Acceleration of convolutional neural network based diabetic retinopathy diagnosis system on field programmable gate array

Meriam Dhouibi, Ahmed Karim Ben Salem, Afef Saidi, Slim Ben Saoud


Diabetic retinopathy (DR) is one of the most common causes of blindness. The necessity for a robust and automated DR screening system for regular examination has long been recognized in order to identify DR at an early stage. In this paper, an embedded DR diagnosis system based on convolutional neural networks (CNNs) has been proposed to assess the proper stage of DR. We coupled the power of CNN with transfer learning to design our model based on state-of-the-art architecture. We preprocessed the input data, which is color fundus photography, to reduce undesirable noise in the image. After training many models on the dataset, we chose the adopted ResNet50 because it produced the best results, with a 92.90% accuracy. Extensive experiments and comparisons with other research work show that the proposed method is effective. Furthermore, the CNN model has been implemented on an embedded target to be a part of a medical instrument diagnostic system. We have accelerated our model inference on a field programmable gate array (FPGA) using Xilinx tools. Results have confirmed that a customized FPGA system on chip (SoC) with hardware accelerators is a promising target for our DR detection model with high performance and low power consumption.


Convolutional neural networks; Diabetic retinopathy; Diagnosis system; Embedded systems; Field programmable gate array

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats