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 The initial step in determining the number of principal components for both 

classification and regression involves evaluating how much each component 

contributes to the total variance in the data. Based on this analysis, a subset 

of components that explains the highest percentage of variance is typically 

selected. However, multiple valid combinations may exist, and the final 

choice is often made manually by the researcher. This study introduces a 

novel yet straightforward algorithm for the automatic selection of the 

number of principal components. By integrating ANOVA and bootstrapping 

with principal component analysis (PCA), the proposed method enables 

automatic component selection in classification tasks. The algorithm is 

evaluated using three publicly available datasets and applied with both 

decision tree and support vector machine (SVM) classifiers. Results indicate 

that this automated procedure not only eliminates researcher bias in selecting 

components but also improves classification accuracy. Unlike traditional 

methods, it selects a single optimal combination of principal components 

without manual intervention, offering a new and efficient approach to PCA-

based model development. 
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1. INTRODUCTION 

Principal component analysis (PCA) is a widely used technique for dimensionality reduction and 

data exploration [1]. It transforms the original dataset into a set of linearly uncorrelated variables known as 

principal components. These components represent linear combinations of the original variables and are 

constructed to capture the maximum variance within the data. The core objective of PCA is to identify a 

subset of principal components that best captures the most informative structure of the dataset, thereby 

enabling more effective regression or classification modeling [1]. A central challenge in applying PCA lies in 

determining the optimal number of components to retain [1]. For decades, both academics and practitioners 

have relied on a standard approach to address this question [1], [2]. This traditional method involves 

transforming the data into principal components and evaluating how much variance is explained by various 

combinations—e.g., the first two, three, or four components. The subset that accounts for the highest 

cumulative variance is typically selected. However, in practice, it is often unclear whether to retain three, 

four, or five components, as the incremental gain in explained variance may be marginal and difficult to 

interpret [1]. 

Many researchers have tried to solve this issue by modifying the PCA equation. The focus of their 

research is how PCA can be used as a feature selection technique. For example, by modifying the equation of 
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the principal components analysis as in [3]. They propose unweighted version of the PCA combined with 

variable selection to avoid the issue of how many components to choose. Prieto-Moreno et al. [4] introduces 

“separability measure between multiple failures” to select the number of principal components. He uses 

discriminant information contained in the PCs to select the right combination. Sharifzadeh et al. [5] proposed 

a sparse PCA method known as SSPCA, designed for data pre-processing and dimensionality reduction. This 

variant of PCA introduces modifications to the computation of eigenvectors and eigenvalues, aiming to 

enhance performance in large datasets. The approach is particularly effective in scenarios where high-

dimensional noise—arising from a large number of variables—needs to be minimized. 

However, a central issue is that when PCA is used as a feature selection, the final set of principal 

components should be converted back to the original features [1]. Unlike other feature selection algorithms, 

the conversion is hard for interpretation as the direct link between the linear combination of principal 

components and the original features is not straightforward [1]. Therefore, PCA is used as a dimensionality 

reduction technique but rarely as a method to select concrete features. Regardless of this, the appropriate 

selection of principal components is a key for the success of the classification model. Therefore, researchers 

aim to find an unbiased and straightforward selection of principal components. For instance, Gajjar et al. [6] 

proposes a novel method to select non-zero loadings in sparse PCA instead of using eigenvalues and 

eigenvectors as it is in the standard PCA [1].  

In 2021, Rahoma et al. [7] introduced a novel method for estimating loading factors in PCA. While 

their algorithm shares similarities with the approach proposed by Gajaar et al. [6] particularly in its focus on 

loading factors—it differs in the bootstrap techniques used to assess the distributional properties of the 

elements within the loading vectors. These elements are then leveraged to construct a sparse loading structure 

for PCA. Based on their findings, Rahoma et al. [7] proposed two new PCA variants: Bootstrap SPCA and 

Sparse IPCA, both of which rely on bootstrap-based resampling. Although these methods represent 

advancements in PCA, none of them provide an automated solution for selecting the number of principal 

components—a critical yet unresolved issue in many applications. This research addresses that gap by 

proposing a fully automatic algorithm for principal component selection. For instance, Pacheco et al. [8] 

outlines a multi-step variable selection process using PCA but explicitly avoids the core question of 

determining the optimal number of principal components. 

An important yet underexplored research direction involves leveraging the textbook PCA approach 

for automatic selection of the number of principal components—without altering the core PCA equations. 

This paper focuses on advancing this line of inquiry and contributes in several key ways. First, we propose a 

novel algorithm that automatically selects a single optimal combination of principal components using the 

standard PCA framework [1]. Unlike other methods that modify PCA computations or rely on subjective 

judgment, our approach adheres strictly to the textbook method while automating the component selection 

process. Second, we expand on previous research [9] by demonstrating the effectiveness of the bootstrap 

procedure in PCA beyond its application in logistic regression. While earlier work showed that bootstrapping 

could guide component selection for logistic models, this study extends those findings to support vector 

machines (SVM) and decision tree classifiers, showing similar benefits in classification performance. Third, 

this work contributes to the broader exploration of bootstrap methods in machine learning, outside their 

traditional statistical applications. Our previous research established the bootstrap as a viable alternative to 

cross-validation in classification problems [10]. This study introduces a new application of bootstrapping: 

aiding the automatic selection of the number of principal components [11], [12]. The proposed methodology 

offers several advantages: it is simple to implement, computationally efficient, and easy to interpret, making 

it practical for real-world data analysis and machine learning tasks. Next section describes the algorithm 

proposed, while section 3 elaborates our findings. 

 

 

2. RESEARCH METHOD  

In this section, we present both the classical PCA algorithm, as described in standard textbooks [13], 

and our proposed algorithm. We use the classical method as a baseline to highlight its limitations and to 

compare its performance against our automated approach. The classical PCA procedure is implemented in 

Python 3.6 using built-in functions. Following the classical steps outlined in [10], [13], we apply PCA but 

adapt the classification stage by using decision tree classifiers and SVMs instead of logistic regression. All 

model parameters are kept at their default values in Python, with the SVM using C=1 and an RBF kernel. 

The classical PCA procedure includes the following steps [1], [13]: 

- Data standardization: Standardize the input data [14] and transform them into principal components 

- Variance analysis: Analyze eigenvalues [15] and eigenvectors [16] to determine the proportion of 

variance each principal component explains. Calculate the cumulative variance explained by the first n 

components. 
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- Component selection: Select the subset of components that explains the highest cumulative variance 

[17]. This method differs from other approaches that use criteria such as AIC or BIC for component 

selection [18]. 

- Model training and evaluation: Use the selected components to train and test classification models 

(decision trees and SVMs). 

It is important to note that, in this classical approach, the selected components are always the first n 

components in order of their index. This is based solely on the decreasing proportion of variance explained 

by each successive component. The component selection process is independent of the classification model 

used. 

Although the classical PCA algorithm [19] is simple and widely applied, it often presents a critical 

limitation: multiple valid combinations of components may explain similar amounts of variance [20]. The 

classical method does not provide automated means to resolve this ambiguity. Researchers are left to select a 

combination manually, relying on prior domain knowledge, literature guidelines, or ad hoc heuristics [1]. In 

many cases, however, such knowledge or rules are not available, and the lack of a clear criterion can 

introduce subjectivity or bias into the analysis [21], [22].  

To overcome this issue, we propose a novel method called ANOVA-Bootstrapped-PCA [9], which 

automates the selection of the optimal number of principal components within a standard PCA framework. 

This method extends our previous work that applied bootstrap-based component selection in the context of 

logistic regression. In this study, we demonstrate its applicability to decision tree classifiers and SVM. We 

refer to the two implementations as: 

− ANOVA-Bootstrapped-PCA-DT: using decision tree classifiers 

− ANOVA-Bootstrapped-PCA-SVM: using SVM 

he algorithm utilizes existing Python functions, including SVC(), DecisionTreeClassifier(), PCA() 

from sklearn.decomposition, and Pipeline from sklearn, to incorporate ANOVA feature selection. 

Additionally, we developed a custom script to implement the tenfold bootstrap procedure, originally 

introduced in our prior study [10]. While earlier bootstrap studies [11], [12] focused on its use as a 

resampling technique in statistical analysis, they did not explore its potential benefits in machine learning. 

Our previous work [10] addressed this gap by demonstrating how the bootstrap can be adapted to 

classification tasks. We now further extend this by integrating bootstrap into PCA for automated component 

selection. The ANOVA-Bootstrapped-PCA algorithm proceeds through the following steps: 

a) Standardization: Standardize the input data (as in the classical approach). 

b) PCA transformation: Apply PCA to the standardized data. 

c) Normalization: Normalize the resulting principal components to the [0, 1] range to eliminate negative 

values. 

d) ANOVA ranking: Perform ANOVA to rank the principal components by importance. Unlike the 

classical method, components are selected based on ANOVA ranking rather than index order, and the 

ranking remains independent of the classification model. 

e) Percentile Grouping: Divide the components into percentiles (10%, 20%, ..., 100%), where each 

percentile contains the top n components based on ANOVA rankings. 

f) Bootstrapped resampling: For each percentile, split the data into training and testing sets using a 70/30 

ratio, repeated via the tenfold bootstrap [10]. 

g) Model training and evaluation: For each percentile group, train and evaluate ten models (both SVM and 

decision tree classifiers). Calculate the average accuracy and classification scores across bootstrap 

samples. 

h) Component selection: Identify the percentile (i.e., component combination) that yields the highest 

classification performance. This defines the optimal number of components for each model. 

 

 

3. RESULTS AND DISCUSSION  

To conduct the experiments, we use three publicly available datasets [23]-[25]. We define X and Y 

variables, where Y is a target variable that represents categories. As PCA is conducted only on independent 

variables, the target variable Y is excluded from the experiments. All results presented in section 3 relate to 

the connection among the X variables as each principal component forms a linear combination of features 

that contains as much information about the data as possible. The aim is to find the most informative set of 

principal components by discovering the set of principal components with the highest variance [16]. 

Therefore, the classical approach produces a table, where the percentage of variance explained of each 

principal component is calculated (% of var explained). The most informative set of principal components 

consists of the first principal components, which contribute the most to the total variance explained. This 

criterion is referred to as ‘cumulative percentage explained’. However, when the total variance explained for 
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two or more sets of principal components is similar, selecting the correct number of principal components 

may not be straightforward. On the other hand, the proposed approach in this paper eliminates the 

involvement of the researcher as it provides an automatic selection of the number of principal components 

regardless of the total variance explained. The results from the two approaches are summarized by dataset in 

the next subsections. 

 

3.1.  The ED dataset [23] 

Table 1 contains the output from the classical approach that calculates the contribution of each 

principal component to the variance explained and the cumulative percentage explained for the first n number 

of principal components. The percentage of variance explained is calculated by eigenvalues and eigenvectors [16].  

 

 

Table 1. Principal components number according to the classical approach 
  % of var explained   var explained, cumulatively % 

PC 1 57.5% PC1+PC2 97.4% 

PC 2 39.9% PC1+PC2+PC3 99.9% 

PC 3 2.5% PC1+PC2+PC3+PC4 100% 

PC 4 0% PC1+PC2+PC3+PC4+PC5 100% 
PC 5 0%     

Source: author’s research 

 

 

Table 1 shows that the first principal component contributes the most to the data variance (57.9%), 

followed by the second (39.9%) and the third. The first two principal components together account for 97.4% 

of the variance in data, while the first three–99.9%. The contribution of the fourth and fifth principal 

component is too small to be considered. In this case, the book rule [16] advises to select the combination 

that results in the highest cumulative variance explained. This would be the first three principal components. 

When we use the first three principal components to run the SVMs with RBF kernel, the model achieves 

96.9% accuracy. The decision tree classifier achieves 98.2%. However, the aim of the PCA is to perform 

dimensionality reduction [16]. Given that the first two principal components account for 97.4% of the 

variability in data and the very small contribution of the third principal component, another researcher may 

select the first two principal components. In this case, a smaller number of principal components would be 

selected, while the variance explained would be high enough. The example of the ed dataset demonstrates 

that in some cases more than one principal component combination is possible. In the case of the ed dataset 

selecting two or three principal components would not affect the outcome of the model significantly due to 

its small number of components. However, the issue of how many principal components to select and avoid 

the manual selection is very important in dataset with many principal components.  

To achieve an automatic selection of the number of principal components, we propose the ANOVA-

Bootstrapped-PCA classification. In this algorithm, the importance of the principal components is first 

calculated using ANOVA. Similarly, to the classical algorithm, their importance does not change with the 

classification model used. Table 2 summarizes the importance of the principal components in the ed dataset. 

 

 

Table 2. Importance of the principal components according to the new proposed approach 
PC Importance 

PC1 17.1677 

PC2 8.70988 

PC3 3550.92 
PC4 41.9038 

PC5 8.95789 

Source: author’s calculations 

 

 

According to Table 2, the most important principal components are the third one, the fourth and the 

first one. An impotant highlight is that this outcome is different from the classical approach. The classical 

approach identifies the first n most importance principal components, where the first always contributes the 

most, and the second is second in order. However, the newly proposed approach observes the importance of 

each principal component separately and their importance does not depend on their place in the dataset. The 

importance of each principal component remains the same regardless of the classification model used.  

Table 3 shows how many principal components are selected using the ANOVA-Bootstrapped classification 

algorithm when the SVM and the decision tree classifier are fitted. 
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Table 3. Number of principal components selected using the ANOVA-bootstrapped classification in  

SVM and DT 
Percentile Number of PCs Accuracy of DT Accuracy SVM 

10% 0.5 96.5% 97.4% 
20% 1 96.5% 97.4% 

30% 1.5 98.3% 98.2% 

40% 2 98.3% 98.2% 
50% 2.5 98.3% 98.2% 

60% 3 99.2% 97.5% 

70% 3.5 99.2% 97.5% 
80% 4 99.2% 97.6% 

90% 4.5 99.2% 97.6% 

100% 5 99.3% 96.8% 

Source: author’s calculation 

 

 

In the case of the decision tree classifier, the three most important principal components that are 

selected are the fourth, third and first (Table 3). Using this combination, the decision three classifier achieves 

the highest accuracy of 99.2%, while retaining the smallest possible combination of principal components 

(performing dimensionality reduction). Although the accuracy of 99.2% can also be achieved by adding the 

fifth principal component (as it is the fourth most important), this combination would use more principal 

components than optimal for dimensionality reduction. Therefore, selecting the fourth, third and first 

principal components are the best combination for achieving the highest accuracy in the decision tree 

classifier.  

Using the proposed algorithm, the case for the SVM is different. Table 3 shows that the highest 

accuracy (98.2%) for the SVM model can be achieved using only 2 principal components, these being the 

third and the fourth (Table 2). The third and the fourth principal components are the best selection for the 

SVM for three reasons. First, they are the most important ones according to Table 2. Second, they produce 

the highest accuracy for the SVM. Third, the SVM accuracy using the two and three most important principal 

components is similar. Therefore, the third most important principal components does not add additional 

information to the model. This result differs from the classical approach. In the classical approach the number 

of principal components selected is the same regardless of the classification model used. However, our 

approach selects the number of principal components that would produce the best accuracy given the 

classification model used. Our algorithm can be used to select the combination of principal components that 

would improve the model’s performance. For instance, the classical approach resulted in 96.9% accuracy 

from the SVM using the first 3 principal components. The ANOVA-bootstrapped-PCA SVM achieved 

98.2% accuracy using only the first two most important principal components. The algorithm we propose 

improved the accuracy resulting from the classical PCA SVM by 1.3% and it performed dimensionality 

reduction better as it uses only 2 principal components. Therefore, the proposed algorithm can be used not 

only to automatically select the number of principal components, but it also improves the performance of the 

model and perform dimensionality reduction better. Similar case is observed with the decision tree classifier, 

where the classical PCA approach resulted in 98.2% accuracy using three principal components, while the 

proposed algorithm achieved 99.2% accuracy using 3 principal components (Table 3). In the example of the 

decision tree classifier, the proposed algorithm provides an automatic selection of three principal 

components, eliminating the choice between the first two and three principal components that is offered by 

the classical approach. Also, the necessary principal components are automatically selected using the 

ANOVA-bootstrapped-PCA algorithm. 

 

3.2.  The food dataset [24] 

Similar results can be observed in the food dataset. Table 4 summarizes the contribution of each 

principal component to the total variability of data and the cumulative contribution according to the classical 

approach. 

 

 

Table 4. Classical approach in the food dataset 
PC % of var explained  Var explained, cumulative % 

PC 1 41% PC1+PC2 63.0% 

PC 2 22% PC1+PC2+PC3 79% 
PC 3 16% PC1+PC2+PC3+PC4 93% 

PC 4 14% PC1+PC2+PC3+PC4+PC5 100% 

PC5 7%     

Source: author’s calculations 
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The output in Table 4 does not change with the classification model used. The number of principal 

components selected based on Table 4 is the one to be used in all classification models. Table 4 shows that 

the first four principal components have a significant contribution to the variability of data accounting for 

93% of total variance in data. However, if the first three principal components are selected, then only 79% of 

the variability of data would be explained. In this case, the answer is straightforward, so the first four 

principal components should be selected. Selecting the first three would lead to a significant loss of important 

information. Table 4 demonstrates that in the case of the food dataset. The selection of principal components 

following the classical approach is obvious. However, the dimensionality reduction is not effective as only 

one principal component should be removed from the classification model according to the classical 

approach. Therefore, in complex models a better set of principal components might be the first three but that 

would come at the cost of some loss in data information. Therefore, the researcher should decide whether to 

use the first three or first four principal components depending on the purpose of their task.  

Another disadvantage of the classical approach is that the researcher does not know whether a 

straightforward selection of principal components would be possible before running the classical algorithm. 

This makes the classical approach inefficient as it can lead to time consuming decisions and manual selection 

in big datasets. Also, bias can be introduced in the model in cases where the decision about the number and 

set of principal components should involve the researcher. The newly proposed approach, however, ranks the 

importance of principal components, while producing a table based on which identifying the combination 

that results in the highest accuracy is possible. This leads to an automatic and straightforward selection of 

principal components. Table 5 demonstrates the importance of the principal components resulting from the 

ANOVA step in our algorithm for the food dataset. 

 

 

Table 5. Principal components importance according to the new approach for the food dataset 
PC Importance 

PC1 708.444 
PC2 677.15 

PC3 1202.37 

PC4 35.5811 
PC5 1.17576 

Source: author’s calculation 

 

 

According to Table 5, for the food dataset the first most important principal component is the third 

one, then the first, second, fourth and fifth. The combination of principal components that should be used for 

the SVM and DT according to the proposed approach is demosntrated in Table 6. 

 

 

Table 6. Results from the ANOVA-Bootstrapped PCA classification 
Percentile Number of features Accuracy of DT Accuracy of SVM 

10% 0.5 78.8% 86.2% 

20% 1 78.8% 86.2% 

30% 1.5 81.8% 86.2% 
40% 2 81.8% 86.2% 

50% 2.5 81.8% 86.2% 

60% 3 83.4% 86.2% 

70% 3.5 83.4% 86.2% 

80% 4 83.9% 86.2% 

90% 4.5 83.9% 86.2% 
100% 5 83.5% 86.2% 

Source: author’s calculations 

 

 

The proposed algorithm achieves accuracy of 83.9% from the DT using the four most important 

principal components in the food dataset, while the classical approach–accuracy of 83.2% using the first four 

principal components. The ANOVA-bootstrapped-PCA algorithm produces higher accuracy when used with 

the four most important variables based on the ANOVA ranking. As Tables 4 and 5 demonstrate the sets of 

four principal components for the decision tree classifier vary in the two approaches. The classical approach 

uses the first four principal components that have the highes total variance explained (Table 3), while the 

proposed algorithm uses the four most important principal components based on their ANOVA score in 

Table 4 the SVMs, on the other hand, results in 86.2% accuracy when the proposed algorithm is applied 

(Table 6). Table 6 shows that regardless of the number of principal components used, the accuracy achieved 

by the proposed SVM model is 86.2%. Therefore, fitting SVM withonly 1 principal component results in the 
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best accuracy according to the ANOVA-bootstrapped-PCA apporach while the classical approach achieves 

90% using 4 principal components. The reason for this discrepancy is that the food dataset has imbalanced 

classes, so the proposed approach with SVM is not appropriate in this case. Class 1 cannot be correctly 

predicted as it has very few observations. This is not the case for the decision tree classifier, which accounts 

for the imbalanced classes and predicts both classes correctly. However, the prediction of class 1 in the 

proposed methodology is worse than in the classical approach. This can be seen in Table 7 that compares the 

classification metrics from the SVM and DT resulting from the classical approach and the proposed new 

approach. Table 7(a) shows that the classic PCA SVM predicts correctly about 90.5% of class 0 and 81.3% 

of class 1 despite the imbalanced classes. However, this is not the case in the ANOVA-Bootstrapped-PCA 

SVM as it predicts well the predominant class 0 but fails to predict the minority class 1. Table 7(b) shows 

that the classic PCA decision tree correctly predicts class 1 in about 39% of the cases, which is similar to the 

proposed approach. The decision tree classifier in both cases gives similar measures despite the class 

imbalance.  

 

 

Table 7. Classification metrics of the (a) SVM and (b) DT resulting from the classical approach and the 

proposed algorithm 

(a) 
Classic PCA SVM Precision Recall f1-score Support 

0 90.5% 98.6% 94.4% 20624 
1 81.3% 36.5% 50.3% 3347 

     

avg/total 89.2% 90.0% 88.3% 23971 
     

     

ANOVA BOOTSTRAPPED PCA SVM precision recall f1-score support 
0 86.2% 100.0% 92.6% 10256 

1 0.0% 0.0% 0.0% 1645 

     
avg/total 74.3% 86.2% 79.8% 11901 

 

(b) 

Classic PCA        
Class Precision Recall f1-score Support 

0 91% 89% 90% 20624 
1 39% 43% 41% 3347 

avg/total 83% 83% 83% 23971 

          
          

ANOVA BOOTSTRAPPED PCA DT       

0 89% 89% 89% 10226 
1 34% 33% 34% 1669 

avg/total 82% 82% 82% 11901 

Source: author’s calculations 

 

 

In the case of imbalanced data, we do not recommend using the proposed approach with SVM. 

Further research should be conducted to explore the performance of the proposed algorithm on imbalanced 

data and other classification models that cannot compensate for imbalanced classes. The decision tree 

classifier, however, is appropriate to use with the proposed ANOVA-bootstrapped-PCA in imbalanced 

datasets. 

 

3.3.  The fraud dataset [25] 

The Fraud dataset has 5 principal components. Its classes are relatively balanced as was in the Ed 

dataset. Table 8 shows the contribution of each principal component to the total variance of data according to 

the classical approach. The first three principal components account for 96.7% percent of the variability of 

data. They are used to fit the SVM and DT classifiers. 

The classical PCA results in 96.7% accuracy when the decision tree classifier is fitted using the first 

three principal components (Table 8) and in 75.8% when the SVM classifier is fitted with the same principal 

components like in the decision tree classifier. As Table 9 shows the proposed ANOVA-Bootstrapped-PCA 

SVM and DT perform better than the classical approach. 

As Table 9 shows the bootstrapped PCA decision tree achieved 98.1% accuracy using 3 principal 

components (the second, third and fourth as Table 10 shows), which is 1.4% p.p. higher than the classical 
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approach. While the SVM resulted in accuracy of 76.9% using 2 principal components, which is by 1.1 p.p. 

higher than the classic PCA SVM approach. The classification scores are similar for the classic and proposed 

approach as it is in the ed dataset.  

When classes are balanced, the ANOVA-Bootstrapped PCA classification can select the number of 

principal components automatically and in many cases improve the accuracy of the model. As Tables 3, 6, 

and 9 demonstrate the proposed algorithm can also be used to compare the performance of different 

classification models using different numbers of principal components. A decision not only about the number 

of principal components but also about what model to use can be made. The proposed algorithm can also be 

used for model selection.  

The proposed algorithm is a novel approach to selecting the number of principal components for 

classification. The ANOVA-Bootstrapped-PCA classification algorithm provides a fast and effective way to 

select the number of principal components and improve the accuracy of the model. It can also be used for 

model selection as the performance of several classification models can be compared. Based on the accuracy 

and number of principal components selected, one classification model can be selected over another one. 

However, the algorithm performs well only in datasets with balanced classes. In case of imbalanced data, the 

ANOVA-Bootstrapped-PCA algorithm works well with the decision tree classifier. The decision tree 

classifier handles the imbalance in classes, therefore allowing the ANOVA-Bootstrapped-PCA algorithm to 

be competitive to the classical PCA approach. The ANOVA-Bootstrapped-PCA decision tree classifier offers 

automatic selection of principal components, unlike the classical approach. Despite this advantage, the 

decision tree classifier is not appropriate in all cases, so the ANOVA-Bootstrapped-PCA decision tree 

classifier cannot be applied in all cases with imbalanced data. How the ANOVA-Bootstrapped-PCA 

Classification can handle class imbalance is a topic of further research. 

 

 

Table 8. Principal components selected according to the classical approach 
PC % of var explained  var explained 

PC 1 53% PC1+PC2 83% 

PC 2 30% PC1+PC2+PC3 100% 

PC 3 16%   
PC 4 0%   

PC 5 0%   

Source: author’s calculations 

 

 

Table 9. Results from the proposed approach 
Percentile Number of features Accuracy of DT Accuracy of SVM 

10% 0.4 83.92% 76.78% 

20% 0.8 83.92% 76.78% 
30% 1.2 83.92% 76.78% 

40% 1.6 97.95% 76.85% 

50% 2 97.95% 76.85% 
60% 2.4 97.95% 76.85% 

70% 2.8 98.14% 75.98% 

80% 3.2 98.14% 75.98% 
90% 3.6 98.14% 75.98% 

100% 4 98.45% 75.85% 

Source: author’s calculations 

 

 

Table 10. Importance of principal components according to the proposed approach 
PC Importance 

PC1 1.06356 

PC2 560.478 
PC3 126.382 

PC4 3.58504 

Source: author’s calculations 

 

 

4. CONCLUSION  

This research develops a simple algorithm for automatic detection of the number of principal 

components in classification models. The advantages of the proposed algorithm include straightforward 

selection of principal components, model selection when necessary and improved model performance. Unlike 

the classical principal components analysis, the researcher can have a better overview of the model’s 

performance given each combination of principal components, as well compare the model’s performance 
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with the same principal components but different classification model. The ANOVA-Bootstrapped-PCA 

classification performs both principal components selection and model selection. Improvement of model’s 

accuracy is also an advantage of the proposed model. In conclusion, we recommend the proposed algorithm 

in cases of balanced-class datasets and if possible, the ANOVA-Bootstrapped PCA decision tree classifier in 

case of imbalanced classes. 
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