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 Binary adders are fundamental in digital circuit designs, including digital 

signal processors and microprocessor data path units. Consequently, 

significant research has focused on improving adders’ power-delay 
efficiency. The carry tree adder (CTA) is alternatively referred to as the 

parallel prefix adder (PPA), is among the fastest adders, achieving  

superior performance in very large scale integrated (VLSI) implementations 

through efficient concurrent carry generation and propagation.  
This study introduces approximate PPAs (AxPPAs) by applying 

approximations in prefix operators (POs). Four types of AxPPAs-

approximate kogge-stone, approximate brent-kung, approximate ladner-

fischer, and approximate sparse kogge-stone-were designed and 
implemented on FPGA with bit widths up to 64-bit. Delay measurements 

from static timing analysis using Xilinx ISE design suite version 14.7 

indicate that AxPPAs exhibit better latency performance than traditional 

PPAs. The AxPPA sparse kogge-stone, in particular, demonstrated superior 

area and speed performance, achieving a delay of 2.501ns for a 16-bit 

addition. 
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1. INTRODUCTION 

Addition is a fundamental arithmetic operation, with carries rippling from one bit to the next. It can 

be performed rapidly, making it a crucial operation. The critical delay path of the adder determines overall 

speed. Half and full adders are essential for designing various adders and multipliers. Approximate 

computing, an emerging paradigm in integrated circuits, enhances performance without compromising 

acceptable quality by eliminating the need for exact computations [1]. Adder units are foundational and 

widely used in arithmetic hardware operations such as digital signal processing [2], image and video 

processing [3], computer vision, and machine learning [4]. Combining approximate adder (AxA) units with 

more complex modern approximate arithmetic units, such as squaring modules [5], [6], multipliers [7], [8], 

[9], square roots [10], and division [11], allows for interlayer approximations. Many approximate adder 

architectures make the logic from the least significant bit (LSB) to the most significant bit (MSB) accurate 

[12]-[15]. 

Parallel prefix adders (PPAs) are renowned for their speed and space efficiency in addition 

operations. These adders achieve their superior performance by implementing logarithmic reduction in the 

carry propagation channel, which significantly decreases the latency of the primary computational path. 

However, the main challenge in digital hardware design is the optimization of PPA circuit synthesis  
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[16]-[19]. An innovative technique combining speed and power efficiency in adder circuits has been 

engineered through the implementation of an approximate parallel prefix adder (AxPPA), that combines fast 

carry propagation and LSB-to-MSB logical approximation [20]. 

This paper examines four PPAs-brent-kung [21], kogge-stone [22], ladner-fischer [23], and sparse 

kogge-stone [24] to illustrate approximate prefix operators (AxPOs). The strategy aims to simulate carry 

propagation and generation for a prefix operator (PO). AxPPAs were tested on two hardware accelerators: 

sum of squared difference (SSD) pixel comparison and finite impulse response (FIR) filters in virtual/video 

processing applications [25]. Both FIR filters and SSD applications contain multiple adders, impacting area, 

delay, and power consumption [26], [27]. By incorporating additional strategies like Approximate Adder 

(AxA) combinations, one can optimize the size and energy consumption of these accelerators. Thus, our 

work focused on designing and implementing AxPPA-based brent-kung [21], kogge-stone [21], ladner-

fischer [23], and sparse kogge-stone [24] architectures: AxPPA_brent-kung, AxPPA_kogge-stone, 

AxPPA_ladner-fischer, and AxPPA_sparse kogge-stone. The proposed AxPPAs aim to produce faster and 

more energy-efficient hardware accelerators for various applications. Effectiveness parameters for these 

AxPPA designs include area, measured in look-up tables (LUT), and delay, defined as the time from input 

application to output production. The proposed AxPPAs and additional strategies like adder combinations 

offer a novel approach to optimizing hardware design trade-offs. 

The article’s organization is outlined as follows: an extensive review of PPAs and their performance 

across multiple parameters is provided in section 2. In section 3 introduces an improved variant of PPA, 

known as AxPPA. The results of simulations, along with their corresponding analysis, are discussed in 

section 4. The concluding remarks of the study are presented in section 5. 

 

 

2. PARALLEL PREFIX ADDERS 
Substantial research is being conducted to achieve data path optimization in the design of PPAs 

[28]-[31]. As illustrated in Figure 1, three main stages are involved in PPA design: pre-processing, prefix 

computation, and post-processing [20]. 

 

 

 
 

Figure 1. Stages involved in the computation of PPA 

 

 

The first stage is pre-processing, which produces signals bit by bit for the subsequent stages of 

generating a carry and propagating a carry. The following Boolean equations illustrate how preprocessing 

encodes the operands’ 𝐴 and 𝐵 input bits to generate 𝑔 and propagate 𝑝 [32]. 

 

Propagate (𝑝𝑖) =  𝐴𝑖 ⊕ 𝐵𝑖 (1) 
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Generate (𝑔𝑖) = 𝐴𝑖 ⋅ 𝐵𝑖  (2) 

 

The carry-out of an adder is said to be true, when the 𝑔 value is true, irrespective of the value of 

input carry. The signal 𝑝 is true when the input carry of the ith bit order propagates to the output carry of ith 

bit order. Both the 𝑔 and 𝑝 functions are performed using logic gates, where the AND gate is used for 𝑔 

function and XOR gate is used for 𝑝 function. These gates are evaluated simultaneously with a single-gate 

delay for all bits of the ith order. The size of the preprocessing circuit increases proportionally with the width 

of adder’s input bits [19]. There are multiple approaches to implementing prefix computing, which involve 

adjusting various factors such as the number of links between generate and carry cells, the maximum  

number of outputs per gate, the overall quantity of logic gates, the depth of logic, and the area occupied by 

the circuit. The arrangement of the adders determines how carry and propagation are grouped in the prefix 

computation [33]. 

 

𝑃 = 𝑝𝑖 ⋅ 𝑝𝑖+1 (3) 

 

𝐺 = (𝑔𝑖 ∙ 𝑝𝑖+1) + 𝑔𝑖+1 (4) 

 

Where, 𝑔𝑖, 𝑝𝑖+1 and 𝑔𝑖+1 correspond to the preprocessing stage, explaining POs, the fundamental 

components of the prefix calculation phase respectively. The associative operator responsible for producing 

the carry-out and propagation (sum) bits must be contained within the PO blocks [29]. The PPA graph 

structure is constructed by integrating these PO blocks through prefix computations. The circuit size, energy, 

and delay of each PPA are dependent on the prefix computing step. Recombining the 𝐶 produced by the 

prefix computation with the 𝑝 from the pre-processing step, the final sum is formed in the post-processing 

step. As shown in (6), the post-processing function executes a bitwise XOR gate between the 𝐶 and 𝑝 signals 

in parallel for all bits of the ith order [34]. 

 

𝐶𝑖 = 𝑐𝑖𝑛𝑖 ⋅ (𝑃𝑖 + 𝐺𝑖) (5) 

 

𝑆𝑖+1 = 𝑃𝑖+1 ⊕ 𝐶𝑖 (6) 

 

2.1.  Brent-kung adder 

The brent-kung adder [21] exemplifies a PPA with standard architecture enabling efficient 𝑛-bit 

number addition in 𝑂(log2 𝑛) time, making it ideal for space-constrained, high-performance adders [35].  

Its regular and symmetrical structure is suitable for pipeline systems, reducing production costs [25].  

Prefix calculations for 8-bit groups use the brent-kung adder [21] method by first dividing 2-bit groups  

into 4-bit groups, continuing until the sum tree has the required bit count, with only two cells per logical 

level. This technique enhances traditional architecture’s cost-effectiveness, crucial in very large scale 

integrated (VLSI) design [30]. Figure 2 shows the design process of conventional 8-bit PPAs;  

brent-kung adder [21], Kogge-stone adder [22] and ladner-fischer adder [23]. Figure 2(a) displays the  

8-bit brent-kung adder [21] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits. Parallel adders compute carries 

from LSB to MSB, establishing a critical route, with measures to ensure carry reaches MSB without  

delay [6]. 

 

2.2  Kogge-stone adder 

The kogge-stone adder [22] is theoretically similar to the brent-kung adder [21], clustering adjoining 

bits based on cell size and reusing them by neighboring nodes. Consequently, the fan-out matches the cell 

size and has fewer levels than other architectures. For 𝐾 inputs, the total cost or number of consumed cells is 

𝐾 log2 𝐾. The efficiency increases and fan-out decrease in this adder [22]. Propagation across the tree and 

cells occurs simultaneously during generation. However, the systematic arrangement of the adder in a grid 

pattern results in an increase in circuit area due to scatter selections. This adder computes even digits 

separately while calculating the prefix for odd numbers [36]. Figure 2(b) shows the 8-bit kogge-stone adder 

[22] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits. 

 

2.3.  Ladner-fischer adder 

A high-performance addition operation is performed using a ladner-fischer adder [23]. To perform 

the addition operation, decrease the carry propagation latency that rises with ripple carry adders (RCA) [12], 

[31]. The data structure used to perform the calculation resembles a tree. Figure 2(c) shows the 8-bit ladner-

fischer adder [23] with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits. 
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(a) (b) (c) 

 

Figure 2. Design process of conventional 8-bit PPAs with propagate 𝑝[1: 8] and generate 𝑔[1: 8] bits;  

(a) brent-kung adder [21], (b) kogge-stone adder [22], and (c) ladner-fischer adder [23] 

 

 

2.4.  Sparse kogge-stone adder 

One notable feature of tree-structured adders is the limiting path determined by the carry delay for 

an 𝑁-bit wide adder, which demonstrates an order of log 2𝑁. Multiple adder families were created using a 

prefix network configuration [8]. This research specifically examines the kogge-stone adder [22], 

distinguished by its minimal depth and limited fanout. 

Figure 3 illustrates the architecture of the sparse kogge-stone adder [24]. The recurring patterns in 

the kogge stone prefix tree network have an impact on immune system function. The ordered pair is produced 

by the black cell (BC), whereas the gray cell (GC) merely provides the left signal. The connection area is 

well-known, although it is never as critical in an FPGA execution as it is in a VLSI one due to the high 

routing overhead included in every FPGA [31]. Kogge stone prefix tree networks are regular in a way that 

impacts defenses through repetition. This cross-sectional design streamlines the convey-prefix network by 

completing the summing operation with a 4-bit RCA [17]. Unique symbols are utilized in the parallel adder’s 

schematic to distinguish between two node categories. A solid, dark-colored square represents the black-

connected node, while a square featuring a central dot denotes the gray-connected node. It is fascinating to 

compare how this adder is implemented using RCA in FPGA as a quick carry chain, together with sparse 

kogge-stone and traditional kogge-stone adders [9]. 
 

 

 
 

Figure 3. Sparse kogge-stone adder [24] 

 

 

3. PROPOSED APPROXIMATE PARALLEL PREFIX ADDERS 

In a PPA, groups of POs are utilized to calculate prefixes. Approximations were employed in the 

reasoning of the AxPPA concepts (see Figure 4). Adjusting the number of approximate POs during the 

outline timeframe allows for achieving the desired AxPPA precision level. As illustrated in Figure 4, our 

AxPO connects pretreatment and post-processing using only wires to develop prefix computing. In (3) and 

(4) describe how to compute POs [shown in Figure 4(f)], whereas (7) and (8) explore how to compute AxPOs 

[shown in Figure 4(h)]. 
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𝑃 ≈ 𝑝𝑖+1 (7) 
 

𝐺 ≈ 𝑔𝑖+1 (8) 
 

In the prefix calculation stage, AxPPA removes logic gates. There are no PPA prefix computations 

in our technique because the PO is destroyed during the prefix computation stage. As a result, the type of 

PPA determines the order in which each PO appears in the computation of the PPA prefix [20]. 

Figure 4 shows a general 16-bit binary approximate addition for decimal numbers 33222(10) and 

116254(10) with 𝐾 = 16 bits. These 𝐾 = 16 bits are split into two parts: an exact 8-bit component  

(see Figures 4(a)-4(c)) and an approximate 8-bit component (see Figures 4(b)-(d)). By summing 33222(10) 

and 116254(10), we found that the result is close to 217142(10), as demonstrated in this example. For the same 

example as in Figure 4(b), but with 𝐾 = 8 bits, the approximate sum is shown in Figure 4(d). Three sections 

are presented in Figures 4(c)-4(d): preprocessing, approximate prefix calculation, and post-processing.  

As shown in Figures 4(b) and 4(c), preprocessing relies on a single XOR logic gate for its critical path.  

It should be noted that in the approximation prefix computation, the only connections made are through 

wires, as shown in Figure 4(h), which links the generation and propagation of the preprocessing step to the 

post-processing step. One bit of carrying is generated by the approximate part in Figure 4(d) for the accurate 

part. The AxPPA calculation for carrying in the PPA is shown in Figure 4(c) by the dark yellow-colored POs.  

In Figure 4(g), the carry operator’s critical path consists of two logic gates: an AND gate and an XOR gate. 

In this study, we constructed four different architectures based on AxPO suggestions in four different PPAs: 

AxPPA_brent-kung, AxPPA_ladner-fischer, AxPPA_kogge-stone, and AxPPA_sparse kogge-stone. 
 

 

 
 

Figure 4. Example of AxPPA ladner-fischer for 𝐾 = 16 bits; (a) PPA operation on MSB, 𝐾 = 8 bits,  

(b) AxPPA operation on LSB, 𝐾 = 8 bits, (c) accurate output generated by ladner-fischer adder on MSB, 

𝐾 = 8 bits, (d) approximate output generated by AxPPA_ladner-fischer adder on LSB, 𝐾 = 8 bits,  

(e) pre-processing steps, (f) prefix operations (POs), and (g) Carry (h) AxPOs 

 

 

4. RESULTS AND DISCUSSION 

This segment describes the simulation of various PPAs and AxPPAs designs using Xilinx ISE design 

suite 14.7. The designs were implemented in verilog and synthesized through Xilinx Vivado. For all adder 
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configurations, the inputs consist of 16-bit unsigned binary numbers (a and b) along with a carry input cin.  

The corresponding outputs include the Sum and carry output cout. 

 

4.1.  PPAs 

The inputs and corresponding outputs for the PPA-based brent-kung adder [21], kogge-stone adder 

[22], ladner-fischer adder [23], and sparse kogge-stone adder [24] are listed in Table 1, and the simulated 

waveforms are shown in Figure 5. Figure 5(a) depicts inputs and ouputs of the brent-kung PPA [21] for 16-bit 

unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of output, sum. Similarly,  

Figures 5(b)-5(d) shows the input-output relations of kogge-stone [22], ladner-fischer [23], and sparse kogge-

stone [24] PPAs respectively. 

From Table 1, brent-kung [21] is applied with 16-bit unsigned magnitude of inputs a and b as 

16022(10) and 47123(10) with cin = 0, and the corresponding outputs sum obtained as 63145(10) with cout = 0. 

Similarly, when kogge-stone [22] is applied with a 16-bit unsigned magnitude of inputs a and b as 62328(10) 

and 4745(10) with cin = 1, the corresponding output sum 67074(10) with cout = 1 is obtained. 

 

 

Table 1. PPAs inputs and outputs 
PPAs Inputs Outputs 

a b cin Sum cout 

Brent-kung [21] 16022(10) 47123(10) 0 63145(10) 0 

Kogge-stone [22] 62328(10) 4745(10) 1 67074(10) 1 

Ladner-fischer [23] 16022(10) 47123(10) 0 63145(10) 1 

Sparse kogge stone [24] 10429(10) 22573(10) 1 33003(10) 0 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5. PPAs using 16-bit unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of 

output: sum (a) brent-kung [21], (b) kogge-stone [22], (c) ladner-fischer [23], and (d) sparse kogge-stone [24] 
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When ladner-fischer [23] is applied with a 16-bit unsigned magnitude of inputs a and b as 16022(10) 

and 47123(10) with cin = 0, the corresponding output sum 63145(10) with cout = 1 is obtained. When sparse 

kogge stone [24] is applied with 16-bit unsigned magnitude of inputs a and b as 10429(10) and 22573(10) with 

cin = 1, the corresponding output sum 67074(10) with cout = 1 are obtained. The PPAs outputs obtained are 

error-free and are differentiated with respect to area and propagation delay, which exhibit overall effeciency 

of the adder. Here, LUT are used to define the overall area of the respective adders, and a smaller delay 

indicates a faster addition. The PPAs performance metrics are presented in Table 2. The area occupied by 

brent-kung [21] is 24LUT with a delay of 4.255ns, kogge-stone [22] area is 48 LUT with a delay of 4.489ns, 

ladner-fischer [23] area is 24 LUT with a delay of 4.472ns, and sparse kogge-stone [24] area is 42LUT with a 

delay of 4.713ns. 

From the obtained results, the area and delay are much less in the brent-kung adder [21], but in 

comparison with the three alternative adders, this one demonstrates notably inferior performance. Ladner-

fischer [23] is smaller in area and more accurate than the others, while the fastest PPA is the kogge-stone 

[22]. Sparse kogge-stone [24] is a compromise in area compared to ladner-fischer [23] and kogge-stone [24], 

but reliable in terms of delay performance. 
 

 

Table 2. Comparison of various PPAs 
PPAs Area Delay (ns) 

Brent-kung adder [21] 24 LUT 4.255 

Kogge-stone adder [22] 48 LUT 4.489 

Ladner-fischer adder [23] 24 LUT 4.472 

Sparse kogge-stone adder [24] 42 LUT 4.713 

 

 

4.2.  Proposed AxPPAs 

Table 3 presents the inputs and corresponding outputs for various adder types utilizing AxPPA, 

including brent-kung, kogge-stone, ladner-fischer, and sparse kogge-stone adders. The simulated waveforms 

for these adders are illustrated in Figure 6. Figure 6(a) depicts inputs and ouputs of the brent-kung AxPPA for 

16-bit unsigned magnitude of inputs a and b generating 16-bit unsigned magnitude of output, sum. Similarly, 

Figures 6(b)-5(d) shows the input-output relations of kogge-stone, ladner-fischer, and sparse kogge-stone 

AxPPAs respectively. 

From Table 3, AxPPA_brent-kung is applied with a 16-bit unsigned magnitude of inputs a and b as 

63461(10) and 29303(10) respectively with cin = 0, and the corresponding output sum obtained as 97150(10) 

instead of 92764(10) with an error count of 4. Similarly, when AxPPA_kogge-stone is applied with a 16-bit 

unsigned magnitude of inputs a and b as 64905(10) and 30743(10) with cin = 1, the corresponding output sum 

is 94208(10) instead of 95648(10) producing an error count of 2; when AxPPA_ladner-fischer is applied with 

16-bit unsigned magnitude of inputs a and b as 64905(10) and 30743(10) with cin = 1, the corresponding  

output sum is 93521(10) instead of 95648(10) producing an error count of 3. When AxPPA sparse kogge-stone 

is applied with a 16-bit unsigned magnitude of inputs a and b as 31464(10) and 20165(10) respectively,  

with cin = 1, the corresponding output sum is 51957(10) instead of 51629(10) with an error count of 1 is 

obtained. 

Table 4 shows the various AxPPAs and compares them with respect to area occupied, delay time, 

and performance. The area occupied by AxPPA_brent-kung is 23LUT with a delay of 2.220ns, 

AxPPA_kogge-stone area is 30 LUT with a delay of 3.097ns, AxPPA_ladner-fischer area is 22 LUT with a 

delay of 2.503ns, and the AxPPA_sparse kogge-stone area is 30 LUT with a delay of 2.501ns. Comparing all 

AxPPAs, the AxPPA_kogge-stone adder generates a high area and delay. The AxPPA_sparse kogge-stone 

adder achieves less delay even with an area of 30 LUT, thus exhibiting low power dissipation. Likewise, the 

AxPPA_kogge stone adder occupies a substantial area and exhibits high latency, yet it demonstrates superior 

speed in comparison to other AxPPA adders. It is also clear from Table 4 that the area and delay of the 

AxPPA_ladner-fisher adder are very small, and its performance is also very low when compared to the other 

AxPPA adders. By reducing the number of prefix stages, a new AxPPA_sparse kogge-stone adder is 

designed, which consumes less area with a faster addition performance. 
 
 

Table 3. AxPPAs inputs and outputs 
AxPPAs Inputs Output Error count 

a b cin Sum 

AxPPA_brent-kung 63461(10) 29303 (10) 0 97150(10) 4 

AxPPA_kogge-stone 64905(10) 30743(10) 1 94208(10) 2 

AxPPA_ladner-fischer 64905(10) 30743(10) 1 93521(10) 3 

AxPPA_sparse kogge-stone 31464(10) 20165(10) 0 51957(10) 1 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. AxPPAs using 16-bit unsigned values of inputs a and b generating 16-bit unsigned magnitude of 

output, sum; (a) AxPPA brent-kung, (b) AxPPA kogge-stone, (c) AxPPA ladner-fischer, and  

(d) AxPPA_sparse kogge-stone 

 

 

Table 4. Comparison of AxPPAs 
AxPPAs Area Delay (ns) 

AxPPA_brent-kung 23 LUT 2.220 

AxPPA_kogge-stone 30 LUT 3.097 

AxPPA_ladner-fischer 22 LUT 2.503 

AxPPA_sparse kogge-stone 30 LUT 2.501 

 

 

4.3.  Discussion 

Comparing PPA and AxPPAs reveals significant reductions in area and delay for AxPPAs.  

For instance, AxPPA_brent-kung has an area of 23LUT and a delay of 2.220ns, compared to PPA’s 24LUT 

and 4.255ns [21]. However, AxPPAs incur errors. Similarly, AxPPA_kogge-stone shows an area of 30LUT 

and a delay of 3.092ns, much lower than PPA’s 48LUT and 4.489ns [22]. For AxPPA_ladner-fischer versus 

PPA-based ladner-fischer [23], both area and delay are significantly reduced. These comparisons highlight 

those approximations in AxPPAs substantially decrease area and propagation delay. AxPPAs exhibit 

significant redundancy in delay but introduce errors due to rapid computation. Both minimal delay and error 

should be considered before asserting the superiority of an AxPPA. AxPPA_sparse kogge-stone outperforms 

other AxPPAs in delay, achieving a minimum of 2.501ns with 30 LUTs (see Table 3), and has the lowest 

error count of 1. This highlights the superior performance of AxPPAs, particularly AxPPA_sparse kogge-

stone, compared to other variants. 
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5. CONCLUSION 

This study proposes an improved PPA design using approximate architectures. An established 

approximation approach calculates the PO for the prefix contention phase. We evaluated the AxPPA concept 

for specific cases using bent-kung, kogge-stone, ladner-fischer, and sparse kogge-stone with application-

specific evaluations. Our AxPPA technique outperformed integrated AxA regarding synthesis result savings. 

AxPPA meets high-quality standards and offers a higher approximation level. AxPPA_sparse kogge-stone 

demonstrated superior power-delay performance compared to other AxPPA designs. This is crucial for 

applications like high-precision arithmetic and cryptography, which often involve adding numbers on a 

1,000-bit scale. The next generation of FPGA architectures must incorporate an improved carry path to 

enable tree-based adder implementations. This enhancement is vital for optimizing cycle time and reducing 

power consumption in applications such as digital signal processing and cryptography. Therefore, AxPPA are 

optimal for many time-sensitive applications. 
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