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 U-Net is a well-known method for image segmentation, and has proven 

effective for a variety of segmentation challenges. A deep learning 

architecture for segmenting hand gestures in parkinson’s disease is explored 
in this paper. We prepared and compared four custom models: a simple  

U-Net, a three-layer U-Net, an auto encoder-decoder architecture, and a  

U-Net with dense skip pathways, using a custom dataset of 1,000 hand 

gesture images and their corresponding masks. Our primary goal was to 
achieve accurate segmentation of parkinsonian hand gestures, which is 

crucial for automated diagnosis and monitoring in healthcare. Using metrics 

including accuracy, precision, recall, intersection over union (IoU), and dice 

score, we demonstrated that our architectures were effective in delineating 
hand gestures under different conditions. We also compared the performance 

of our custom models against pretrained deep learning architectures such as 

ResNet and VGGNet. Our findings indicate that the custom models 

effectively address the segmentation task, showcasing promising potential 

for practical applications in medical diagnostics and healthcare. This work 

highlights the versatility of our architectures in tackling the unique 

segmentation challenges associated with parkinson’s disease research and 

clinical practice. 
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1. INTRODUCTION 

Parkinson’s disease affects millions globally, significantly impacting motor skills and quality of life. 

With 10 million individuals affected by parkinson’s disease, innovative solutions are needed to manage 

symptoms and improve independence. Our research leverages deep learning, particularly U-Net,  

for accurate hand gesture segmentation, aiding therapeutic interventions and disease monitoring. The U-Net 

architecture, proposed in [1] has two primary pathways: the contracting path (encoder) and the expansion 

path (decoder). Similar to a convolutional network, the contracting path extracts classification information 

while reducing spatial dimensions. Alternatively, the expansion path employs up-convolutions and 

concatenates features from the contracting path, increasing spatial resolution and enabling the network to 

refine classification details. U-Net is renowned for its robustness in biomedical image segmentation, 

especially when dealing with limited annotated data. Enhancements to the U-Net include Swin-U-Network, 

introduced by Cao et al. [2], which integrates swin transformers for improved contextual information 

extraction, demonstrating superior performance in multi-organ and cardiac segmentation compared to 

traditional models. A comprehensive review by Siddique et al. [3] highlights U-Net’s significant impact on 

medical imaging and notes a growing volume of research output since 2017. Numerous studies have explored 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Inf & Commun Technol  ISSN: 2252-8776  

 

Comparative analysis of u-net architectures and variants for hand … (Avadhoot Ramgonda Telepatil) 

973 

modifications to U-Net for various applications. For instance, Ghaznavi et al. [4] compared U-Net variants 

for segmenting inland water bodies, while Anand et al. [5] enhanced the segmentation of dermoscopic skin 

lesions with a modified architecture, achieving high accuracy. The reduced U-Net, developed by Arun et al. 

[6], maintains high accuracy while simplifying model complexity. Rehman et al. [7] created BU-Net for 

brain tumour segmentation, achieving notable accuracy improvements, and Lu et al. [8] introduced half-

UNet, which significantly reduces computational requirements while retaining accuracy. These findings 

underscore U-Net’s adaptability and effectiveness across diverse applications, including diabetic retinopathy 

[9], road segmentation [10], liver image segmentation [11], and dental imaging [12]. UNet-based 

segmentation achieved high accuracy on the Fish4Knowledge dataset, with potential for further improvement 

using advanced feature extractors [13]. Newer models such as UNet++ [14] and Res-UNet [15] have refined 

segmentation capabilities further by enhancing feature fusion and incorporating attention mechanisms. 

Recent studies demonstrate U-Net’s applicability in hand gesture recognition (HGR), particularly for patients 

with parkinson’s disease (PDP). Sreekumar and Geetha [16] evaluated U-Net for hand segmentation in 

complex backgrounds, achieving an impressive accuracy of 98% on the Egohands dataset and 90% on the 

GTEA dataset. Similarly, Dutta et al. [17] integrated U-Net with VGG16 for HGR, attaining a remarkable 

recognition rate of 98.97%, demonstrating the model’s effectiveness in identifying gestures across multiple 

classes. Mohan et al. [18] further explored various U-Net variants for underwater image segmentation, with 

VGG-UNet achieving over 98% accuracy in identifying regions of interest (RoI), highlighting its ability to 

extract significant features from challenging scenes. Pu et al. [19] enhanced U-Net for chest X-ray 

segmentation, achieving a Dice coefficient of 0.973 and 0.983 accuracy, marking a significant advancement 

in the analysis of X-ray images. Huang and Wang [20] introduced DFP-UNet for brain tumor segmentation, 

utilizing DenseNet121 to achieve improved accuracy.  

Baruah et al. [21] employ an attention-based U-Net for brain tumor segmentation, effectively 

addressing gliomas’ heterogeneity using the BraTS dataset. Similarly, Kumar et al. [22] demonstrate U-Net’s 

success in lung nodule segmentation using CT images from the LIDC-IDRI dataset, achieving high accuracy 

and dice similarity coefficient (DSC) scores. Jing et al. [23] introduce Mobile-UNet for fabric defect 

detection, leveraging a lightweight architecture and median frequency balancing to address challenges like 

data imbalance and computational efficiency. These studies build upon the foundation laid by  

Shelhamer et al. [24], whose fully convolutional network approach set benchmarks in semantic segmentation 

and inspired numerous advancements in the field. In the realm of patient care, Bernardini et al. [25] 

developed a mobile app for remote monitoring of parkinson’s disease patients (PDP), enabling real-time 

status reporting and intervention. Cardenas et al. [26] presented AutoHealth, an IoMT system that employs 

wearables and AI chatbots for continuous monitoring and personalized care solutions. Ijaz et al. [27] focused 

on lightweight architectures like Mobile U-Net and EfficientU-Net for embedded skin lesion segmentation, 

delivering improved performance suitable for resource-constrained environments. Lastly, Popat et al. [28] 

enhanced U-Net with additional upsampling boxes in Box-U-Net, improving segmentation metrics such as 

the Jaccard coefficient. Akter et al. [29] enhance U-Net for skin lesion segmentation by integrating a pre-

trained Xception encoder. This approach achieves 93.39% accuracy and a dice coefficient of 90.56%, 

showcasing improved diagnostic performance through transfer learning. The subsequent sections will explore 

the theoretical foundations of hand gesture segmentation within a PDP assistance system, detailing the 

methodology for developing the segmentation system, including dataset preparation and U-Net model 

configurations. Following the discussion of experimental validation, we will examine the results from 

training U-Net models on selected datasets. Finally, insights will be provided on the study’s findings, along 

with proposed future directions for advancing hand gesture segmentation within PDP systems, highlighting 

areas for further research and development. 

 

 

2. BACKGROUND THEORY 
Parkinson’s disease is a neurological disorder [30]. A patient with involuntary movements like 

tremors, stiffness, and balance and coordination challenges often needs the assistance of caregivers to 

manage daily tasks [31]. Caregivers may find it difficult to monitor these patients continuously. While 

various technologies, including wearable devices that monitor activities and symptoms, have been created to 

support individuals with PD, many existing assistive technologies do not fully meet the unique needs of these 

patients. In order to resolve these issues, a vision-based system utilizing HGR through deep learning methods 

is urgently needed. Effective segmentation of hand gestures is crucial as it improves the accuracy and 

reliability of subsequent stages, such as gesture classification. This approach aims to enhance the quality of 

care and support provided to individuals with PD. In this paper, we leverage the adaptable U-Net architecture 

to investigate multiple customized variants designed for precise segmentation of hand gestures affected by 

parkinson’s disease. These variants include: 

 



                ISSN: 2252-8776 

Int J Inf & Commun Technol, Vol. 14, No. 3, December 2025: 972-982 

974 

2.1.  Simple U-Net architecture 

The field of image segmentation has witnessed remarkable progress with the introduction of U-Net 

and its numerous architectural variants. Originally developed for biomedical image segmentation, U-Net’s 

encoder-decoder framework with skip connections has become a foundation for diverse segmentation tasks. 
 

2.2.  U-Net with modified layers 

An enhanced version of U-Net is features with 3 layers architecture. Three convolutional layers per 

block, with ReLU activation and batch normalization in encoder. The bottleneck for advanced feature 

extraction. The decoder Mirrors the encoder structure with three layers per block, concatenating features 

from the encoder. Finally, the 1×1 convolution produces the segmentation map. 
 

2.3.  Encoder-decoder architecture 
An architecture focusing on robust feature extraction through an encoder-decoder framework, 

optimized for capturing subtle variations in hand gestures Starting with a convolutional layer that reduces the 

input to 256×256×32, it uses max pooling layers to downsample to 32×32×256. The decoder restores 

dimensions back to 256×256×32, culminating in a final convolution with a sigmoid activation function to 

produce a 256×256×1 output. 
 

2.4.  U-Net with dense skip pathways 
Incorporates dense skip connections to facilitate information flow across different scales of feature 

maps, improving hand gesture localization accuracy. The advanced U-Net variant uses dense blocks to 

improve the feature propagation and capture fine details. Its encoder-decoder structure with dense 

connections enhances segmentation accuracy with a 1×1 final output layer generating the final mask. 

A custom dataset of hand gesture images and ground truth masks is used to train and evaluate each 

modified U-Net architecture. Accuracy, precision, recall, intersection over union (IoU), and dice coefficient 

are employed to assess segmentation performance and model effectiveness. Through this research, we aim to 

demonstrate the effectiveness of these modified U-Net architectures in enhancing the segmentation accuracy 

of parkinsonian hand gestures. In particular, deep learning may improve diagnosis and treatment of 

neurodegenerative diseases like parkinson’s by improving medical image analysis. Contracting and 

expansive paths are the two main components of the U-Net architecture. CNN blocks are employed in the 

contracting path, each consisting of 2 consecutive 3×3 convolutions followed by ReLU activation and 

maximum pooling. This sequence is repeated multiple times to extract features effectively. The innovative 

aspect of U-Net lies in its expansive path, where each stage involves upsampling the feature map using 2×2 

up-convolutions. Following the cropping and concatenation of the contracting map, the upsampled map is 

convolutioned two times with ReLU activation. Finally, a 1×1 convolution reduces the feature map to the 

desired number of channels for segmentation output. The cropping step is crucial as it eliminates edge pixels 

with minimal contextual information, resulting in a U-shaped network structure. This design facilitates the 

propagation of contextual information across the network, enabling effective object segmentation by utilizing 

context from a broader surrounding area. The network’s energy function is given by (1) and (2), 
 

𝐸 =  ∑ 𝑤(𝑥) log (𝑝𝑘(𝑥)(𝑥)) (1) 

 

𝑝𝑘 =
𝑒𝑥𝑝(𝑎𝑘(𝑥))

∑ 𝑒𝑥𝑝 (𝑎𝑘 (𝑥)′)𝑘
𝑘′

 (2) 

 

here 𝑝𝑘  represents the pixel-wise SoftMax function applied over the final feature map, 𝑎𝑘 denotes the 

activation in channel 𝑘 . 
 

 

3. METHOD 

3.1.  Dataset preparation 

Due to the unavailability of suitable public datasets for HGR in PDP, we formulated the dataset 

which includes images of hand gestures that are specifically formulated for ease of execution by PDP. Each 

gesture image is paired with an equivalent ground truth mask, which provides pixel-wise annotations for the 

performed gesture. Each image in the dataset is grayscale and has a resolution of 256×256 pixels. Examples 

of these images and their corresponding masks are shown in Table 1. 
 

3.1.1. Hand gesture images 

The practical and accessible dataset play a vital role in segmentation activity. The dataset was 

captured using a standard USB webcam to support a low-cost and accessible setup. Images were recorded 
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under consistent lighting and background conditions to ensure data uniformity. This approach helps reduce 

variability and improves the reliability of segmentation results. Such a setup also reflects real-world 

deployment scenarios. 

The practical and accessible dataset play a vital role in segmentation activity. The dataset was 

captured using a standard USB webcam to support a low-cost and accessible setup. Images were recorded 

under consistent lighting and background conditions to ensure data uniformity. This approach helps reduce 

variability and improves the reliability of segmentation results. Such a setup also reflects real-world 

deployment scenarios. 
 

3.1.2. Ground truth masks 

Binary masks corresponding to each hand gesture image, where gesture regions are labelled 

distinctly from the background. Hand gesture images were recorded using a USB camera to ensure both 

accessibility and practicality. This approach provided real-time, high-resolution images suitable for our 

segmentation models. We made efforts to standardize the image quality and lighting conditions to minimize 

variability. 
 

 

Table 1. Independent data set of hand gesture with meaning and posture with ground truth masks 
Sr. No. Posture Ground truth mask Meaning 

1 

  

Indicates the need for water 

2 

  

Signifies hunger 

3 

  

Represents a natural call 

4 

  

need to use the toilet 

5 

  

Calls for attention 

6 

  

Indicates a desire to move 

7 

  

Signifies turning the TV on or off 

8 

  

Represents agreement 

9 

  

Indicates happiness 

 

 

3.2.  Model architecture 

This section outlines the models implemented for hand gesture segmentation in PDP. It describes the 

layered architecture implementedfor the segmentation operation. It first deals with practical details and 

implementation of the standard U-Net architecture. Followed to this, the modifications in standard U-Net 

such as variation in layers, the implementation of the encoder decoder structure is explored. 
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3.2.1. U-Net architecture 
The basic U-Net model is designed for processing grayscale images of size 256×256 and includes: 

 Encoder: composed of convolutional layers with max pooling for down sampling. Each block consists of 

two 3×3 convolutions with ReLU activation and batch normalization. 

 Bottleneck: contains convolutional layers for deep feature extraction. 

 Decoder: utilizes transposed convolutions for Upsampling and incorporates skip connections from the 

encoder to enhance segmentation. 

 Output layer: A 1×1 convolution generates the final segmentation mask. 

The contracting path captures high-level features through increasing filter counts (16, 32, 64, 128, 256), 

while the expansive path up samples features maps and merges them with corresponding encoder features. 

This process culminates in a single-channel output representing the segmented result. 

 

3.2.2. U-Net with 3 layers 

An enhanced version of U-Net features: 

 Encoder: three convolutional layers per block, with ReLU activation and batch normalization. 

 Bottleneck: three convolutional layers for advanced feature extraction. 

 Decoder: mirrors the encoder structure with three layers per block, concatenating features from the encoder. 

 Output layer: a 1×1 convolution produces the segmentation map. 

This model processes grayscale images of size 256×256, with filter counts progressively increasing from 64 

to 256. The decoder reconstructs image dimensions back to 256×256, using a final convolutional layer with a 

single filter and sigmoid activation to produce a 256×256×1 output. 
 

3.2.3. Encoder-decoder model 
This convolutional autoencoder model also processes grayscale images of size 256×256: 

 Encoder: a series of convolutional layers for down sampling and feature extraction. 

 Bottleneck: additional convolutional layers for feature processing. 

 Decoder: employs upsampling layers and skip connections to reconstruct the image. 

 Output layer: a final convolutional layer generates the segmentation mask. 

Starting with a convolutional layer that reduces the input to 256×256×32, it uses max pooling layers to 

downsample to 32×32×256. The decoder restores dimensions back to 256×256×32, culminating in a final 

convolution with a sigmoid activation function to produce a 256×256×1 output. 
 

3.2.4. U-Net with dense skip pathway 

This advanced U-Net variant enhances feature propagation and segmentation accuracy: 

 Encoder: contains dense blocks in which each convolutional layer receives input from its predecessors. 

 Dense blocks: enhance feature propagation and capture intricate details. 

 Decoder: utilizes dense connections and concatenates features from the encoder. 

 Output layer: a 1×1 convolution produces the final segmentation mask. 

The encoder captures hierarchical features through four convolutional blocks (64 to 512 filters) with max 

pooling, while the decoder uses upsampling and skip connections to refine gesture segmentation.  

These models enhance segmentation accuracy for PDP, aiding in better therapy and monitoring. 
 

3.3.  Evaluation metrics 

Different evaluation metrics are used to assess the performance of image segmentation models. Each 

metric provides insights into different aspects of the segmentation quality. The following metrics were used: 
 

3.3.1. Dice coefficien 

The dice coefficient, additionally known as the DSC, measures the overlap among the expected 

segmentation masks and the ground truth mask. It is beneficial for evaluating the overall performance in 

situations with imbalanced training. Mathematically is represented as, 
 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 .|𝐴 ∩𝐵|

|𝐴|+ |𝐵|
                                                                                                                          (3) 

 

where,  

 |𝐴 ∩ 𝐵| = Number of pixels in the intersection of the predicted mask 𝐴 and  the ground truth mask 𝐵 

 |𝐴| = 𝑁umber of pixels in the predicted mask 𝐴 and |𝐵| = 𝑁umber of pixels in the ground truth mask 𝐵 

The range of these metrics is from 0 to 1, where a value of 0 indicates no overlap or accuracy, and a value of 

1 represents perfect overlap or complete accuracy. 
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3.3.2. IoU 

IoU, also known as the Jaccard Index, evaluates the quality of the segmentation by comparing the 

intersection and union of the predicted and ground truth masks. It is widely used for its simplicity and 

effectiveness in evaluating segmentation quality. 
 

      𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 =  
|𝐴 ∩𝐵|

|𝐴 ∪𝐵|
  (4) 

 

Where,  

 |𝐴 ∩ 𝐵| =  Number of pixels in the intersection of the predicted mask 𝐴 and the ground truth mask 𝐵 

 |𝐴 ∪ 𝐵| =  Number of pixels in the union of the predicted mask 𝐴 and  the ground truth mask 𝐵 

The metrics range from 0 to 1, where 0 signifies no overlap and 1 denotes perfect overlap. 

 

3.3.3. Pixel accuracy 

Pixel accuracy is a measure of how many pixels are correctly classified out of all the pixels in the 

image. By measuring the performance of the model across the entire image, it can be used to assess how well 

the model is performing. Pixel accuracy is a measure of how many pixels are correctly classified from  

the total number of pixels. An overall measure of the model’s performance across the entire image is 

provided by it. 
 

        𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

 

3.3.4. Precision and recall 
Precision and recall provide deeper insights into the model’s accuracy and its ability to detect 

positive instances. Precision measures the proportion of true positive predictions among all positive 

predictions made by the model. It is useful for understanding the accuracy of positive classifications. 
 

           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

Recall measures the proportion of true positive pixels among all actual positive pixels. It reflects the model’s 

ability to detect positive instances. 
 

                     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

 

Where, TP is the number of correctly classified foreground pixels. TN is number of correctly classified 

background pixels, FP is number of backgrounds incorrectly classified pixels and FN is incorrectly classified 

background pixels. These metrics provide a comprehensive view of the model’s performance in segmenting 

images, helping to evaluate both the quality of the segmentation and the model’s effectiveness in 

distinguishing between different classes. 

 

3.4.  Experimentation 

The experimental steps followed in the segmentation process for the parkinson’s disease patients 

hand gesture (PDP-HG) segmentation system are outlined as follows: 

 

3.4.1. Dataset preparation 

A dataset of PDP hand gestures was created, simulating potential neurological deficits. This dtatset 

included 1000 hand gesture images. These images are categorized into 9 different classes and are as shown in 

Table 1. This dataset includes original hand gesture images and their corresponding segmentation masks. 

 

3.4.2. Dataset splitting 
The dataset splitting is very important in deep learning to evaluate how well the model works to 

new, unseen data. It is helpful for model to learn the patterns, fine tuning to work effieciently. The dataset 

was split into training, testing, and validation subsets to ensure effective model training and evaluation. This 

partitioning helps assess U-Net variants on unseen data for reliable performance. 
 

3.4.3. Model configuration 

The U-Net model and its variants-including U-Net, U-Net with 3 layers, encoder-decoder, and  

U-Net with dense skip connections-were configured. This involved defining the network architecture and 

implementing specific modifications tailored to the segmentation task. 
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3.4.4. Performance metrics calculation 
Performance metrics, as detailed in section 3.3., were computed, including accuracy, recall, 

precision, IoU, and dice score. A comprehensive evaluation of the models’ capability to identify and 

delineate hand gestures is provided by these metrics. 
 

3.4.5. Model comparison with pretrained models 

Pretrained models, such as ResNet and VGGNet, were applied to the dataset. The results from these 

models were used for comparison with the performance of the implemented models. Hand gesture 

segmentation for parkinson’s patients was implemented using U-Net and its variants on Google Colab with 

an NVIDIA T4 GPU, leveraging a custom dataset. 
 

 

4. RESULT AND DISCUSSION 

The U-Net model and its various variants were evaluated on a self-generated hand gesture image 

dataset, as outlined in section 3.1. To train the models, 32 batches were divided into 50 epochs. The model 

accuracy and model loss are important parameters in deep learning. The performance of the U-Net 

architecture is illustrated in Figure 1. It presents the overall performance of the U-Net architecture during 

training and validation phases in form of model accuracy and model loss. It shows these parameters changes 

over 50 epochs. Specially Figure 1(a) the accuracy trend and Figure 1(b) the loss progreesion. From the 

graphs, it is observed that the training loss achieved was 0.20, with a corresponding training accuracy of 0.90. 

On the validation dataset, the model yielded a validation loss of 0.2717 and a validation accuracy of 0.8756. 

The performance of modified U-Net architecture in form of the model’s accuracy and loss 

throughout the training and validation phases across various 50 epochs is shown in Figure 2. Further, the 

performance metrics of the modified U-Net architecture are illustrated in Figures 2(a) and 2(b). The results 

indicate that the model achieved a training loss of 0.2853 and an accuracy of 0.8629, while the validation loss 

was 0.2649 with a corresponding accuracy of 0.8741. The encoder decoder model performance in form of 

correct predictions of segmentation mask along with he errors between models predicted output and actual 

target value in the form of model accuracy and model loss is illustrated in Figure 3. As shown in Figures 3(a) 

and 3(b), the model achieved a training loss of 0.0198 and an accuracy of 0.9541, while the validation loss 

was 0.0371 with a validation accuracy of 0.9328. 

Figure 4 illustrates the overall performance of the modified U-Net architecture with dense skip 

connections during training and validation across 50 epochs. It provides a comprehensive view of how the 

model’s accuracy and loss evolved throughout the learning process. As shown in Figure 4(a) and 4(b), the 

model attained a training loss of 0.2403 and an accuracy of 0.8895, with a validation loss of 0.2076 and a 

validation accuracy of 0.9055.  Table 2 displays the performance metrics for each model, including accuracy, 

precision, recall, IoU, and dice score based on the testing dataset.  
 

 

  
(a) (b) 

 

Figure 1. Model performance for U-Net architecture over the training and validation datasets  

across the epochs (a) model accuracy and (b) model loss 
 

 

Table 2. Performance evaluation of different segmentation models 

Model name 
Evaluation parameters 

Accuracy Precision Recall IoU Dice 
U-Net architecture 93.61% 0.88 0.92 0.82 0.9 

Modified U-Net architecture 89.49% 0.83 0.85 0.72 0.83 
Autoencoder decoder architecture 95.71% 0.94 0.92 0.87 0.93 
U-Net with dense skip connections 92.88% 0.89 0.89 0.8 0.88 

Pretrained model with ResNet 88.13% 0.82 0.8 0.69 0.81 
Pretrained model with VGGNet 94.62% 0.9 0.91 0.85 0.91 
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(a) (b) 

 

Figure 2. Model performance for modified U-Net architecture over the training and validation datasets across 

the epochs (a) model accuracy and (b) model loss 
 

 

  
(a) (b) 

 

Figure 3. Model performance for encoder decoder architecture over the training and validation datasets 

across the epochs (a) model accuracy and (b) model loss 

 

 

  
(a) (b) 

 

Figure 4. Model performance for modified U-Net architecture with dense skip connections architecture  

over the training and validation datasets across the epochs (a) model accuracy and (b) model loss 

 
 

The autoencoders decoder architecture outperforms all other models across key metrics, 

demonstrating the highest overall effectiveness in segmentation tasks. With an accuracy of 95.71%, it excels 

in correctly classifying pixels and achieves the highest precision (0.94), recall (0.92), IoU (0.87), and dice 

score (0.93). This indicates exceptional performance in both identifying and delineating object pixels.  

The standard U-Net architecture follows closely with a 93.61% accuracy, high precision (0.88), recall (0.92), 

IoU (0.82), and dice score (0.90), showing strong performance but slightly behind the autoencoder decoder. 
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The Modified U-Net architecture performs the least favorably, with an accuracy of 89.49%, and lower scores 

across precision (0.83), recall (0.85), IoU (0.72), and dice (0.83), suggesting that its modifications may have 

reduced its overall effectiveness. The U-Net with dense skip connections shows robust performance with a 

92.88% accuracy, good precision (0.89), recall (0.89), IoU (0.80), and dice score (0.88). Although it benefits 

from dense skip connections, it does not match the autoencoder decoder’s performance. Overall, the 

autoencoder decoder architecture is the most effective model for segmentation in this experiment, providing 

superior results in accuracy, precision, recall, IoU, and dice score. 

Custom segmentation models outperform pretrained ResNet and VGGNet in accurately segmenting 

hand gestures for parkinson’s patients. While the autoencoder-decoder architecture achieved the highest 

accuracy at 95.71%, surpassing both pretrained models, the standard U-Net also demonstrated robust 

performance with an accuracy of 93.61%. In contrast, the pretrained ResNet model underperformed with an 

accuracy of 88.13%, indicating challenges in effectively identifying and segmenting gestures. The VGGNet 

model fared better, achieving an accuracy of 94.62%, but still fell short compared to the best-performing 

custom architectures. This suggests that while pretrained models can provide a solid foundation, custom-

designed architectures are better suited for the specific hand gesture segmentation in this clinical context.  

The results are organized into a comprehensive figure as shown in Figure 6. The first model assessed is the 

standard U-Net, next we examined a modified U-Net with three layers following this, we analyzed an 

encoder-decoder model, lastly a U-Net variant with dense skip connections, an advanced architecture that 

integrates dense connections between the encoder and decoder. Each row in the table provides a comparative 

view of the ground truth masks alongside the predicted masks from these models, highlighting the 

effectiveness and performance differences across the different architectural approaches. This structured 

comparison allows for a clear assessment of how each model variant performs relative to the others and the 

ground truth. 

 

 

 
 

Figure 6. Comparison of ground truth and predicted masks for various deep learning models 

 

 

5. CONCLUSION 

The aim of this study was to identify the most accurate and robust hand gesture segmentation 

architecture for PDP. We developed four models: a standard U-Net, a three-layer U-Net variant, an 

autoencoder-decoder architecture, and a U-Net with dense skip pathways, all trained on a custom dataset of 

1,000 images and corresponding masks. The autoencoder-decoder architecture emerged as the most effective, 

achieving an accuracy of 95.71% and high precision (0.94), recall (0.92), IoU (0.87), and dice score (0.93). 

The standard U-Net also performed well with an accuracy of 93.61%. In contrast, the modified U-Net 

showed lower performance (89.49%), indicating that its enhancements did not yield the desired 

improvements. When compared to pretrained models like ResNet and VGGNet, our custom architectures 

outperformed these options, particularly highlighting the tailored models’ strengths in this clinical context. 

The results underscore the potential of advanced deep learning architectures to enhance medical image 

analysis and improve diagnostic capabilities in neurodegenerative diseases. Future research may involve 

refining these models and exploring additional architectures to further advance automated gesture recognition 

for parkinson’s disease. 
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