
International Journal of Informatics and Communication Technology (IJ-ICT)

Vol. 14, No. 2, August 2025, pp. 382~392

ISSN: 2252-8776, DOI: 10.11591/ijict.v14i2.pp382-392  382

Journal homepage: http://ijict.iaescore.com

An improved approximate parallel prefix adder for high

performance computing applications: a comparative analysis

Vamsidhar Anagani, Kasi Geethanjali, Anusha Gorantla, Annamreddy Devi
Department of Electronics and Communication Engineering, Raghu Engineering College, Visakhapatnam, India

Article Info ABSTRACT

Article history:

Received Sep 11, 2024

Revised Nov 25, 2024

Accepted Dec 15, 2024

 Binary adders are fundamental in digital circuit designs, including digital

signal processors and microprocessor data path units. Consequently,

significant research has focused on improving adders’ power-delay
efficiency. The carry tree adder (CTA) is alternatively referred to as the

parallel prefix adder (PPA), is among the fastest adders, achieving

superior performance in very large scale integrated (VLSI) implementations

through efficient concurrent carry generation and propagation.
This study introduces approximate PPAs (AxPPAs) by applying

approximations in prefix operators (POs). Four types of AxPPAs-

approximate kogge-stone, approximate brent-kung, approximate ladner-

fischer, and approximate sparse kogge-stone-were designed and
implemented on FPGA with bit widths up to 64-bit. Delay measurements

from static timing analysis using Xilinx ISE design suite version 14.7

indicate that AxPPAs exhibit better latency performance than traditional

PPAs. The AxPPA sparse kogge-stone, in particular, demonstrated superior

area and speed performance, achieving a delay of 2.501ns for a 16-bit

addition.

Keywords:

Approximate computing

AxPPA

Area-delay performance

Parallel prefix adder

Prefix operator

This is an open access article under the CC BY-SA license.

Corresponding Author:

Vamsidhar Anagani

Department of Electronics and Communication Engineering, Raghu Engineering College

Visakhapatnam, India

Email: vamsianagani@gmail.com

1. INTRODUCTION

Addition is a fundamental arithmetic operation, with carries rippling from one bit to the next. It can

be performed rapidly, making it a crucial operation. The critical delay path of the adder determines overall

speed. Half and full adders are essential for designing various adders and multipliers. Approximate

computing, an emerging paradigm in integrated circuits, enhances performance without compromising

acceptable quality by eliminating the need for exact computations [1]. Adder units are foundational and

widely used in arithmetic hardware operations such as digital signal processing [2], image and video

processing [3], computer vision, and machine learning [4]. Combining approximate adder (AxA) units with

more complex modern approximate arithmetic units, such as squaring modules [5], [6], multipliers [7], [8],

[9], square roots [10], and division [11], allows for interlayer approximations. Many approximate adder

architectures make the logic from the least significant bit (LSB) to the most significant bit (MSB) accurate

[12]-[15].

Parallel prefix adders (PPAs) are renowned for their speed and space efficiency in addition

operations. These adders achieve their superior performance by implementing logarithmic reduction in the

carry propagation channel, which significantly decreases the latency of the primary computational path.

However, the main challenge in digital hardware design is the optimization of PPA circuit synthesis

https://creativecommons.org/licenses/by-sa/4.0/

Int J Inf & Commun Technol ISSN: 2252-8776 

An improved approximate parallel prefix adder for high performance computing … (Vamsidhar Anagani)

383

[16]-[19]. An innovative technique combining speed and power efficiency in adder circuits has been

engineered through the implementation of an approximate parallel prefix adder (AxPPA), that combines fast

carry propagation and LSB-to-MSB logical approximation [20].

This paper examines four PPAs-brent-kung [21], kogge-stone [22], ladner-fischer [23], and sparse

kogge-stone [24] to illustrate approximate prefix operators (AxPOs). The strategy aims to simulate carry

propagation and generation for a prefix operator (PO). AxPPAs were tested on two hardware accelerators:

sum of squared difference (SSD) pixel comparison and finite impulse response (FIR) filters in virtual/video

processing applications [25]. Both FIR filters and SSD applications contain multiple adders, impacting area,

delay, and power consumption [26], [27]. By incorporating additional strategies like Approximate Adder

(AxA) combinations, one can optimize the size and energy consumption of these accelerators. Thus, our

work focused on designing and implementing AxPPA-based brent-kung [21], kogge-stone [21], ladner-

fischer [23], and sparse kogge-stone [24] architectures: AxPPA_brent-kung, AxPPA_kogge-stone,

AxPPA_ladner-fischer, and AxPPA_sparse kogge-stone. The proposed AxPPAs aim to produce faster and

more energy-efficient hardware accelerators for various applications. Effectiveness parameters for these

AxPPA designs include area, measured in look-up tables (LUT), and delay, defined as the time from input

application to output production. The proposed AxPPAs and additional strategies like adder combinations

offer a novel approach to optimizing hardware design trade-offs.

The article’s organization is outlined as follows: an extensive review of PPAs and their performance

across multiple parameters is provided in section 2. In section 3 introduces an improved variant of PPA,

known as AxPPA. The results of simulations, along with their corresponding analysis, are discussed in

section 4. The concluding remarks of the study are presented in section 5.

2. PARALLEL PREFIX ADDERS
Substantial research is being conducted to achieve data path optimization in the design of PPAs

[28]-[31]. As illustrated in Figure 1, three main stages are involved in PPA design: pre-processing, prefix

computation, and post-processing [20].

Figure 1. Stages involved in the computation of PPA

The first stage is pre-processing, which produces signals bit by bit for the subsequent stages of

generating a carry and propagating a carry. The following Boolean equations illustrate how preprocessing

encodes the operands’ 𝐴 and 𝐵 input bits to generate 𝑔 and propagate 𝑝 [32].

Propagate (𝑝𝑖) = 𝐴𝑖 ⊕ 𝐵𝑖 (1)

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 382-392

384

Generate (𝑔𝑖) = 𝐴𝑖 ⋅ 𝐵𝑖 (2)

The carry-out of an adder is said to be true, when the 𝑔 value is true, irrespective of the value of

input carry. The signal 𝑝 is true when the input carry of the ith bit order propagates to the output carry of ith

bit order. Both the 𝑔 and 𝑝 functions are performed using logic gates, where the AND gate is used for 𝑔

function and XOR gate is used for 𝑝 function. These gates are evaluated simultaneously with a single-gate

delay for all bits of the ith order. The size of the preprocessing circuit increases proportionally with the width

of adder’s input bits [19]. There are multiple approaches to implementing prefix computing, which involve

adjusting various factors such as the number of links between generate and carry cells, the maximum

number of outputs per gate, the overall quantity of logic gates, the depth of logic, and the area occupied by

the circuit. The arrangement of the adders determines how carry and propagation are grouped in the prefix

computation [33].

𝑃 = 𝑝𝑖 ⋅ 𝑝𝑖+1 (3)

𝐺 = (𝑔𝑖 ∙ 𝑝𝑖+1) + 𝑔𝑖+1 (4)

Where, 𝑔𝑖, 𝑝𝑖+1 and 𝑔𝑖+1 correspond to the preprocessing stage, explaining POs, the fundamental

components of the prefix calculation phase respectively. The associative operator responsible for producing

the carry-out and propagation (sum) bits must be contained within the PO blocks [29]. The PPA graph

structure is constructed by integrating these PO blocks through prefix computations. The circuit size, energy,

and delay of each PPA are dependent on the prefix computing step. Recombining the 𝐶 produced by the

prefix computation with the 𝑝 from the pre-processing step, the final sum is formed in the post-processing

step. As shown in (6), the post-processing function executes a bitwise XOR gate between the 𝐶 and 𝑝 signals

in parallel for all bits of the ith order [34].

𝐶𝑖 = 𝑐𝑖𝑛𝑖 ⋅ (𝑃𝑖 + 𝐺𝑖) (5)

𝑆𝑖+1 = 𝑃𝑖+1 ⊕ 𝐶𝑖 (6)

2.1. Brent-kung adder

The brent-kung adder [21] exemplifies a PPA with standard architecture enabling efficient 𝑛-bit

number addition in 𝑂(log2 𝑛) time, making it ideal for space-constrained, high-performance adders [35].

Its regular and symmetrical structure is suitable for pipeline systems, reducing production costs [25].

Prefix calculations for 8-bit groups use the brent-kung adder [21] method by first dividing 2-bit groups

into 4-bit groups, continuing until the sum tree has the required bit count, with only two cells per logical

level. This technique enhances traditional architecture’s cost-effectiveness, crucial in very large scale

integrated (VLSI) design [30]. Figure 2 shows the design process of conventional 8-bit PPAs;

brent-kung adder [21], Kogge-stone adder [22] and ladner-fischer adder [23]. Figure 2(a) displays the

8-bit brent-kung adder [21] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits. Parallel adders compute carries

from LSB to MSB, establishing a critical route, with measures to ensure carry reaches MSB without

delay [6].

2.2 Kogge-stone adder

The kogge-stone adder [22] is theoretically similar to the brent-kung adder [21], clustering adjoining

bits based on cell size and reusing them by neighboring nodes. Consequently, the fan-out matches the cell

size and has fewer levels than other architectures. For 𝐾 inputs, the total cost or number of consumed cells is

𝐾 log2 𝐾. The efficiency increases and fan-out decrease in this adder [22]. Propagation across the tree and

cells occurs simultaneously during generation. However, the systematic arrangement of the adder in a grid

pattern results in an increase in circuit area due to scatter selections. This adder computes even digits

separately while calculating the prefix for odd numbers [36]. Figure 2(b) shows the 8-bit kogge-stone adder

[22] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits.

2.3. Ladner-fischer adder

A high-performance addition operation is performed using a ladner-fischer adder [23]. To perform

the addition operation, decrease the carry propagation latency that rises with ripple carry adders (RCA) [12],

[31]. The data structure used to perform the calculation resembles a tree. Figure 2(c) shows the 8-bit ladner-

fischer adder [23] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits.

Int J Inf & Commun Technol ISSN: 2252-8776 

An improved approximate parallel prefix adder for high performance computing … (Vamsidhar Anagani)

385

(a) (b) (c)

Figure 2. Design process of conventional 8-bit PPAs with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits;

(a) brent-kung adder [21], (b) kogge-stone adder [22], and (c) ladner-fischer adder [23]

2.4. Sparse kogge-stone adder

One notable feature of tree-structured adders is the limiting path determined by the carry delay for

an 𝑁-bit wide adder, which demonstrates an order of log 2𝑁. Multiple adder families were created using a

prefix network configuration [8]. This research specifically examines the kogge-stone adder [22],

distinguished by its minimal depth and limited fanout.

Figure 3 illustrates the architecture of the sparse kogge-stone adder [24]. The recurring patterns in

the kogge stone prefix tree network have an impact on immune system function. The ordered pair is produced

by the black cell (BC), whereas the gray cell (GC) merely provides the left signal. The connection area is

well-known, although it is never as critical in an FPGA execution as it is in a VLSI one due to the high

routing overhead included in every FPGA [31]. Kogge stone prefix tree networks are regular in a way that

impacts defenses through repetition. This cross-sectional design streamlines the convey-prefix network by

completing the summing operation with a 4-bit RCA [17]. Unique symbols are utilized in the parallel adder’s

schematic to distinguish between two node categories. A solid, dark-colored square represents the black-

connected node, while a square featuring a central dot denotes the gray-connected node. It is fascinating to

compare how this adder is implemented using RCA in FPGA as a quick carry chain, together with sparse

kogge-stone and traditional kogge-stone adders [9].

Figure 3. Sparse kogge-stone adder [24]

3. PROPOSED APPROXIMATE PARALLEL PREFIX ADDERS

In a PPA, groups of POs are utilized to calculate prefixes. Approximations were employed in the

reasoning of the AxPPA concepts (see Figure 4). Adjusting the number of approximate POs during the

outline timeframe allows for achieving the desired AxPPA precision level. As illustrated in Figure 4, our

AxPO connects pretreatment and post-processing using only wires to develop prefix computing. In (3) and

(4) describe how to compute POs [shown in Figure 4(f)], whereas (7) and (8) explore how to compute AxPOs

[shown in Figure 4(h)].

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 382-392

386

𝑃 ≈ 𝑝𝑖+1 (7)

𝐺 ≈ 𝑔𝑖+1 (8)

In the prefix calculation stage, AxPPA removes logic gates. There are no PPA prefix computations

in our technique because the PO is destroyed during the prefix computation stage. As a result, the type of

PPA determines the order in which each PO appears in the computation of the PPA prefix [20].

Figure 4 shows a general 16-bit binary approximate addition for decimal numbers 33222(10) and

116254(10) with 𝐾 = 16 bits. These 𝐾 = 16 bits are split into two parts: an exact 8-bit component

(see Figures 4(a)-4(c)) and an approximate 8-bit component (see Figures 4(b)-(d)). By summing 33222(10)

and 116254(10), we found that the result is close to 217142(10), as demonstrated in this example. For the same

example as in Figure 4(b), but with 𝐾 = 8 bits, the approximate sum is shown in Figure 4(d). Three sections

are presented in Figures 4(c)-4(d): preprocessing, approximate prefix calculation, and post-processing.

As shown in Figures 4(b) and 4(c), preprocessing relies on a single XOR logic gate for its critical path.

It should be noted that in the approximation prefix computation, the only connections made are through

wires, as shown in Figure 4(h), which links the generation and propagation of the preprocessing step to the

post-processing step. One bit of carrying is generated by the approximate part in Figure 4(d) for the accurate

part. The AxPPA calculation for carrying in the PPA is shown in Figure 4(c) by the dark yellow-colored POs.

In Figure 4(g), the carry operator’s critical path consists of two logic gates: an AND gate and an XOR gate.

In this study, we constructed four different architectures based on AxPO suggestions in four different PPAs:

AxPPA_brent-kung, AxPPA_ladner-fischer, AxPPA_kogge-stone, and AxPPA_sparse kogge-stone.

Figure 4. Example of AxPPA ladner-fischer for 𝐾 = 16 bits; (a) PPA operation on MSB, 𝐾 = 8 bits,

(b) AxPPA operation on LSB, 𝐾 = 8 bits, (c) accurate output generated by ladner-fischer adder on MSB,

𝐾 = 8 bits, (d) approximate output generated by AxPPA_ladner-fischer adder on LSB, 𝐾 = 8 bits,

(e) pre-processing steps, (f) prefix operations (POs), and (g) Carry (h) AxPOs

4. RESULTS AND DISCUSSION

This segment describes the simulation of various PPAs and AxPPAs designs using Xilinx ISE design

suite 14.7. The designs were implemented in verilog and synthesized through Xilinx Vivado. For all adder

Int J Inf & Commun Technol ISSN: 2252-8776 

An improved approximate parallel prefix adder for high performance computing … (Vamsidhar Anagani)

387

configurations, the inputs consist of 16-bit unsigned binary numbers (a and b) along with a carry input cin.

The corresponding outputs include the Sum and carry output cout.

4.1. PPAs

The inputs and corresponding outputs for the PPA-based brent-kung adder [21], kogge-stone adder

[22], ladner-fischer adder [23], and sparse kogge-stone adder [24] are listed in Table 1, and the simulated

waveforms are shown in Figure 5. Figure 5(a) depicts inputs and ouputs of the brent-kung PPA [21] for 16-bit

unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of output, sum. Similarly,

Figures 5(b)-5(d) shows the input-output relations of kogge-stone [22], ladner-fischer [23], and sparse kogge-

stone [24] PPAs respectively.

From Table 1, brent-kung [21] is applied with 16-bit unsigned magnitude of inputs a and b as

16022(10) and 47123(10) with cin = 0, and the corresponding outputs sum obtained as 63145(10) with cout = 0.

Similarly, when kogge-stone [22] is applied with a 16-bit unsigned magnitude of inputs a and b as 62328(10)

and 4745(10) with cin = 1, the corresponding output sum 67074(10) with cout = 1 is obtained.

Table 1. PPAs inputs and outputs
PPAs Inputs Outputs

a b cin Sum cout

Brent-kung [21] 16022(10) 47123(10) 0 63145(10) 0

Kogge-stone [22] 62328(10) 4745(10) 1 67074(10) 1

Ladner-fischer [23] 16022(10) 47123(10) 0 63145(10) 1

Sparse kogge stone [24] 10429(10) 22573(10) 1 33003(10) 0

(a)

(b)

(c)

(d)

Figure 5. PPAs using 16-bit unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of

output: sum (a) brent-kung [21], (b) kogge-stone [22], (c) ladner-fischer [23], and (d) sparse kogge-stone [24]

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 382-392

388

When ladner-fischer [23] is applied with a 16-bit unsigned magnitude of inputs a and b as 16022(10)

and 47123(10) with cin = 0, the corresponding output sum 63145(10) with cout = 1 is obtained. When sparse

kogge stone [24] is applied with 16-bit unsigned magnitude of inputs a and b as 10429(10) and 22573(10) with

cin = 1, the corresponding output sum 67074(10) with cout = 1 are obtained. The PPAs outputs obtained are

error-free and are differentiated with respect to area and propagation delay, which exhibit overall effeciency

of the adder. Here, LUT are used to define the overall area of the respective adders, and a smaller delay

indicates a faster addition. The PPAs performance metrics are presented in Table 2. The area occupied by

brent-kung [21] is 24LUT with a delay of 4.255ns, kogge-stone [22] area is 48 LUT with a delay of 4.489ns,

ladner-fischer [23] area is 24 LUT with a delay of 4.472ns, and sparse kogge-stone [24] area is 42LUT with a

delay of 4.713ns.

From the obtained results, the area and delay are much less in the brent-kung adder [21], but in

comparison with the three alternative adders, this one demonstrates notably inferior performance. Ladner-

fischer [23] is smaller in area and more accurate than the others, while the fastest PPA is the kogge-stone

[22]. Sparse kogge-stone [24] is a compromise in area compared to ladner-fischer [23] and kogge-stone [24],

but reliable in terms of delay performance.

Table 2. Comparison of various PPAs
PPAs Area Delay (ns)

Brent-kung adder [21] 24 LUT 4.255

Kogge-stone adder [22] 48 LUT 4.489

Ladner-fischer adder [23] 24 LUT 4.472

Sparse kogge-stone adder [24] 42 LUT 4.713

4.2. Proposed AxPPAs

Table 3 presents the inputs and corresponding outputs for various adder types utilizing AxPPA,

including brent-kung, kogge-stone, ladner-fischer, and sparse kogge-stone adders. The simulated waveforms

for these adders are illustrated in Figure 6. Figure 6(a) depicts inputs and ouputs of the brent-kung AxPPA for

16-bit unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of output, sum. Similarly,

Figures 6(b)-5(d) shows the input-output relations of kogge-stone, ladner-fischer, and sparse kogge-stone

AxPPAs respectively.

From Table 3, AxPPA_brent-kung is applied with a 16-bit unsigned magnitude of inputs a and b as

63461(10) and 29303(10) respectively with cin = 0, and the corresponding output sum obtained as 97150(10)

instead of 92764(10) with an error count of 4. Similarly, when AxPPA_kogge-stone is applied with a 16-bit

unsigned magnitude of inputs a and b as 64905(10) and 30743(10) with cin = 1, the corresponding output sum

is 94208(10) instead of 95648(10) producing an error count of 2; when AxPPA_ladner-fischer is applied with

16-bit unsigned magnitude of inputs a and b as 64905(10) and 30743(10) with cin = 1, the corresponding

output sum is 93521(10) instead of 95648(10) producing an error count of 3. When AxPPA sparse kogge-stone

is applied with a 16-bit unsigned magnitude of inputs a and b as 31464(10) and 20165(10) respectively,

with cin = 1, the corresponding output sum is 51957(10) instead of 51629(10) with an error count of 1 is

obtained.

Table 4 shows the various AxPPAs and compares them with respect to area occupied, delay time,

and performance. The area occupied by AxPPA_brent-kung is 23LUT with a delay of 2.220ns,

AxPPA_kogge-stone area is 30 LUT with a delay of 3.097ns, AxPPA_ladner-fischer area is 22 LUT with a

delay of 2.503ns, and the AxPPA_sparse kogge-stone area is 30 LUT with a delay of 2.501ns. Comparing all

AxPPAs, the AxPPA_kogge-stone adder generates a high area and delay. The AxPPA_sparse kogge-stone

adder achieves less delay even with an area of 30 LUT, thus exhibiting low power dissipation. Likewise, the

AxPPA_kogge stone adder occupies a substantial area and exhibits high latency, yet it demonstrates superior

speed in comparison to other AxPPA adders. It is also clear from Table 4 that the area and delay of the

AxPPA_ladner-fisher adder are very small, and its performance is also very low when compared to the other

AxPPA adders. By reducing the number of prefix stages, a new AxPPA_sparse kogge-stone adder is

designed, which consumes less area with a faster addition performance.

Table 3. AxPPAs inputs and outputs
AxPPAs Inputs Output Error count

a b cin Sum

AxPPA_brent-kung 63461(10) 29303 (10) 0 97150(10) 4

AxPPA_kogge-stone 64905(10) 30743(10) 1 94208(10) 2

AxPPA_ladner-fischer 64905(10) 30743(10) 1 93521(10) 3

AxPPA_sparse kogge-stone 31464(10) 20165(10) 0 51957(10) 1

Int J Inf & Commun Technol ISSN: 2252-8776 

An improved approximate parallel prefix adder for high performance computing … (Vamsidhar Anagani)

389

(a)

(b)

(c)

(d)

Figure 6. AxPPAs using 16-bit unsigned values of inputs a and b generating 16-bit unsigned magnitude of

output, sum; (a) AxPPA brent-kung, (b) AxPPA kogge-stone, (c) AxPPA ladner-fischer, and

(d) AxPPA_sparse kogge-stone

Table 4. Comparison of AxPPAs
AxPPAs Area Delay (ns)

AxPPA_brent-kung 23 LUT 2.220

AxPPA_kogge-stone 30 LUT 3.097

AxPPA_ladner-fischer 22 LUT 2.503

AxPPA_sparse kogge-stone 30 LUT 2.501

4.3. Discussion

Comparing PPA and AxPPAs reveals significant reductions in area and delay for AxPPAs.

For instance, AxPPA_brent-kung has an area of 23LUT and a delay of 2.220ns, compared to PPA’s 24LUT

and 4.255ns [21]. However, AxPPAs incur errors. Similarly, AxPPA_kogge-stone shows an area of 30LUT

and a delay of 3.092ns, much lower than PPA’s 48LUT and 4.489ns [22]. For AxPPA_ladner-fischer versus

PPA-based ladner-fischer [23], both area and delay are significantly reduced. These comparisons highlight

those approximations in AxPPAs substantially decrease area and propagation delay. AxPPAs exhibit

significant redundancy in delay but introduce errors due to rapid computation. Both minimal delay and error

should be considered before asserting the superiority of an AxPPA. AxPPA_sparse kogge-stone outperforms

other AxPPAs in delay, achieving a minimum of 2.501ns with 30 LUTs (see Table 3), and has the lowest

error count of 1. This highlights the superior performance of AxPPAs, particularly AxPPA_sparse kogge-

stone, compared to other variants.

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 382-392

390

5. CONCLUSION

This study proposes an improved PPA design using approximate architectures. An established

approximation approach calculates the PO for the prefix contention phase. We evaluated the AxPPA concept

for specific cases using bent-kung, kogge-stone, ladner-fischer, and sparse kogge-stone with application-

specific evaluations. Our AxPPA technique outperformed integrated AxA regarding synthesis result savings.

AxPPA meets high-quality standards and offers a higher approximation level. AxPPA_sparse kogge-stone

demonstrated superior power-delay performance compared to other AxPPA designs. This is crucial for

applications like high-precision arithmetic and cryptography, which often involve adding numbers on a

1,000-bit scale. The next generation of FPGA architectures must incorporate an improved carry path to

enable tree-based adder implementations. This enhancement is vital for optimizing cycle time and reducing

power consumption in applications such as digital signal processing and cryptography. Therefore, AxPPA are

optimal for many time-sensitive applications.

FUNDING INFORMATION

Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Vamsidhar Anagani         

Kasi Geethanjali        

Anusha Gorantla     

Annamreddy Devi    

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

Data availability is not applicable to this paper as no new data were created or analyzed in this

study.

REFERENCES
[1] A. Ahilan, A. A.Raj, A. Gorantla, R. Jothin, M. Shunmugathammal, and G. A. Safdar, “Design of energy-efficient approximate

arithmetic circuits for error tolerant medical image processing applications,” in Lecture Notes in Electrical Engineering,

vol. 1116, 2024, pp. 679–692.

[2] P. T. L. Pereira et al., “Energy-quality scalable design space exploration of approximate FFT hardware architectures,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 11, pp. 4524–4534, Nov. 2022,

doi: 10.1109/TCSI.2022.3191180.

[3] G. Paim, H. Amrouch, E. A. C. da Costa, S. Bampi, and J. Henkel, “Bridging the gap between voltage over-scaling and joint

hardware accelerator-algorithm closed-loop,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 1,

pp. 398–410, Jan. 2022, doi: 10.1109/TCSVT.2021.3059229.

[4] Z. G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Weight-oriented approximation for energy-

efficient neural network inference accelerators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12,

pp. 4670–4683, Dec. 2020, doi: 10.1109/TCSI.2020.3019460.

[5] K. M. Reddy, M. H. Vasantha, Y. B. N. Kumar, and D. Dwivedi, “Design of approximate booth squarer for error-tolerant

computing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 5, pp. 1230–1241, May 2020,

doi: 10.1109/TVLSI.2020.2976131.

[6] M. M. A. Da Rosa et al.,“AxRSU: approximate radix-4 squarer unit,” in Proceedings - IEEE International Symposium on Circuits

and Systems, May 2022, vol. 2022-May, pp. 1655–1659, doi: 10.1109/ISCAS48785.2022.9937770.

[7] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi, “Design and evaluation of approximate logarithmic

multipliers for low power error-tolerant applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,

no. 9, pp. 2856–2868, Sep. 2018, doi: 10.1109/TCSI.2018.2792902.

Int J Inf & Commun Technol ISSN: 2252-8776 

An improved approximate parallel prefix adder for high performance computing … (Vamsidhar Anagani)

391

[8] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra, “Approximate multipliers based on new approximate

compressors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4169–4182, Dec. 2018,

doi: 10.1109/TCSI.2018.2839266.

[9] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. DI Meo, “Comparison and extension of approximate 4-2 compressors

for low-power approximate multipliers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 9,

pp. 3021–3034, Sep. 2020, doi: 10.1109/TCSI.2020.2988353.

[10] N. Arya, M. Pattanaik, and G. K. Sharma, “Energy-efficient logarithmic square rooter for error-resilient applications,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 11, pp. 1994–1997, Nov. 2021,

doi: 10.1109/TVLSI.2021.3114616.

[11] G. Paim, P. Marques, E. Costa, S. Almeida, and S. Bampi, “Improved goldschmidt algorithm for fast and energy-efficient fixed-

point divider,” in ICECS 2017 - 24th IEEE International Conference on Electronics, Circuits and Systems, Dec. 2017,

vol. 2018-January, pp. 482–485, doi: 10.1109/ICECS.2017.8292070.

[12] C. H. P. Kumar and K. Sivani, “Implementation of efficient parallel prefix adders for residue number system,” International

Journal of Computing and Digital Systems, vol. 4, no. 4, pp. 295–300, Oct. 2015, doi: 10.12785/IJCDS/040409.

[13] J. Lee, H. Seo, H. Seok, and Y. Kim, “A novel approximate adder design using error reduced carry prediction and constant

truncation,” IEEE Access, vol. 9, pp. 119939–119953, 2021, doi: 10.1109/ACCESS.2021.3108443.

[14] K. L. Tsai, Y. J. Chang, C. H. Wang, and C. T. Chiang, “Accuracy-configurable radix-4 adder with a dynamic output

modification scheme,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 8, pp. 3328–3336, Aug. 2021,

doi: 10.1109/TCSI.2021.3085572.

[15] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo, “Enhanced low-power high-speed adder for error-tolerant application,” in 2010

International SoC Design Conference, ISOCC, Nov. 2010, pp. 323–327, doi: 10.1109/SOCDC.2010.5682905.

[16] V. Pudi, K. Sridharan, and F. Lombardi, “Majority logic formulations for parallel adder designs at reduced

delay and circuit complexity,” IEEE Transactions on Computers, vol. 66, no. 10, pp. 1824–1830, Oct. 2017, doi:

10.1109/TC.2017.2696524.

[17] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high speed adders: a pareto driven machine learning

approach,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 12, pp. 2298–2311,

Dec. 2019, doi: 10.1109/TCAD.2018.2878129.

[18] T. D. Ene and J. E. Stine, “A comprehensive exploration of the parallel prefix adder tree space,” in Proceedings - IEEE

International Conference on Computer Design: VLSI in Computers and Processors, Oct. 2021, vol. 2021-October, pp. 125–129,

doi: 10.1109/ICCD53106.2021.00030.

[19] R. Roy et al., “PrefixRL: optimization of parallel prefix circuits using deep reinforcement learning,” in Proceedings - Design

Automation Conference, Dec. 2021, vol. 2021-December, pp. 853–858, doi: 10.1109/DAC18074.2021.9586094.

[20] M. M. E. A. Da Rosa, G. Paim, P. U. L. Da Costa, E. A. C. Da Costa, R. I. Soares, and S. Bampi, “AxPPA: approximate parallel

prefix adders,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 1, pp. 17–28, Jan. 2023,

doi: 10.1109/TVLSI.2022.3218021.

[21] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Transactions on Computers, vol. C–31, no. 3,

pp. 260–264, Mar. 1982, doi: 10.1109/TC.1982.1675982.

[22] H. S. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence equations,” IEEE Transactions on

Computers, vol. C–22, no. 8, pp. 786–793, Aug. 1973, doi: 10.1109/TC.1973.5009159.

[23] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the ACM (JACM), vol. 27, no. 4, pp. 831–838, 1980,

doi: 10.1145/322217.322232.

[24] S. Ghosh, P. Ndai, and K. Roy, “A novel low overhead fault tolerant kogge-stone adder using adaptive clocking,” in Proceedings

of the conference on Design, automation and test in Europe, Mar. 2008, pp. 366–371, doi: 10.1145/1403375.1403462.

[25] B. Silveira et al., “Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion

estimation design,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3126–3137, Dec. 2017,

doi: 10.1109/TCSI.2017.2728802.

[26] H. Jiang, L. Liu, P. P. Jonker, D. G. Elliott, F. Lombardi, and J. Han, “A high-performance and energy-efficient FIR adaptive

filter using approximate distributed arithmetic circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,

no. 1, pp. 313–326, Jan. 2019, doi: 10.1109/TCSI.2018.2856513.

[27] P. Muthukumar, P. S. L. Kanthan, T. B. Immanuel, and K. Eswaramoorthy, “FPGA performance optimization plan for high power

conversion,” in Communications in Computer and Information Science, vol. 837, 2018, pp. 491–502.

[28] D. Esposito, D. De Caro, and A. G. M. Strollo, “Variable latency speculative parallel prefix adders for unsigned and signed

operands,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1200–1209, Aug. 2016,

doi: 10.1109/TCSI.2016.2564699.

[29] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal performance-area trade-off in adders by synthesis of parallel

prefix structures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 10,

pp. 1517–1530, 2014, doi: 10.1109/TCAD.2014.2341926.

[30] S. Daphni and K. S. V. Grace, “A review analysis of parallel prefix adders for better performnce in VLSI applications,” in IEEE

International Conference on Circuits and Systems, ICCS 2017, Dec. 2017, vol. 2018-January, pp. 103–106,

doi: 10.1109/ICCS1.2017.8325971.

[31] K. Vitoroulis and A. J. Al-Khalili, “Performance of parallel prefix adders implemented with FPGA technology,” in 2007 IEEE

North-East Workshop on Circuits and Systems, NEWCAS 2007, Aug. 2007, pp. 498–501, doi: 10.1109/NEWCAS.2007.4487969.

[32] D. H. K. Hoe, C. Martinez, and S. J. Vundavalli, “Design and characterization of parallel prefix adders using FPGAs,” in Proceedings

of the Annual Southeastern Symposium on System Theory, Mar. 2011, pp. 168–172, doi: 10.1109/SSST.2011.5753800.

[33] N. E. H. Weste and D. M. Harris, “CMOS VLSI design: a circuits and systems perspective,” Journal of Chemical Information and

Modeling, vol. 53, no. 9, pp. 1689–1699, 2013.

[34] T. Gupta, G. Verma, and S. Akhter, “FPGA implementation and performance analysis of parallel prefix structures for modular

adders design,” Circuits, Systems, and Signal Processing, vol. 44, no. 2, pp. 992–1016, Feb. 2024, doi: 10.1007/s00034-024-

02857-1.

[35] S. H. Prakash and V. Balamurugan, “Design and implementation of fast radix-2 and radix-4 ACSU with different adders in viterbi

decoder,” in Proceedings of 2016 Online International Conference on Green Engineering and Technologies, IC-GET 2016,

Nov. 2017, pp. 1–4, doi: 10.1109/GET.2016.7916801.

[36] A. Raju, R. Patnaik, R. K. Babu, and P. Mahato, “Parallel prefix adders-A comparative study for fastest response,” in Proceedings

of the International Conference on Communication and Electronics Systems, ICCES 2016, Oct. 2016, pp. 1–6,

doi: 10.1109/CESYS.2016.7889974.

  ISSN: 2252-8776

Int J Inf & Commun Technol, Vol. 14, No. 2, August 2025: 382-392

392

BIOGRAPHIES OF AUTHORS

Vamsidhar Anagani received his bachelor of Technology in Electronics and

Communication Engineering (ECE) from Jawaharlal Nehru Technological University,

Kakinada, India in 2000 and Master’s in Digital Systems and Communications from National

Institute of Technology, Calicut, India in 2003. He received his Ph.D. in Electronics and
Communication Engineering from Andhra University, Visakhapatnam, India in 2018. He is

currently a Professor of Electronics and Communication Engineering at Raghu Engineering

College, Visakhapatnam, India. He has more than 20 years of teaching and research

experience in various academic institutions. His areas of research include wireless
communications, signal, image, and speech processing, VLSI, and machine learning. He can

be contacted at email: vamsianagani@gmail.com.

Kasi Geethanjali received her Bachelor of Technology and Master’s degrees
from Jawaharlal Nehru Technological University, Kakinada, India. She is Pursuing Ph. D

(Part-time). from KL University, Vijayawada, India. She is currently working as an Assistant

Professor of Electronics and Communication Engineering at Raghu Engineering College,

Visakhapatnam, India. Her current research interests include digital electronics and VLSI
design. She can be contacted at email: geethanjalikasi01@gmail.com.

Anusha Gorantla received her Bachelor of Technology in Electronics and

Communication Engineering (ECE) from JNTU, Hyderabad in 2006. She received Master’s
VLSI Design in 2008 and a Ph.D. in Information and Communication Engineering in 2018

from Anna University, Chennai, India. Now, she works as an Associate Professor, at the

Department of Electronics and Communication Engineering, Raghu Engineering College,

Visakhapatnam, Andhra Pradesh, India. Her research includes low-power VLSI design,
approximate computing, and image processing. She can be contacted at email:

anushagorantla3@gmail.com.

Annamreddy Devi completed her B.Tech. in the stream of Electronics and

Communication Engineering (ECE) from Raghu Engineering College, Visakhapatnam, India

in 2022. She had done various projects and mostly interested in digital electronics and VLSI

design. She can be contacted at email: 19981A0407@raghuenggcollege.com.

mailto:vamsianagani@gmail.com
mailto:geethanjalikasi01@gmail.com
mailto:anushagorantla3@gmail.com
mailto:19981A0407@raghuenggcollege.com
https://orcid.org/0000-0003-4125-013X
https://scholar.google.com/citations?user=YI1fgcoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=26531989400
https://www.webofscience.com/wos/author/record/GZL-9343-2022
https://orcid.org/0009-0009-6321-0172
http://Webofscience.com/wos/author/record/MGT-4797-2025
https://orcid.org/0000-0001-7292-5086
https://scholar.google.co.in/citations?user=L8M5iFEAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57211343984
https://www.webofscience.com/wos/author/record/AAC-5277-2019
https://orcid.org/0009-0002-3345-356X
https://scholar.google.com/citations?user=C17Fmq8AAAAJ&hl=en
https://www.webofscience.com/wos/author/record/MGT-4884-2025

