Enhanced n-party Diffie Hellman key exchange algorithm using the divide and conquer algorithm
Abstract
Cryptographic algorithms guarantee data and information security via a communication system against unauthorized users or intruders. Numerous encryption techniques have been employed to safeguard this data and information from hackers. By supplying a distinct shared secret key, the n-party Diffie Hellman key exchange approach has been used to protect data from hackers. Using a quadratic time complexity, the n-party Diffie-Hellman method is slow when multiple users use the cryptographic key interchange system. To solve this issue, the researchers created an effective shared hidden key for the n-party Diffie Hellman key exchange of a cryptographic system using the divide-and-conquer strategy. The current research recommends the use of the divide and conquer algorithm, which breaks down the main problem into smaller subproblems until it reaches the base solution, which is then merged to generate the solution of the main problem. The comparative analysis indicates that the developed system generates a shared secret key faster than the current n-party Diffie Hellman system.
Keywords
Asymmetric cryptography; Cryptography; Cryptosystem; Key exchange; Private key; Symmetric cryptography
Full Text:
PDFDOI: http://doi.org/10.11591/ijict.v14i2.pp438-445
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).