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The initial step in determining the number of principal components for both
classification and regression involves evaluating how much each component
contributes to the total variance in the data. Based on this analysis, a subset
of components that explains the highest percentage of variance is typically
selected. However, multiple valid combinations may exist, and the final
choice is often made manually by the researcher. This study introduces a
novel yet straightforward algorithm for the automatic selection of the
number of principal components. By integrating ANOVA and bootstrapping
with principal component analysis (PCA), the proposed method enables
automatic component selection in classification tasks. The algorithm is
evaluated using three publicly available datasets and applied with both
decision tree and support vector machine (SVM) classifiers. Results indicate
that this automated procedure not only eliminates researcher bias in selecting
components but also improves classification accuracy. Unlike traditional

methods, it selects a single optimal combination of principal components
without manual intervention, offering a new and efficient approach to PCA-
based model development.
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1. INTRODUCTION

Principal component analysis (PCA) is a widely used technique for dimensionality reduction and
data exploration [1]. It transforms the original dataset into a set of linearly uncorrelated variables known as
principal components. These components represent linear combinations of the original variables and are
constructed to capture the maximum variance within the data. The core objective of PCA is to identify a
subset of principal components that best captures the most informative structure of the dataset, thereby
enabling more effective regression or classification modeling [1]. A central challenge in applying PCA lies in
determining the optimal number of components to retain [1]. For decades, both academics and practitioners
have relied on a standard approach to address this question [1], [2]. This traditional method involves
transforming the data into principal components and evaluating how much variance is explained by various
combinations—e.g., the first two, three, or four components. The subset that accounts for the highest
cumulative variance is typically selected. However, in practice, it is often unclear whether to retain three,
four, or five components, as the incremental gain in explained variance may be marginal and difficult to
interpret [1].

Many researchers have tried to solve this issue by modifying the PCA equation. The focus of their
research is how PCA can be used as a feature selection technique. For example, by modifying the equation of
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the principal components analysis as in [3]. They propose unweighted version of the PCA combined with
variable selection to avoid the issue of how many components to choose. Prieto-Moreno et al. [4] introduces
“separability measure between multiple failures” to select the number of principal components. He uses
discriminant information contained in the PCs to select the right combination. Sharifzadeh et al. [5] proposed
a sparse PCA method known as SSPCA, designed for data pre-processing and dimensionality reduction. This
variant of PCA introduces modifications to the computation of eigenvectors and eigenvalues, aiming to
enhance performance in large datasets. The approach is particularly effective in scenarios where high-
dimensional noise—arising from a large number of variables—needs to be minimized.

However, a central issue is that when PCA is used as a feature selection, the final set of principal
components should be converted back to the original features [1]. Unlike other feature selection algorithms,
the conversion is hard for interpretation as the direct link between the linear combination of principal
components and the original features is not straightforward [1]. Therefore, PCA is used as a dimensionality
reduction technique but rarely as a method to select concrete features. Regardless of this, the appropriate
selection of principal components is a key for the success of the classification model. Therefore, researchers
aim to find an unbiased and straightforward selection of principal components. For instance, Gajjar et al. [6]
proposes a novel method to select non-zero loadings in sparse PCA instead of using eigenvalues and
eigenvectors as it is in the standard PCA [1].

In 2021, Rahoma et al. [7] introduced a novel method for estimating loading factors in PCA. While
their algorithm shares similarities with the approach proposed by Gajaar et al. [6] particularly in its focus on
loading factors—it differs in the bootstrap techniques used to assess the distributional properties of the
elements within the loading vectors. These elements are then leveraged to construct a sparse loading structure
for PCA. Based on their findings, Rahoma et al. [7] proposed two new PCA variants: Bootstrap SPCA and
Sparse IPCA, both of which rely on bootstrap-based resampling. Although these methods represent
advancements in PCA, none of them provide an automated solution for selecting the number of principal
components—a critical yet unresolved issue in many applications. This research addresses that gap by
proposing a fully automatic algorithm for principal component selection. For instance, Pacheco et al. [8]
outlines a multi-step variable selection process using PCA but explicitly avoids the core question of
determining the optimal number of principal components.

An important yet underexplored research direction involves leveraging the textbook PCA approach
for automatic selection of the number of principal components—without altering the core PCA equations.
This paper focuses on advancing this line of inquiry and contributes in several key ways. First, we propose a
novel algorithm that automatically selects a single optimal combination of principal components using the
standard PCA framework [1]. Unlike other methods that modify PCA computations or rely on subjective
judgment, our approach adheres strictly to the textbook method while automating the component selection
process. Second, we expand on previous research [9] by demonstrating the effectiveness of the bootstrap
procedure in PCA beyond its application in logistic regression. While earlier work showed that bootstrapping
could guide component selection for logistic models, this study extends those findings to support vector
machines (SVM) and decision tree classifiers, showing similar benefits in classification performance. Third,
this work contributes to the broader exploration of bootstrap methods in machine learning, outside their
traditional statistical applications. Our previous research established the bootstrap as a viable alternative to
cross-validation in classification problems [10]. This study introduces a new application of bootstrapping:
aiding the automatic selection of the number of principal components [11], [12]. The proposed methodology
offers several advantages: it is simple to implement, computationally efficient, and easy to interpret, making
it practical for real-world data analysis and machine learning tasks. Next section describes the algorithm
proposed, while section 3 elaborates our findings.

2. RESEARCH METHOD
In this section, we present both the classical PCA algorithm, as described in standard textbooks [13],
and our proposed algorithm. We use the classical method as a baseline to highlight its limitations and to
compare its performance against our automated approach. The classical PCA procedure is implemented in
Python 3.6 using built-in functions. Following the classical steps outlined in [10], [13], we apply PCA but
adapt the classification stage by using decision tree classifiers and SVMs instead of logistic regression. All
model parameters are kept at their default values in Python, with the SVM using C=1 and an RBF kernel.
The classical PCA procedure includes the following steps [1], [13]:
- Data standardization: Standardize the input data [14] and transform them into principal components
- Variance analysis: Analyze eigenvalues [15] and eigenvectors [16] to determine the proportion of
variance each principal component explains. Calculate the cumulative variance explained by the first n
components.
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- Component selection: Select the subset of components that explains the highest cumulative variance
[17]. This method differs from other approaches that use criteria such as AIC or BIC for component
selection [18].

- Model training and evaluation: Use the selected components to train and test classification models
(decision trees and SVMs).

It is important to note that, in this classical approach, the selected components are always the first n

components in order of their index. This is based solely on the decreasing proportion of variance explained

by each successive component. The component selection process is independent of the classification model
used.

Although the classical PCA algorithm [19] is simple and widely applied, it often presents a critical
limitation: multiple valid combinations of components may explain similar amounts of variance [20]. The
classical method does not provide automated means to resolve this ambiguity. Researchers are left to select a
combination manually, relying on prior domain knowledge, literature guidelines, or ad hoc heuristics [1]. In
many cases, however, such knowledge or rules are not available, and the lack of a clear criterion can
introduce subjectivity or bias into the analysis [21], [22].

To overcome this issue, we propose a novel method called ANOVA-Bootstrapped-PCA [9], which
automates the selection of the optimal number of principal components within a standard PCA framework.
This method extends our previous work that applied bootstrap-based component selection in the context of
logistic regression. In this study, we demonstrate its applicability to decision tree classifiers and SVM. We
refer to the two implementations as:

—  ANOVA-Bootstrapped-PCA-DT: using decision tree classifiers

—  ANOVA-Bootstrapped-PCA-SVM: using SVM

he algorithm utilizes existing Python functions, including SVC(), DecisionTreeClassifier(), PCA()
from sklearn.decomposition, and Pipeline from sklearn, to incorporate  ANOVA feature selection.
Additionally, we developed a custom script to implement the tenfold bootstrap procedure, originally
introduced in our prior study [10]. While earlier bootstrap studies [11], [12] focused on its use as a
resampling technique in statistical analysis, they did not explore its potential benefits in machine learning.
Our previous work [10] addressed this gap by demonstrating how the bootstrap can be adapted to
classification tasks. We now further extend this by integrating bootstrap into PCA for automated component
selection. The ANOVA-Bootstrapped-PCA algorithm proceeds through the following steps:

a) Standardization: Standardize the input data (as in the classical approach).

b) PCA transformation: Apply PCA to the standardized data.

¢) Normalization: Normalize the resulting principal components to the [0, 1] range to eliminate negative
values.

d) ANOVA ranking: Perform ANOVA to rank the principal components by importance. Unlike the
classical method, components are selected based on ANOVA ranking rather than index order, and the
ranking remains independent of the classification model.

e) Percentile Grouping: Divide the components into percentiles (10%, 20%, ..., 100%), where each
percentile contains the top n components based on ANOVA rankings.

f)  Bootstrapped resampling: For each percentile, split the data into training and testing sets using a 70/30
ratio, repeated via the tenfold bootstrap [10].

g) Model training and evaluation: For each percentile group, train and evaluate ten models (both SVM and
decision tree classifiers). Calculate the average accuracy and classification scores across bootstrap
samples.

h)  Component selection: Identify the percentile (i.e., component combination) that yields the highest
classification performance. This defines the optimal number of components for each model.

3. RESULTS AND DISCUSSION

To conduct the experiments, we use three publicly available datasets [23]-[25]. We define X and Y
variables, where Y is a target variable that represents categories. As PCA is conducted only on independent
variables, the target variable Y is excluded from the experiments. All results presented in section 3 relate to
the connection among the X variables as each principal component forms a linear combination of features
that contains as much information about the data as possible. The aim is to find the most informative set of
principal components by discovering the set of principal components with the highest variance [16].
Therefore, the classical approach produces a table, where the percentage of variance explained of each
principal component is calculated (% of var explained). The most informative set of principal components
consists of the first principal components, which contribute the most to the total variance explained. This
criterion is referred to as ‘cumulative percentage explained’. However, when the total variance explained for
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two or more sets of principal components is similar, selecting the correct number of principal components
may not be straightforward. On the other hand, the proposed approach in this paper eliminates the
involvement of the researcher as it provides an automatic selection of the number of principal components
regardless of the total variance explained. The results from the two approaches are summarized by dataset in
the next subsections.

3.1. The ED dataset [23]

Table 1 contains the output from the classical approach that calculates the contribution of each
principal component to the variance explained and the cumulative percentage explained for the first n number
of principal components. The percentage of variance explained is calculated by eigenvalues and eigenvectors [16].

Table 1. Principal components number according to the classical approach

% of var explained var explained, cumulatively %
PC1 57.5% PC1+PC2 97.4%
PC 2 39.9% PC1+PC2+PC3 99.9%
PC 3 2.5% PC1+PC2+PC3+PC4 100%
PC4 0% PC1+PC2+PC3+PC4+PC5 100%
PC5 0%

Source: author’s research

Table 1 shows that the first principal component contributes the most to the data variance (57.9%),
followed by the second (39.9%) and the third. The first two principal components together account for 97.4%
of the variance in data, while the first three—99.9%. The contribution of the fourth and fifth principal
component is too small to be considered. In this case, the book rule [16] advises to select the combination
that results in the highest cumulative variance explained. This would be the first three principal components.
When we use the first three principal components to run the SVMs with RBF kernel, the model achieves
96.9% accuracy. The decision tree classifier achieves 98.2%. However, the aim of the PCA is to perform
dimensionality reduction [16]. Given that the first two principal components account for 97.4% of the
variability in data and the very small contribution of the third principal component, another researcher may
select the first two principal components. In this case, a smaller number of principal components would be
selected, while the variance explained would be high enough. The example of the ed dataset demonstrates
that in some cases more than one principal component combination is possible. In the case of the ed dataset
selecting two or three principal components would not affect the outcome of the model significantly due to
its small number of components. However, the issue of how many principal components to select and avoid
the manual selection is very important in dataset with many principal components.

To achieve an automatic selection of the number of principal components, we propose the ANOVA-
Bootstrapped-PCA classification. In this algorithm, the importance of the principal components is first
calculated using ANOVA. Similarly, to the classical algorithm, their importance does not change with the
classification model used. Table 2 summarizes the importance of the principal components in the ed dataset.

Table 2. Importance of the principal components according to the new proposed approach

PC Importance
PC1 17.1677
PC2 8.70988
PC3 3550.92
PC4 41.9038
PC5 8.95789

Source: author’s calculations

According to Table 2, the most important principal components are the third one, the fourth and the
first one. An impotant highlight is that this outcome is different from the classical approach. The classical
approach identifies the first n most importance principal components, where the first always contributes the
most, and the second is second in order. However, the newly proposed approach observes the importance of
each principal component separately and their importance does not depend on their place in the dataset. The
importance of each principal component remains the same regardless of the classification model used.
Table 3 shows how many principal components are selected using the ANOVA-Bootstrapped classification
algorithm when the SVM and the decision tree classifier are fitted.
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Table 3. Number of principal components selected using the ANOVA-bootstrapped classification in

SVM and DT
Percentile  Number of PCs  Accuracy of DT Accuracy SVM
10% 0.5 96.5% 97.4%
20% 1 96.5% 97.4%
30% 15 98.3% 98.2%
40% 2 98.3% 98.2%
50% 25 98.3% 98.2%
60% 3 99.2% 97.5%
70% 35 99.2% 97.5%
80% 4 99.2% 97.6%
90% 45 99.2% 97.6%
100% 5 99.3% 96.8%

Source: author’s calculation

In the case of the decision tree classifier, the three most important principal components that are
selected are the fourth, third and first (Table 3). Using this combination, the decision three classifier achieves
the highest accuracy of 99.2%, while retaining the smallest possible combination of principal components
(performing dimensionality reduction). Although the accuracy of 99.2% can also be achieved by adding the
fifth principal component (as it is the fourth most important), this combination would use more principal
components than optimal for dimensionality reduction. Therefore, selecting the fourth, third and first
principal components are the best combination for achieving the highest accuracy in the decision tree
classifier.

Using the proposed algorithm, the case for the SVM is different. Table 3 shows that the highest
accuracy (98.2%) for the SVM model can be achieved using only 2 principal components, these being the
third and the fourth (Table 2). The third and the fourth principal components are the best selection for the
SVM for three reasons. First, they are the most important ones according to Table 2. Second, they produce
the highest accuracy for the SVM. Third, the SVM accuracy using the two and three most important principal
components is similar. Therefore, the third most important principal components does not add additional
information to the model. This result differs from the classical approach. In the classical approach the number
of principal components selected is the same regardless of the classification model used. However, our
approach selects the number of principal components that would produce the best accuracy given the
classification model used. Our algorithm can be used to select the combination of principal components that
would improve the model’s performance. For instance, the classical approach resulted in 96.9% accuracy
from the SVM using the first 3 principal components. The ANOVA-bootstrapped-PCA SVM achieved
98.2% accuracy using only the first two most important principal components. The algorithm we propose
improved the accuracy resulting from the classical PCA SVM by 1.3% and it performed dimensionality
reduction better as it uses only 2 principal components. Therefore, the proposed algorithm can be used not
only to automatically select the number of principal components, but it also improves the performance of the
model and perform dimensionality reduction better. Similar case is observed with the decision tree classifier,
where the classical PCA approach resulted in 98.2% accuracy using three principal components, while the
proposed algorithm achieved 99.2% accuracy using 3 principal components (Table 3). In the example of the
decision tree classifier, the proposed algorithm provides an automatic selection of three principal
components, eliminating the choice between the first two and three principal components that is offered by
the classical approach. Also, the necessary principal components are automatically selected using the
ANOVA-bootstrapped-PCA algorithm.

3.2. The food dataset [24]

Similar results can be observed in the food dataset. Table 4 summarizes the contribution of each
principal component to the total variability of data and the cumulative contribution according to the classical
approach.

Table 4. Classical approach in the food dataset

PC % of var explained Var explained, cumulative %
PC1 41% PC1+PC2 63.0%
PC 2 22% PC1+PC2+PC3 79%
PC3 16% PC1+PC2+PC3+PC4 93%
PC 4 14% PC1+PC2+PC3+PC4+PC5 100%
PC5 7%

Source: author’s calculations
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The output in Table 4 does not change with the classification model used. The number of principal
components selected based on Table 4 is the one to be used in all classification models. Table 4 shows that
the first four principal components have a significant contribution to the variability of data accounting for
93% of total variance in data. However, if the first three principal components are selected, then only 79% of
the variability of data would be explained. In this case, the answer is straightforward, so the first four
principal components should be selected. Selecting the first three would lead to a significant loss of important
information. Table 4 demonstrates that in the case of the food dataset. The selection of principal components
following the classical approach is obvious. However, the dimensionality reduction is not effective as only
one principal component should be removed from the classification model according to the classical
approach. Therefore, in complex models a better set of principal components might be the first three but that
would come at the cost of some loss in data information. Therefore, the researcher should decide whether to
use the first three or first four principal components depending on the purpose of their task.

Another disadvantage of the classical approach is that the researcher does not know whether a
straightforward selection of principal components would be possible before running the classical algorithm.
This makes the classical approach inefficient as it can lead to time consuming decisions and manual selection
in big datasets. Also, bias can be introduced in the model in cases where the decision about the number and
set of principal components should involve the researcher. The newly proposed approach, however, ranks the
importance of principal components, while producing a table based on which identifying the combination
that results in the highest accuracy is possible. This leads to an automatic and straightforward selection of
principal components. Table 5 demonstrates the importance of the principal components resulting from the
ANOVA step in our algorithm for the food dataset.

Table 5. Principal components importance according to the new approach for the food dataset

PC Importance
PC1 708.444
PC2 677.15
PC3 1202.37
PC4 35.5811
PC5 1.17576

Source: author’s calculation

According to Table 5, for the food dataset the first most important principal component is the third
one, then the first, second, fourth and fifth. The combination of principal components that should be used for
the SVM and DT according to the proposed approach is demosntrated in Table 6.

Table 6. Results from the ANOVA-Bootstrapped PCA classification
Percentile  Number of features  Accuracy of DT Accuracy of SVM

10% 0.5 78.8% 86.2%
20% 1 78.8% 86.2%
30% 15 81.8% 86.2%
40% 2 81.8% 86.2%
50% 25 81.8% 86.2%
60% 3 83.4% 86.2%
70% 35 83.4% 86.2%
80% 4 83.9% 86.2%
90% 4.5 83.9% 86.2%
100% 5 83.5% 86.2%

Source: author’s calculations

The proposed algorithm achieves accuracy of 83.9% from the DT using the four most important
principal components in the food dataset, while the classical approach—accuracy of 83.2% using the first four
principal components. The ANOVA-bootstrapped-PCA algorithm produces higher accuracy when used with
the four most important variables based on the ANOVA ranking. As Tables 4 and 5 demonstrate the sets of
four principal components for the decision tree classifier vary in the two approaches. The classical approach
uses the first four principal components that have the highes total variance explained (Table 3), while the
proposed algorithm uses the four most important principal components based on their ANOVA score in
Table 4 the SVMs, on the other hand, results in 86.2% accuracy when the proposed algorithm is applied
(Table 6). Table 6 shows that regardless of the number of principal components used, the accuracy achieved
by the proposed SVM model is 86.2%. Therefore, fitting SVM withonly 1 principal component results in the
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best accuracy according to the ANOVA-bootstrapped-PCA apporach while the classical approach achieves
90% using 4 principal components. The reason for this discrepancy is that the food dataset has imbalanced
classes, so the proposed approach with SVM is not appropriate in this case. Class 1 cannot be correctly
predicted as it has very few observations. This is not the case for the decision tree classifier, which accounts
for the imbalanced classes and predicts both classes correctly. However, the prediction of class 1 in the
proposed methodology is worse than in the classical approach. This can be seen in Table 7 that compares the
classification metrics from the SVM and DT resulting from the classical approach and the proposed new
approach. Table 7(a) shows that the classic PCA SVM predicts correctly about 90.5% of class 0 and 81.3%
of class 1 despite the imbalanced classes. However, this is not the case in the ANOVA-Bootstrapped-PCA
SVM as it predicts well the predominant class 0 but fails to predict the minority class 1. Table 7(b) shows
that the classic PCA decision tree correctly predicts class 1 in about 39% of the cases, which is similar to the
proposed approach. The decision tree classifier in both cases gives similar measures despite the class
imbalance.

Table 7. Classification metrics of the (a) SVM and (b) DT resulting from the classical approach and the
proposed algorithm

(@)
Classic PCA SVM Precision  Recall  fl-score  Support
0 90.5% 98.6%  94.4% 20624
1 81.3% 36.5%  50.3% 3347
avg/total 89.2% 90.0%  88.3% 23971

ANOVA BOOTSTRAPPED PCA SVM  precision recall fl-score  support

0 86.2% 100.0%  92.6% 10256
1 0.0% 0.0% 0.0% 1645
avg/total 74.3% 86.2% 79.8% 11901
(b)
Classic PCA

Class Precision  Recall  fl-score  Support

0 91% 89% 90% 20624

1 39% 43% 41% 3347

avg/total 83% 83% 83% 23971

ANOVA BOOTSTRAPPED PCA DT

0 89% 89% 89% 10226
1 34% 33% 34% 1669
avg/total 82% 82% 82% 11901

Source: author’s calculations

In the case of imbalanced data, we do not recommend using the proposed approach with SVM.
Further research should be conducted to explore the performance of the proposed algorithm on imbalanced
data and other classification models that cannot compensate for imbalanced classes. The decision tree
classifier, however, is appropriate to use with the proposed ANOVA-bootstrapped-PCA in imbalanced
datasets.

3.3. The fraud dataset [25]

The Fraud dataset has 5 principal components. Its classes are relatively balanced as was in the Ed
dataset. Table 8 shows the contribution of each principal component to the total variance of data according to
the classical approach. The first three principal components account for 96.7% percent of the variability of
data. They are used to fit the SVM and DT classifiers.

The classical PCA results in 96.7% accuracy when the decision tree classifier is fitted using the first
three principal components (Table 8) and in 75.8% when the SVM classifier is fitted with the same principal
components like in the decision tree classifier. As Table 9 shows the proposed ANOVA-Bootstrapped-PCA
SVM and DT perform better than the classical approach.

As Table 9 shows the bootstrapped PCA decision tree achieved 98.1% accuracy using 3 principal
components (the second, third and fourth as Table 10 shows), which is 1.4% p.p. higher than the classical
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approach. While the SVM resulted in accuracy of 76.9% using 2 principal components, which is by 1.1 p.p.
higher than the classic PCA SVM approach. The classification scores are similar for the classic and proposed
approach as it is in the ed dataset.

When classes are balanced, the ANOVA-Bootstrapped PCA classification can select the number of
principal components automatically and in many cases improve the accuracy of the model. As Tables 3, 6,
and 9 demonstrate the proposed algorithm can also be used to compare the performance of different
classification models using different numbers of principal components. A decision not only about the number
of principal components but also about what model to use can be made. The proposed algorithm can also be
used for model selection.

The proposed algorithm is a novel approach to selecting the number of principal components for
classification. The ANOVA-Bootstrapped-PCA classification algorithm provides a fast and effective way to
select the number of principal components and improve the accuracy of the model. It can also be used for
model selection as the performance of several classification models can be compared. Based on the accuracy
and number of principal components selected, one classification model can be selected over another one.
However, the algorithm performs well only in datasets with balanced classes. In case of imbalanced data, the
ANOVA-Bootstrapped-PCA algorithm works well with the decision tree classifier. The decision tree
classifier handles the imbalance in classes, therefore allowing the ANOVA-Bootstrapped-PCA algorithm to
be competitive to the classical PCA approach. The ANOVA-Bootstrapped-PCA decision tree classifier offers
automatic selection of principal components, unlike the classical approach. Despite this advantage, the
decision tree classifier is not appropriate in all cases, so the ANOVA-Bootstrapped-PCA decision tree
classifier cannot be applied in all cases with imbalanced data. How the ANOVA-Bootstrapped-PCA
Classification can handle class imbalance is a topic of further research.

Table 8. Principal components selected according to the classical approach

PC % of var explained var explained
PC1 53% PC1+PC2 83%
PC2 30% PC1+PC2+PC3 100%
PC 3 16%

PC 4 0%
PC5 0%

Source: author’s calculations

Table 9. Results from the proposed approach

Percentile Number of features Accuracy of DT Accuracy of SVM
10% 0.4 83.92% 76.78%
20% 0.8 83.92% 76.78%
30% 12 83.92% 76.78%
40% 1.6 97.95% 76.85%
50% 2 97.95% 76.85%
60% 24 97.95% 76.85%
70% 2.8 98.14% 75.98%
80% 3.2 98.14% 75.98%
90% 3.6 98.14% 75.98%

100% 4 98.45% 75.85%

Source: author’s calculations

Table 10. Importance of principal components according to the proposed approach

PC Importance
PC1 1.06356
pPC2 560.478
PC3 126.382
PC4 3.58504

Source: author’s calculations

4. CONCLUSION

This research develops a simple algorithm for automatic detection of the number of principal
components in classification models. The advantages of the proposed algorithm include straightforward
selection of principal components, model selection when necessary and improved model performance. Unlike
the classical principal components analysis, the researcher can have a better overview of the model’s
performance given each combination of principal components, as well compare the model’s performance
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with the same principal components but different classification model. The ANOVA-Bootstrapped-PCA
classification performs both principal components selection and model selection. Improvement of model’s
accuracy is also an advantage of the proposed model. In conclusion, we recommend the proposed algorithm
in cases of balanced-class datasets and if possible, the ANOVA-Bootstrapped PCA decision tree classifier in
case of imbalanced classes.
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