Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble

Arnold Adimabua Ojugo, Patrick Ogholuwarami Ejeh, Christopher Chukwufunaya Odiakaose, Andrew Okonji Eboka, Frances Uchechukwu Emordi


Rainfall as an environmental feat can change fast and yield significant influence in downstream hydrology known as runoff with a variety of implications such as erosion, water quality, and infrastructures. These, in turn impact the quality of life, sewage systems, agriculture, and tourism of a nation to mention a few. It chaotic, complex, and dynamic nature has necessitated studies in the quest for future direction of such runoff via prediction models. With little successes in use of knowledge driven models, many studies have now turned to data-driven models. Dataset is retrieved from Metrological Center in Lagos, Nigeria for the period 1999-2019 for the Benin-Owena River Basin. Data is split: 70% for train and 30% for test. Our study adapts a spatial-temporal profile hidden Markov trained deep neural network. Result yields a sensitivity of 0.9, specificity 0.19, accuracy of 0.74, and improvement rate of classification of 0.12. Other ensembles underperformed when compared to proposed model. The study reveals annual rainfall is an effect of variation cycle. Models will help simulate future floods and provide lead time warnings in flood management.


Deep learning; Nigeria; Optimization tasks; Profile hidden Markov; Rainfall runoff

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats