Enhancing predictive modelling and interpretability in heart failure prediction: a SHAP-based analysis

Niaz Ashraf Khan, Md. Ferdous Bin Hafiz, Md. Aktaruzzaman Pramanik

Abstract


Predictive modelling plays a crucial role in healthcare, particularly in forecasting mortality due to heart failure. This study focuses on enhancing predictive modelling and interpretability in heart failure prediction through advanced boosting algorithms, ensemble methods, and SHapley Additive exPlanations (SHAP) analysis. Leveraging a dataset of patients diagnosed with cardiovascular diseases (CVD), we employed techniques such as synthetic minority over-sampling technique (SMOTE) and bootstrapping to address class imbalance. Our results demonstrated exceptional predictive performance, with the gradient boosting (GBoost) model achieving the highest accuracy of 91.39%. Ensemble techniques further enhanced performance, with the voting classifier (VC), stacking classifier (SC), and Blending achieving accuracies of 91.00%. SHAP analysis uncovered key features such as time, Serum_creatinine, and Ejection_fraction, significantly impacting mortality prediction. These findings highlight the importance of transparent and interpretable machine learning models in healthcare decision-making processes, facilitating informed interventions and personalized treatment strategies for heart failure patients.

Keywords


CVD; Ensemble models; Heart failure; Interpretability; SHAP analysis

Full Text:

PDF


DOI: http://doi.org/10.11591/ijict.v14i1.pp11-19

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats