Design of a 175 GHz SiGe-based voltage-controlled oscillator with greater than 7.6 dBm power
Abstract
In this research, we present a low phase noise (PN) and wide tuning range 175 GHz inductors and capacitors (LC) voltage-controlled oscillator (VCO) based on a differential Colpitts oscillator that was designed using a 0.13 μm bipolar complementary metal oxide semiconductor (BiCMOS) and simulated. The square of the tank Q-factor and the square of the oscillation amplitude were both maximized to reduce PN. With an extensive examination of parasitic, mathematical analysis of load impedances, and implementation of differential design, the PN was reduced, and the output power was enhanced. Using a supply voltage of 1.6 V, the VCO consumes 41.9 mA, resulting in a total power usage of 67 mW to prevent undesirable PN deterioration, an inter-stage LC filter at the VCO-buffer interface increases the swing at the buffer input. To make a better output, a buffer is used to isolate the load from the VCO core. In addition, the VCO has a high linearity and the overall, the VCO presented in this study demonstrates excellent performance and has the potential to be used in a wide range of applications that require a high-performance, low-power VCO.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijict.v12i2.pp103-114
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSN 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).