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 Cloud burst forecasting remains an evolving field that grapples with the 

complexities of atmospheric phenomena and their impact on local 

environments. Cloud bursts in hilly regions demand robust predictive models 

to mitigate risks. This study addresses the challenge of imbalanced cloud 

burst occurrences, emphasizing the need for accurate predictions to 

minimize damage. It develops and evaluates a machine learning-based 

forecasting approach that includes several weather factors such as 

temperature, humidity, wind speed, and atmospheric pressure. The study 

also tackles the imbalance in cloud burst data. A dual-axis chart visually 

merges cloud burst occurrences with weather parameters, providing insights 

into their relationships over time. The model’s overall accuracy is 0.68, with 

precision and recall for cloud burst events at 0.25 and 0.07, respectively, and 

an F1-score of 0.11. However, when it comes to forecasting non-cloud burst 

occurrences, it shows a high precision of 0.72. This study evaluates machine 

learning models for cloud burst prediction, highlighting random forest as the 

top performer with an accuracy of 85.43%, effectively balancing true 

positives and true negatives while minimizing misclassifications. This 

research contributes to cloud burst prediction, offering performance insights 

and suggesting avenues for future exploration. 
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1. INTRODUCTION 

Unexpected catastrophes such as earthquakes, cloud bursts, landslides, and floods are unforeseen 

events that inflict considerable amount of destruction and loss of life, costing billions of dollars each year. 

Changing weather patterns make it difficult to anticipate meteorological phenomena, and worldwide studies 

show that glaciers are retreating at an average pace of 10-15 meters per year as a result of climate change [1]. 

In a nutshell, Tiwari and Verma [2], outline how it begins with building a strong foundation by 

methodically gathering and analyzing past weather data. The complex study is conducted using a methodical 

approach intended to fully address the issues raised by cloud burst events. This entails a thorough analysis of 

significant factors to provide a detailed dataset that captures the varied and dynamic character of weather 

patterns in the area in question. To improve the system’s forecasting skills, the research attempts to use a 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Inf & Commun Technol  ISSN: 2252-8776  

 

Navigating predictive landscapes of cloud burst prediction approaches: insights … (Anil Hingmire) 

1147 

variety of characteristics, such as meteorological conditions, geographic variables, and climatic patterns [3]. 

This stage is essential to matching the intricate details of the unique conditions that define the region with the 

prediction model. 

Additional endeavors comprise crucial stages of preprocessing data and training the model, where 

exacting methods are employed to guarantee the calibre and dependability of the dataset, augmenting the 

resilience of the analysis that follows. To maximize forecast accuracy, the machine learning model is 

carefully trained using cutting-edge techniques [4]. Dimri et al. [5], the last group of tasks focuses on 

comparison analyses and assessment measures. Robust evaluation measures are used to thoroughly assess the 

developed effectiveness of system. A crucial part of the research is comparing the model’s predictions to past 

cloud burst events through a comparative analysis. Assessing the systems efficacy in practical scenarios and 

improving its predicting skills need careful consideration of this comparison element. 

India’s unique topography and climate render it susceptible to frequent cloud bursts, particularly in 

mountainous areas. Notable instances include the May 26, 2017, cloud burst in Tatalgaon and Bijrani, which 

demolished a home and killed eight domestic animals, and the August 14, 2017 event in Mangti and Malpa, 

which resulted in nine deaths, 18 missing people, and the loss of 51 animals. The following cloud burst on 

July 17, 2018, near Yamnotri, Uttarkashi, swept away a footbridge and seriously destroyed the Kali Kamli 

Dharamshala, demonstrating the terrible impact of natural disasters and the critical need for preparedness and 

mitigation techniques in susceptible places [6]. 

On July 19, 2018, Malari hamlet in Chamoli saw a devastating cloud burst that killed two people 

and damaged the Joshimath-Malari road. Padmalla-Faldiya and Mori tehsils in Uttarkashi saw even more 

devastation in August 2019, with 60 people killed, countless animals lost, and extensive property damage. By 

September, cloud bursts in Govindghat had caused considerable road damage, highlighting the critical need 

for comprehensive disaster planning in susceptible places [7]. 

The research on “Cloud burst Prediction” is essentially multifaceted, ranging from fundamental data 

collection and model development to rigorous training and evaluation, all of which are aimed at improving 

the overarching goal of improving the precision and relevance of cloud burst predictions within the 

designated geographic area. 
 

 

2. RELATED WORK 

The overview of current studies on cloud burst prediction systems may be found in the literature 

review that follows. The research included in this discussion concentrates on various approaches-from deep 

learning techniques to hardware-based systems-that aid in the comprehension and forecasting of cloud burst 

events in diverse geographical areas. 

Tiwari and Verma [2] explored the detrimental impact of cloud bursts in the Himalayan regions and 

underscore the inadequacies of traditional prediction methods. The authors propose a novel cloud burst 

predetermination system leveraging Arduino technology, incorporating a rain gauge, float switch, and 

submersible pump for real-time calculation of rainfall intensity. This cost-effective solution aims to 

overcome the limitations of conventional methods, providing a practical and efficient monitoring approach. 

Sivagami et al. [3] developed a cloud burst prediction model using deep learning, specifically gated 

recurrent unit (GRU) and long short-term memory (LSTM) networks. They applied predictive power score 

(PPS) to identify key features for these models. The dataset exhibited class imbalance, with 16 of 20 events 

being cloud bursts, a typical challenge in extreme event datasets. Sunil et al. [4] introduces “Predister,” 

designed for cloud burst prediction in hilly areas, emphasizing the critical importance of early warnings in 

preventing the loss of life and property. The system integrates environmental sensors, data science, and 

artificial intelligence to monitor atmospheric conditions. Timely alerts are issued based on abnormal 

conditions, showcasing the potential to save lives and property in remote and vulnerable areas. 

Dimri et al. [5] focus on cloud burst events in the southern range of the Indian Himalayas. Utilizing 

diverse data sources, including NASA’s MERRA dataset and IMD’s Rain Gauge stations, the study explores 

extreme precipitation patterns and large-scale factors contributing to cloud bursts. The paper provides a 

conceptual model for understanding these events, covering aspects such as precipitation patterns, orographic 

influences, and societal consequences. Reddy et al. [6] introduce a rainfall prediction model employing 

multiple linear regression (MLR) for Indian meteorological data. Emphasizing the significance of accurate 

rainfall predictions for industries, particularly agriculture, the research showcases the efficacy of the MLR-

based approach. By incorporating multiple meteorological parameters, the study enhances prediction 

accuracy, offering potential benefits for various industries reliant on weather forecasting. The integration of 

expert systems adds a layer of sophistication to the prediction model, contributing to its practical applicability 

in diverse sectors. 

The National Centre for Medium Range Weather Forecasting used a high-resolution WRF model to 

study the 2010 Leh cloud burst, which caused over 200 deaths in Ladakh. The 3 km model aligned with 
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TRMM satellite data, showing peak rainfall of over 4 cm in three hours. Analysis revealed the event resulted 

from a humid northwest flow capped by cooler, drier air, with instability triggered by a cloud cluster from 

Nepal [8]. Pabreja and Datta [9] demonstrated the use of k-means clustering on numerical weather prediction 

data to detect cloud burst signals 3-4 days in advance, using a case study of a cloud burst in Uttarakhand. 

Das et al. [10] analyzed the Shillagarh cloud burst of July 16, 2003, which lasted less than 30 

minutes and caused significant damage. Using the MM5 mesoscalmodel with nested domains (81-3 km 

resolution), the study successfully predicted rainfall 24 hours in advance but exhibited a location error of 

several kilometers. Lakshmi and Karthikeyan [11] studied K-means and spectral clustering approaches for 

cloud burst prediction. Their examination of specific humidity and relative humidity at various atmospheric 

pressure levels found that cloud bursts are most common around 925 hPa, whereas temperature data 

suggested development at 400 hPa, allowing for early identification of cloud burst events. 

Wang et al. [12] presented a study on the Zhujiatang Landslide in China that creates a framework 

for anticipating landslide deformation phases utilizing multisource data and machine learning. The findings 

show that the landslide’s deformation, which is most strong in the front and decreases towards the back, is 

closely related to rainfall patterns. The model uses the C5.0 decision tree to extract criteria, a graph 

convolutional network to anticipate stages, and the Morgenstern-Price approach to perform critical sliding. 

Overfitting concerns in C5.0, challenges in crucial sliding prediction with the Morgenstern-Price approach, 

and complicated knowledge representation difficulties in the random forest algorithm are among the 

limitations. 

The study by Chen [13] focuses on improvements in landslide prediction, specifically using cutting-

edge modeling strategies that include knowledge graph embedding. It discusses the rising frequency of 

landslides, which is made worse by climate change, and criticizes conventional forecasting techniques, which 

are frequently expensive and dependent on specialized knowledge. In order to increase forecast accuracy and 

make these methods more widely available, particularly for remote sensing applications, the authors suggest 

a more effective method for assessing possible landslide situations. Data-driven models have issues including 

overfitting, high dimensionality, and difficult feature selection, and they run the danger of oversimplifying 

landslide dynamics. 

Schmith et al. [14] uses historical daily precipitation data (1914-2010) and recent hourly records to 

investigate geographical variations in cloud burst frequency in Denmark. They define cloud burst days based 

on hourly thresholds and use a binary regression model to predict cloud burst probability from daily 

precipitation amounts, indicating greater frequency in western Jutland. Model validation demonstrates strong 

predictive capability, and the data indicates that regional frequency variations are due to spatial precipitation 

distribution rather than variances in the model’s predictive connection. 

Garg et al. [15] evaluated high-resolution datasets-Indian Monsoon Data Assimilation and Analysis 

(IMDAA) and IMERG-V06B-for identifying cloud burst occurrences in the Northwest Himalayas (NWH). 

IMDAA successfully detects 11 of 16 cloud bursts, exceeding standard India Meteorological Department 

(IMD) data in areas such as Jammu and Kashmir. IMERG-V06B identifies cloud bursts with a modest 

probability (33.33%-63.39%), but its performance increases with time-based modifications to 41.24%-

68.25%. While both datasets could monitor severe occurrences in NWH, their performance in difficult terrain 

remains unknown, underscoring the need for additional validation of cloud burst detection in mountainous 

places. 

Himalayan states like Uttarakhand, Himachal Pradesh, and Jammu and Kashmir are especially 

vulnerable to cloud bursts due to their rugged terrain and monsoonal patterns, leading to frequent loss of life 

and infrastructure damage. Sati [16] explores the impact of cloud burst-caused hazards in the Uttarakhand 

Himalaya, including flash floods and landslides, by examining processes, impacts, and mitigation options. 

The study uses field visits and case studies to illustrate severe human and property losses from occurrences 

such as the August 2017 cloud burst. The study underlines that, while natural disasters are unavoidable, 

proactive actions, such as avoiding development near rivers and streams and promoting reforestation, can 

lessen catastrophe severity. 

Karunanidy et al. [17] address cloud burst prediction in India by using a specific dataset and using 

machine learning methods. They consider temperature, wind speed, humidity, and cloud density in places 

prone to cloud bursts, such as the Himalayas. It tested multiple models and discovered that Cat Boost 

outperformed them all with 86.18% accuracy, proving machine learning’s ability to forecast extreme weather 

occurrences even with insufficient historical data. Saha and Bera [18] relates rainfall intensity-duration (I-D) 

thresholds to landslide occurrences in the Garhwal Himalaya, discovering that rainfall intensities of 0.45-0.50 

mm/hour over 48 hours might cause landslides, particularly when antecedent rainfall is 80 mm in 15 days. 

The study emphasizes the significance of early warning systems, climate assessments, and local participation, 

while also recommending future research areas on climate-driven threshold changes and vulnerability [18]. 
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Hunt and Dimri [19] explore how synoptic-scale circulation, especially extratropical western 

disturbances (WDs) and tropical depressions (TDs), affect landslide occurrences in the Upper Indus Basin 

(UIB) of the western Himalaya and Karakoram. Their research showed seasonal fluctuations in landslides, 

with a rate of 0.05 per day in winter, attributed mostly to WDs, which improve moisture movement and 

precipitation. Notably, WD intensity did not link with landslide likelihood, indicating that smaller-scale 

orographic precipitation may also be involved. In the summer, landslides increase to 0.11 per day, with TDs 

from central India accounting for 60%, illustrating the importance of monsoonal flows. This study advances 

our understanding of meteorological interactions and landslide hazards, assisting in the development of 

effective mitigation techniques. 

Singh and Pandey [20] study flash flood risk in Uttarakhand’s Upper Ganga Basin, a region prone to 

severe floods. They use GIS to analyze morphometric characteristics from SRTM DEM data and use the 

weighted sum approach (WSA), principal component analysis (PCA), and an integrated approach (IA) to 29 

sub-watersheds. Their findings demonstrate that PCA and IA generate equivalent vulnerability assessments 

when evaluated against historical flood occurrences from 2018 and 2019. The study reveals five densely 

inhabited sub-watersheds at high risk, confirming the IA method’s dependability for flash flood assessment 

and the efficacy of GIS and remote sensing in hilly areas. 

Mobini et al. [21] uses geographically precise property-level data to investigate the costs of an 

intense rain event that occurred on August 31, 2014, in Malmö, Sweden, with an emphasis on the interaction 

between pluvial flood damage and the built environment. The findings show that homes connected to 

combined sewage systems have much higher flood damage claims than those with separate systems, despite 

equal total costs, emphasizing the necessity for direct access to insurance data to improve future study. 

The “Cloud burst Prediction” research project employs advanced machine learning techniques, 

focusing on the analysis of historical meteorological data, including precipitation patterns, temperature 

variations, humidity, and air pressure changes. Vijaykumar et al. [22] examine the devastating floods  

in Kerala during the 2018 and 2019 monsoons, identifying anomalously warm sea temperatures and  

unstable atmospheric conditions as key factors in the unprecedented mesoscale cloud burst event of 2019.  

Chauhan et al. [23] apply extreme value distribution and the markov chain approach to forecast precipitation 

patterns in their study of hydrometeorological data from the Yamuna River Basin. While artificial 

intelligence approaches have limits, the markov chain model predicts rainfall with a 79.17% accuracy, 

emphasizing the need of understanding return times for drought and flood threats. 

Knös et al. [24] explores the development of a cloud burst catastrophe model in Jönköping, Sweden, 

using rainfall intensity as a direct hazard measure to assess urban vulnerability and establish a time-sensitive 

vulnerability curve, suggesting potential applicability in various geographical contexts despite uncertainties 

due to limited loss data. From 2001 to 2018, more than 5,000 water-related disasters (WRDs), including 

floods and droughts, accounted for 73.9% of all natural disasters, killing over 300,000 people and causing 

$1.7 trillion in economic damage worldwide. The frequency and intensity of these disasters have increased in 

the twenty-first century, with approximately $600 billion lost owing to over 2,900 floods and 290 droughts, 

which have had a severe impact on the health of 2.8 billion people, including nearly 300,000 flood injuries 

[25]. Cloud bursts, which feature quick and strong rainfall, can cause flash floods in metropolitan areas due 

to insufficient drainage capacity. To solve this, Hingmire and Bhaladhare [26] created an IoT-based urban 

flood management system with fuzzy logic that adapts in real time to rainfall intensity, water level, and flow 

rate. Their method reduced water levels by up to 73.9% during extreme conditions, indicating that it is a 

potential technique for mitigating cloud burst-related flooding in smart cities. 

 

 

3. MOTIVATIONS AND PROBLEM STATEMENT 

Despite the growing frequency of cloud bursts due to climate change, there is a lack of effective 

forecasting and monitoring systems that can predict these events and mitigate their impacts. This study aims 

to resolve this gap by developing a predictive model that utilizes meteorological data and advanced analytics 

to forecast cloud bursts more accurately. 

By focusing on understanding the underlying causes and patterns of cloud bursts, this study aims to 

create a framework that enhances early warning systems and informs disaster preparedness initiatives. 

Ultimately, the goal is to improve community resilience to extreme weather events, ensuring that vulnerable 

populations are better equipped to respond to the challenges posed by cloud bursts. 

 

 

4. IMPLEMENTATION METHODOLOGY 

This study investigates the predictive accuracy of four machine learning algorithms-linear 

regression, support vector machine (SVM), random forest and decision tree-in predicting cloud burst events. 

A comprehensive study in which meteorological data was systematically collected from a curated and 
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authoritative from Kaggle. The research focuses on the rigorous acquisition and analysis of this dataset, 

exploring its potential applications in diverse domains. By leveraging the wealth of information available on 

this meteorological platform, we aim to contribute valuable insights to the scientific community and advance 

the understanding of climatic patterns, ultimately fostering innovations in weather-related applications and 

decision-making processes. Sudden atmospheric changes pose challenges, and the spatial-temporal resolution 

of the model requires region-specific adaptations for optimal performance. The features selected to train the 

model are minimum temperature, rainfall, wind-gust speed, humidity 9am, humidity 3pm, pressure 9am, 

pressure 3pm, cloud 9am, cloud 3pm. 

The dataset was split into training (80%) and testing (20%) sets to evaluate generalizability. Each 

model was implemented using Python’s scikit-learn library, and hyperparameters were optimized through 

grid search with five-fold cross-validation on the training data to ensure each algorithm’s optimal 

performance. 

 

a)  Model selection and experimental setup 

Algorithms: 

− Logistic regression was selected as a baseline linear model to understand its predictive performance with 

a probabilistic approach to classification. In the realm of cloud burst prediction, this method assumes that 

there is a direct and proportional relationship between different weather variables (such as temperature, 

humidity, and wind speed) and the likelihood of cloud burst events occurring. When such a linear 

relationship does exist, linear regression can provide reasonably accurate predictions, with an achievable 

accuracy range typically falling between 50% to 60%. 

− Random forest was used for its ensemble-based architecture, which enhances prediction accuracy through 

multiple decision trees and mitigates overfitting. 

− SVM was implemented for its margin maximization, offering an optimal hyperplane for binary 

classification of cloud burst and non-cloud burst events. 

− Decision tree provides an interpretable model to assess the impact of individual features on cloud burst 

prediction. 

Implementation: 

− The dataset was split into training (80%) and testing (20%) sets to evaluate generalizability. 

− Each model was implemented using Python’s scikit-learn library, and hyperparameters were optimized 

through grid search with five-fold cross-validation on the training data to ensure each algorithm’s optimal 

performance. 

 

b)  Model training and hyperparameter tuning 

Each algorithm was trained on the training set, with the following hyperparameters fine-tuned for 

optimal accuracy: 

− Logistic regression: regularization strength was varied to find an optimal balance between underfitting 

and overfitting. 

− Random forest: number of trees and maximum depth were tuned to ensure robust feature selection while 

avoiding excessive computational cost. 

− SVM: the kernel function and regularization parameter C were optimized to find the best hyperplane for 

classification. 

− Decision tree: maximum depth and minimum samples per split were adjusted to control model 

complexity and enhance generalizability. 

The results of each model, including metric scores and classification accuracy, were compared to 

identify the most effective machine learning approach for cloud burst prediction. Additionally, each model’s 

performance was analyzed in terms of computational efficiency and interpretability, providing insights into 

the practical feasibility of each approach in real-time prediction systems. 

 

 

5. RESULTS AND DISCUSSION 

We obtained the confusion matrix of trained model, as depicted in Figure 1, serves as a crucial tool 

for evaluating the performance of a cloud burst prediction model. Based on the Figure 1(a) confusion matric 

of random forest model, the model achieves a high True Positive rate and relatively low false positive and 

false negative rates. It has a good balance of correct predictions in both positive and negative classes, 

indicating it performs well on both. Figure 1(b) shows that the SVM has the highest true positive rate, which 

suggests it excels at identifying positive cases. However, it has a relatively high false negative rate, which 

might indicate it occasionally fails to identify actual positives correctly. It has the lowest false positive (FP), 
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which suggests minimal over-prediction. Figure 1(c) shows that the logistic regression has significantly lower 

TP and TN values, likely indicating it struggles with overall prediction accuracy in this dataset. The low true 

positive (TP) suggests it fails to detect positives effectively, and a low true negative (TN) indicates similar 

issues with negatives. Figure 1(d) shows that the decision tree has a high TP, but the highest FP among the 

models. This suggests that while it captures positive cases reasonably well, it also misclassifies negatives as 

positives more frequently than others. 
 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 1. Confusion matrix of models; (a) random forest model, (b) support vector machine model,  

(c) logistic regression model, and (d) decision tree model 

 

 

Figure 2 shows a Winrose chart of wind speed illustrates the increasing magnitude of the wind 

speed. The Winrose chart provides a comprehensive and visually intuitive overview of the prevailing weather 

conditions, enabling users to quickly grasp the overall weather pattern. 

 

 

 
 

Figure 2. Winrose chart 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 14, No. 3, December 2025: 1146-1155 

1152 

Figure 3 shows a heat map that provides a visual snapshot of the correlations among key weather 

parameters, shedding light on their interconnectedness and potential implications for cloud burst occurrences. 

Temperature’s influence is discerned through its correlations with other factors, indicating that higher 

temperatures may contribute to cloud burst events. Crucial to cloud burst likelihood, humidity levels are 

showcased in the heatmap, highlighting their interplay with various parameters. 

Figure 4 shows a dual-axis chart that merges cloud burst occurrences with key weather parameters, 

offering a comprehensive view of their interrelationships over time. Temperature trends, humidity levels, 

wind speed patterns, cloud cover variations, atmospheric pressure, and precipitation intensity are all visually 

represented. 
 

 

 
 

Figure 3. Heat map for correlations among key weather parameters 
 
 

 
 

Figure 4. Cloud burst occurrences of random forest 
 

 

Table 1 shows a comparison of models based on accuracy, recall, and F1-score. The random forest 

model performs best, with high accuracy (0.9510) and recall (0.8734) for the positive class, resulting in an 

F1-score of 0.9106. While the SVM has the best positive class accuracy (0.9766), its lower recall (0.8440) 

suggests occasional misses. Logistic regression scores poorly across all criteria, whereas decision tree 

achieves reasonable balance but falls short of random forest and SVM. Thus, random forest produces the 

most consistent results for this dataset. 
 

 

Table 1. Comparative analysis of implemented models 
Models  Precision Recall F1-values 

class Positive Negative Positive Negative Positive Negative 

Random forest 0.9510 0.5119 0.8734 0.7469 0.9106 0.6074 

Support vector machine 0.9766 0.3610 0.8440 0.8132 0.1560 0.9055 

Logistic regression 0.8530 0.1488 0.6979 0.3051 0.7677 0.2000 

Decision tree 0.8606 0.5368 0.8680 0.5209 0.8643 0.5287 
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Table 2 shows the comparison of the accuracy for each prediction model. The random forest model 

achieves the highest accuracy at 85.43%, closely followed by the SVM at 84.10%. The decision tree 

performs moderately well with an accuracy of 78.93%, while the logistic regression model has the lowest 

accuracy at 64.00%. 
 

 

Table 2. Performance analysis of models 
Model name Accuracy 

Random forest 85.43% 

Support vector machine 84.10% 

Logistic regression 64.00% 
Decision tree 78.93% 

 

 

6. CONCLUSION 

The study demonstrates that the random forest model, with an accuracy of 85.43%, out performs 

other machine learning approaches (SVM, decision tree, and logistic regression) in predicting cloud burst 

events. The confusion matrix analysis highlights random forest’s effective balance of true positives and true 

negatives, minimizing both false positives and false negatives. Its strong precision and recall values in the 

positive class reinforce its ability to accurately detect potential cloud bursts while maintaining a moderate 

error rate for negative cases. SVM, with a similar high accuracy (84.10%), shows excellent true positive rates 

and low false positives, though it has a slightly higher false negative rate, suggesting some missed positives. 

Conversely, logistic regression struggles significantly with an accuracy of 64.00%, making it unsuitable for 

this application. The decision tree achieves moderate accuracy (78.93%) but suffers from high false positives, 

which can impact reliability. Overall, random forest emerges as the most balanced and reliable model for 

cloud burst prediction in this study, providing a robust tool for enhancing early warning systems. Future 

research could enhance prediction accuracy by exploring additional ensemble methods, hyperparameter 

tuning, and using larger, diverse datasets with real-time weather data for improved model generalization. 

Incorporating deep learning techniques and deploying models within real-time systems in collaboration with 

meteorological agencies could strengthen cloud burst prediction strategies and public safety. 
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