Machine learning techniques for plant disease detection: an evaluation with a customized dataset

Amatullah Fatwimah Humairaa Mahomodally, Geerish Suddul, Sandhya Armoogum


Diseases in edible and industrial plants remains a major concern, affecting producers and consumers. The problem is further exacerbated as there are different species of plants with a wide variety of diseases that reduce the effectiveness of certain pesticides while increasing our risk of illness. A timely, accurate and automated detection of diseases can be beneficial. Our work focuses on evaluating deep learning (DL) approaches using transfer learning to automatically detect diseases in plants. To enhance the capabilities of our approach, we compiled a novel image dataset containing 87,570 records encompassing 32 different plants and 74 types of diseases. The dataset consists of leaf images from both laboratory setups and cultivation fields, making it more representative. To the best of our knowledge, no such datasets have been used for DL models. Four pre[1]trained computer vision models, namely VGG-16, VGG-19, ResNet-50, and ResNet-101 were evaluated on our dataset. Our experiments demonstrate that both VGG-16 and VGG-19 models proved more efficient, yielding an accuracy of approximately 86% and a f1-score of 87%, as compared to ResNet-50 and ResNet-101. ResNet-50 attains an accuracy and a f1-score of 46.9% and 45.6%, respectively, while ResNet-101 reaches an accuracy of 40.7% and a f1-score of 26.9%.


Convolutional neural networks; Deep learning; Plant disease detection; Transfer learning

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats