Chronic kidney disease prediction model using machine learning approach

Munusamy Chitra, Abdul Kuthus Parveen, Murugadoss Elavarasi, Jayamoorthy Sangeetha, Ramalingam Vaittilingame


Chronic disease (CD) such as kidney disease and causes severe challenging issues to the people all around the world. Chronic kidney disease (CKD) and diabetes mellitus (DM) are considered in this paper. Predicting the diseases in earlier stage, gives better preventive measures to the people. Healthcare domain leads to tremendous cost savings and improved health status of the society. The main objective of this paper is to develop an algorithm to predict CKD occurrence using machine learning (ML) technique. The commonly used classification algorithms namely logistic regression (LR), random forest (RF), conditional random forest (CRF), and recurrent neural networks (RNN) are considered to predict the disease at an earlier stage. The proposed algorithm in this paper uses medical code data to predict disease at an earlier stage.


Chronic kidney disease; Classification methods; Health care; Machine learning; Medical code data

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats