of the 

transmitted signal for the examined systems using 64 subcarriers, with the corresponding results presented in 

Figure 12. Figure 12 illustrates the CCDF for the systems employing BPSK with 64 subcarriers. Within this 

visualization, the first blue curve corresponds to the FFT-based OFDM system, the second black curve 

represents the CurT-based OFDM system, and the final red curve signifies the ConT-based OFDM system. 

Analysis of Figure 12 reveals that the OFDM system based on ConT yields superior PAPR outcomes when 

juxtaposed with both the FFT-based system and the CurT-based systems. 
 

4.4.  The power spectrum density 

This section presents the power spectrum density (PSD) attributes. Figure 13 illustrates that the 

suppression of side lobes commenced at -37 dB, -32 dB, and -28 dB for the proposed system, the CurT-based 

system, and the FFT-based system, respectively. The proposed system demonstrates superior PSD outcomes 

compared to the FFT-based system and the ConT-based system in regard to enhanced out-of-band attenuation 

suppression. 
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Figure 12. CCDF for the considered systems using 64 subcarriers 
 

 

 
 

Figure 13. PSD for the considered systems using 64 subcarriers 

 

 

5. CONCLUSION 

In the forthcoming wireless communication system, an efficient implementation of OFDM 

technology is essential to fulfill its demands. This study introduces a novel OFDM system that relies on the 

DConT. The transmitter side of the proposed system employs IDConT, while the receiver side utilizes 

FDConT. Three key performance metrics are compared across the conventional system, the curvelet-based 

system, and the proposed system. With 256 subcarriers, the traditional and curvelet-based systems required 

1420 operations, whereas the proposed system only necessitated 256 operations. Additionally, concerning 

BER, the proposed system surpasses the other two systems. Results with 64 subcarriers indicate that the 

proposed OFDM system, based on the DConT, presents significant advantages in terms of PAPR compared 

to traditional FFT-based and CurT-based systems. Future research avenues encompass investigating channel 

estimation methods, synchronization techniques, PAPR mitigation strategies, and the integration of multiple 

antennas into the proposed system. 
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