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Tuberculosis (TB) has remained a big concern for decades. Being contagious
millions of lives have been facing life threats, especially in under developing
countries who have less resources to neutralize it. The deprived society
yields TB infection due to incomplete treatments and the less or no
preventive measures. The current time demands an effective effort to
eradicate pulmonary TB disease. TB affects lungs in most cases with some
other soft organs when not treated properly. Deep learning (DL) has
potential to predict and diagnose the severity of pulmonary and extra
pulmonary cases. It is a subset of machine learning (ML) that classifies
incurable and fatal problems with multi-neural architectures. It helps medical
practitioners to identify bacterial infections in the early stage. It has also
enabled proper diagnosis and treatment for pulmonary TB. This paper
introduces an improved method for detecting and distinguishing between
pulmonary TB and normal cases using clinical X-ray images. It uses
enhanced radiographs, processed through histogram equalization, and
applies them to commonly used classifiers. Two best performing base
classifiers were passed into stacked ensemble classifier. By combining
multiple models, XGBoost could reduce variance in predictions, leading to
higher accuracy. The ensemble classifier showed the best accuracy 99.6% on
preprocessed chest X-rays.
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1. INTRODUCTION

Tuberculosis (TB) is termed as one of the severe contagious issues worldwide. A person suffering
from TB may contain mycobacterium TB bacteria and may transmit the infection during coughing or while
talking to a person near them. The droplets that exist in the air medium can be passed even by sneezing. It
multiplies when a healthy person comes in close physical contact with a TB-infected person. It hurts one's
lungs and is called pulmonary TB. It has remained a global challenge for decades. Developing countries
apply the traditional TB diagnostic practices to eradicate it from society. As per WHO data, TB is one of the
fatal life-threatening challenges. Mostly, the South Asian countries have high fatality rates. Millions of the
young generation are at risk. Regarding Indian subcontinent, the rural Indians need proper attention and care,
where effective healthcare setups mandates neutralization of TB. Building on previous work [1] adapted a TB
detection module to focus on lung field segmentation and attempted 95.6% accuracy. ML can acquire from
unsupervised data. Even when input is unstructured or lacks proper labeling, it predicts more sophistically.
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Multi-layer neural network consists of several layers of neurons, serving as a unique model to address
various real-world scenarios. It does predictions somehow as human beings.

By up scaling the self-learning feature, DL processes data to bring meaningful results. The
connected nodes are referred to as neurons. Filtering and gamma correction were supplied by [2] in the TB
model. Abbas et al. [3] worked on DeTraC using transfer learning. He used imbalanced datasets. By
introducing parametric variations in CNN architecture, he brought detection of PTB-positive cases. Hooda
et al. [4] used a DL to examine TB in binary classifications and secured 82% accuracy. Schloar [5] presented
a CAD system for lung image pattern recognition on CNNs. He got an accuracy of 88%. Meraj et al. [6]
compared the various classifiers, viz. VGGs, GoogLeNet, and Residual Net50. Yadav et al. [7] sketched TB
diagnostics on a similar CNN-based transfer learning, getting 94% accuracy. Rahman et al. [8] examined
nine CNN classifiers for the segmentation process and for the classification. He secured 96% accuracy in his
work. Dasanayaka and Dissanayake [9], he used an ensemble model on two base classifiers using TB
radiographs. He mentioned an accuracy of 0.971. The investigators [10] used image enhancement techniques
and fed the radiographs into the ResNet, and a few other DL models to get higher accuracy that existed 89%.
The investigators [11] proposes CNNs to classify obtained clinical images’ abnormalities in an ensemble
environment. That study [12] used a generalized pre-trained system. They got accuracies of 81.25% with
image augmentation and 80% without it simultaneously. Their study incorporated leading state-of-the-art
pre-trained deep CNNSs for chest radiographs for the classification. It distinguished between normal and PTB-
infected cases. Lopes and Valiati [13] used public X-ray labeled datasets. Pre-trained CNNs were used as
classifiers and claimed an accuracy of up to 96.1%. Mizan et al. [14], DCNNs are highly effective for TB
detection from chest X-ray images, with ResNet50 emerging as the most efficient model among those tested.
Cao et al. [15] emphasized CNNs as highly effective for classifying TB when combined with histogram
matching techniques, but their study lacks segmentation. The researchers [16] aimed to compare a custom
CNN trained from scratch with several pre-trained CNN models using transfer learning, with a claimed
accuracy of 87%. ETDHDNet, proposed by [17], is a DenseNet-based model to integrate extended texture
descriptors. The work achieved AUC scores of more than 99 % as claimed. The introduction describes the
severity of the problem and worldwide efforts to eradicate pulmonary TB. Related works in this direction
using intelligent models are described. Section 2 presents the methodology for the detection system,
highlighting preprocessing, data sets description, the proposed system, and experiments. Section 3 explains
the results and discussions on various CNN models on TB detection with and without histogram equalization,
and a true picture of ensembling base classifiers into a stacked classifier. The conclusion is in section 4 with
future work and study to incorporate.

2. RESEARCH METHOD

The overall proposed methodology to detect and classify PTB cases using online and offline Chest
X-ray images is described in the methodology section. It uses preprocessing and augmentation of the dataset,
Input enhanced by histogram equalization. The ensemble stacked model shows the best of the fused attributes
of two different classifiers. Storing the dataset is crucial and is the initial step in prediction model design. It
decides the pattern within supervised learning. It also extracts important characteristics during the DL
process. Thus, it is of utmost importance to convert image data into a structured and standardized format.

2.1. Datasets description

The M. County CXR set is distinguished by its inclusion of manually segmented lung masks for a
subset of its 138 DICOM-format. These images, comprising 80 normal and 58 potentially TB-positive cases,
are accompanied by detailed radiology readings in text files. In contrast, the S. Hospital CXR Set, acquired
from Shenzhen, China, offers a larger collection of 662 JPEG-format images—326 normal and 336
abnormal—spanning both adult and pediatric cases. The NIAID TB Portals Program stands out as a
comprehensive international repository, integrating over 4,200 radiographs (3,500 normal and 700 TB-
positive) with multi-domain data linked to individual patients. This includes radiological images, clinical and
laboratory reports, genomic data, and socioeconomic and geographic context. Data from TB suspects,
including outpatient prescriptions and imaging records from HAHCH in New Delhi, were collected between
July 2021 and June 2024, offering a rich resource for holistic TB research and predictive modeling.

2.2. Chest X-ray and feature extraction

The gained chest X-ray images exhibit variations in size and may be either color-grayscale or RGB
due to availability from the diverse sources. To guarantee uniformity, all acquired raw data were converted to
grayscale. The connected layers that compose CNN architecture insert consistent image dimensions.
Preprocessing of all clinical images serves the purpose of enhancing data quality by modifying undesired
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distortions and accenting relevant features for subsequent processing and analysis. The ROI, denoting the
area of interest, in proposed case-the cavities on the lung surface, is well recognized by the segmentation.
This is important step to admit subsequent feature extraction focuses on relevant regions of interest. These
features include shape, intensity, texture, and statistical measures.

2.3. Image preprocessing

Preprocessing is the initial step towards data preparation [18]. Before the insertion of the input
image into the proposed Al model, datasets are cleaned through various preprocessing techniques. In the
proposed work, both online and offline X-ray images had different impurity issues. The online image datasets
had size variability with differing image types and colour issues. Similarly, the off-line chest X-ray images
had problems like image inversion, rotation, grayscale and coloured images, flipping issue, uncropped
images, etc. All these types of odd points were removed using the process of cropping, flipping, resizing,
grayscaling, rotation, and type conversion. Although the major X-rays contained one colour channel, some of
them had three colour channels. To hide the effect of blue colour, such images were converted from RGB to
grayscale. The PNG format was applied to dimensions of 250 X 250 X 3 resolution. Figure 1 contains TB
infected areas over lungs. Figure 1(a) is showing infection on the right upper lobe, Figure 1(b) on lymph
node, Figure 1(c) on left upper lobe and Figure 1(d) as air space opacities.

(d)

Figure 1. Infected area of TB on lungs: (a) coalescing air space opacity on the right upper lobe, (b) enlarged
hilar and mediastinal lymph nodes, (c) Thick-walled cavitary lesion in the left upper lobe, and (d) bilateral
apical thick-walled cavities multifocal satellite air space opacities

2.4. Augmentation and datsets partion

Image augmentation is resolute step in computer vision and in DL-based classifications. It enriches
insourced clinical images by first removing unnecessary details [19]. It should be applied during training
only, not during inference as shown in Figure 2. Training datasets are changed into normalized sizes to avoid
over-fitting.

Inverted Image Uncropped & abnormal sized Rotation Grayscaled
Unrotated clockwise

Figure 2. Uncleansed X-ray images

Augmentation is used alongside dataset partitioning with the total image collection divided into 70%
for training, 15% for validation, and 15% for testing. A total of 6221 chest X-ray images containing both
normal and pulmonary TB cases were collected, with 4355 allocated for training, 933 for validation, and
testing, respectively as shown in Table 1. Histogram Equalization is basically a redistribution of pixel
intensities so that they become more uniformly distributed across the entire available intensity range. This
transformation ensures that the output histogram is approximately uniform [20].
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Table 1. Image datasets in the proposed work

Datasets NORML PTB

Train  Validation Test Total Train Validation Test Total

M. County 56 12 12 80 41 8 9 58

S. Hospital 227 49 49 325 235 51 50 336
NIAD 1674 358 358 2390 490 105 105 700
Belarus 0 0 0 700 150 150 1000
HAHC Hospital 222 48 48 318 710 152 152 1014
TOTAL 2179 467 467 3113 2176 466 466 3108

2.5. Proposed method

Ten different DCNNs are studied so that the outcomes will have atributed X-rays’ abnormality
detections and thus the initial TB screening and related prediction can be achieved. On the basis of collected
Chest radiographs, all state-of-the-art classifiers were trained on the given Training datasets (70% of the total
online and real image datasets). On fine-tuning of hyper-parameters, 15% validation datasets were fed into
the pre-trained model. The remaining 15% of the untouched datasets were tested on a pre-trained model
using transfer learning. On comparing the performance of all the classifiers, the two best-performing base
classifiers (ResNet50 and DenseNet169) were passed into a stacked ensemble classifier. Features are
extracted from these models' intermediate layers. These extracted features are then concatenated into a single
feature vector, which serves as the input for the meta-learner. The XGBoost model is trained to make the
final binary classification prediction (PTB-positive or PTB-negative). As shown in Figure 3. This method
brings the powerful feature extraction abilities of the CNNs while using XGBoost to learn how to best
combine their (pre-trained base classifiers) predictions [21].

Extract Features
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Figure 3. Methodology for the proposed system

2.6. Experiments

Transfer learning supports models to power previously acquired learnings from one task and apply
them to a similar task. This approach constitutes a pre-trained model, which has already been trained on a
large dataset comprising 4355 images of both normal and PTB cases in the proposed work. By doing so, it
considerably reduces training time and computational requirements for new model running while enhancing
model accuracy and mitigating the possible issue of overfitting. In CNN-based architecture, TL proves
helpful when dealing with small image datasets, eliminating the necessity for extensive data collection and
minimizing the training time. In the shared architecture, intermediate weights remain non-trainable, while
final layer weights undergo training, with the Sigmoid activation function in the final layer. HE-enhanced
images were partitioned into training, validation, and testing sets. For training, 70% of the total images, and
30% for validation and testing were kept respectively. Sklearn.model_selection import train_test split was
set with a random state of 22 for reproducibility. The system also incorporates the Adam optimizer alongside
Binary Cross-Entropy as the loss function. The process was executed on the Google Colab using TensorFlow
using Python 3.7.10. The training procedure was fine-tuned keeping batch size of 64 and a default threshold
of 0.5. To prevent overfitting, epochs were reduced from 15 to 5, ensuring optimal generalization and
alignment between training, validation, and testing performance.
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3.  RESULTS AND DISCUSSION

Al based detection model needs to be verified on different assessment parameters, especially
medical diagnostic systems are validated on the following evaluation metrics: 1. Sensitivity 2. Precision 3.
Specificity 4. Accuracy 5. F1 score and 6. ROC.

3.1. Performance of CNNs on X-ray dataset without HE

Table 2 is shown to compare the performance of state-of-the-art CNNs for binary classification
without using histogram equalization. This comparison is made on preprocessed image inputs collected from
five repositories, viz. M. County, S. Hospital [22], NIAD [23], Belarus dataset [24] and images collected
during 36 months from the HAHC hospital.

Table 2. Performance matrix of classifiers — Without HE

Model Resnet50  Resnet Resnet Inception VGG VGG Densenet DenseNet Densenet  Mobilenet

101 152 V3 16 19 121 169 201
Accuracy 99.1 98.4 98.8 94.7 97.8 98 98 98 98.6 98
Sensitivity 99.1 98.5 98.9 93.3 97.9 96.9 98.2 96.6 98.4 98.3
Specificity 99.1 98.3 98.8 97 97.7 99 97.2 99.2 98.3 97.5
Precision 99.1 98.2 98.9 97.3 97.5 98.9 97.3 98.8 98.2 97.4
Fl1-score 99.1 98.5 98.8 96 97.7 97.9 98 97 98.4 98

The performance is measured on six parameters, basic criteria to check the quality of any medical
diagnostic system. It is found that both ResNet50 and ResNet152 outperform the rest of the CNNs without
the use of the histogram algorithm. ResNet50 allows gradients to flow through the network more easily,
whereas DenseNet201 is intensive due to computationally denser connections. Also, ResNet50 exemplifies
the transfer learning here. Other classifiers have shown impressions such as ResNet101, DenseNet201,
DenseNet169, and DenseNet121. Figure 4, when evaluating the processed chest X-rays in neural networks
without histogram equalization, ResNet50 and ResNet152 have overlapping ROC curves, and both have
outstanding ROC, followed by ResNet101. DenseNet also has a better ROC than other classifiers. Here,
deeper networks need not perform better results; instead, Resnet50 shows an effective example for transfer
learning. A confusion matrix is important for summarization of the performance of a proposed system on 467
normal and 466 PTB test radiographs in Figure 5. Figure 5(a) shows confusion marix for ResNet50 and
Figure 5(b) for ResNet152 without histogram equalization.
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Figure 4. ROC — Various classifiers without HE
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ResNetbh0 Predicted TB Predicted Normal
Actual TB TP = 462 FN =4
Actual Normal FP=4 TN = 463
(a)
ResNet1b2 Predicted TB Predicted Normal
Actual TB TP = 461 FN=5
Actual Nermal FP=5 TN = 462
(b)

Figure 5. Confusion matrix- without HE (a) Resnet50 and (b) Resnet152

3.2. Performance of classifiers with HE

Table 3 is shown to compare the same sets of data input explained in section 3.1. The performance
of all 10 binary classifiers is evaluated on five evaluation matrices and ROC curves on applying HE. It is
found that both ResNet50 and DenseNet169 have outmatched the rest of the CNNs by enhancing images with
contrast enhancement. ResNet50 allows gradients to flow through the network more easily, whereas
DenseNet169 is intensive due to computationally denser connections. Effective sensitivity in DenseNet169
compared to ResNet50 shows improved quality of identifying true positives. Also, ResNet50 exemplifies the
transfer learning here. Other classifiers have shown an impression, such as ResNet152, ResNet101, and
DenseNet121. ResNe50 has a significant ROC, as in the above case of sensitivity of the model without HE,
ResNet152 and 101 also have fewer false negatives, making them a more reliable model for detection.
VGG16 and DenseNet201 overlap in the ROC Curve presented in Figure 6.

Table 3. Performance matrix of classifiers — with HE

Model Resnet50  Resnet  Resnet Inception VGG16 VGG Densenet DenseNet Densenet Mobilenet
101 152 V3 19 121 169 201
Accuracy 99.36 99 99.1 95 98.3 98 99 99.25 98.6 96.5
Sensitivity 99.36 99.1 99.14 95.6 98.4 98.96 98.6 99.36 98.4 96.2
Specificity 99.36 99 98.8 94.8 98.23 97.1 99.6 99.14 98.7 97.1
Precision 99.36 98.6 98.7 94,51 98.1 96.95 99 99.14 98.61 96.6
F1-score 99.36 99 98.9 94.83 98.2 97.5 99.13 99.2 98.5 96.5
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Figure 6. ROC — Various classifiers with HE
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Figure 6 presents ROC on different classifiers using HE enhanced X rays. Figure 7 depicts
confusion matrix on two best performing classifiers. Binary classifier ResNet50 returned 3 out of 466 TB test
radiographs misclassified as normal as in Figure 7(a). 3 out of 467 normal chest test radiographs were
misclassified as TB X-ray. In the evaluation of DenseNet169, only 3 out of 466 TB test graphs were
misclassified as normal as in Figure 7(b). 4 out of 467 normal CXR test graphs were miscounted as TB
images [25].

Predicted TB Predicted Normal
Actual TB TP =463 FN =3
Actual Normal FP=3 TN = 464
(@)
Predicted TB Predicted Normal
Actual TB TP = 463 FN=3
Actual Normal FP=4 TN = 463
(b)

Figure 7. Confusion matrix- with HE (a) DenseNet169 and (b) Resnet50

3.3. Performance matrics of ensemble stacked classifier

The XGBoost model learnt the optimal way to combine the features from both ResNet50 and
DenseNet169 to get the best performance by each ResNet50 and DenseNet169 separately on the given test
datasets. Calculating the final model's performance using binary classification, such as accuracy, precision,
recall, F1-score, and AUC-ROC on the same test datasets, viz. 467 normal and 466 PTB positive images, the
following figures came out. Figure 8 presents to view the confusion matrix for TP, TN, FP, and FN. It shows
the outperforming classifiers, viz. DenseNet169 and ResNet50. The combined features revealed from the two
base classifiers, the test datasets brought the best performing binary classifier from the XGBoost stacked
classifier, as 2 out of 466 TB test radiographs misclassified as normal, 2 out of 467 normal chest test
radiographs were misclassified as TB X-ray. It got the best ever accuracy of 99.57%. By evaluating
classification performance using histogram matching across 10 deep CNN models, our approach resulted in a
more reliable and efficient system, achieving a classification accuracy of 99.57 percent as shown in Table 4.

Predicted TB Predicted Normal
Actual TB TP = 464 FN=2
Actual Normal FP=2 TN = 465

Figure 8. Confusion matrix- ensemble classifier

Table 4. Performance matrix of base classifiers and stacked classifier

Classifier ~ Base classifier-1  Base classifier-2  Base classifier-1 Base classifier-2 Ensemble classifier
model Resnet50 Resnet 152 Resnet 50 DenseNet 169 XGBoost
(without HE) (without HE) (with HE) (with HE) (with HE)
Accuracy 99.1 98.8 99.36 99.25 99.57
Sensitivity 99.1 98.9 99.36 99.36 99.57
Specificity 99.1 98.8 99.36 99.14 99.57
Precision 99.1 98.9 99.36 99.14 99.57
F1-score 99.1 98.8 99.36 99.2 99.57
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4. CONCLUSION

The classification results for the pulmonary TB prediction model reveal an exceptionally high level
of diagnostic accuracy. Out of all cases evaluated, 464 were correctly identified as TB (True Positives), while
only 2 cases were missed (False Negatives), indicating a very low rate of under diagnosis. Similarly, among
the normal cases, 465 were accurately classified as non-TB (True Negatives), with just 2 instances
misclassified as TB (False Positives). This near-perfect balance between sensitivity and specificity
underscores the model’s robustness and reliability. The minimal misclassification suggests that the system is
highly effective in distinguishing between TB and normal cases, making it suitable for clinical deployment or
integration into automated screening workflows. The consistent performance of the ensemble Meta learner
across large and varied datasets highlights the robustness and generalizability of our proposed approach.
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