Enhancing database query interpretation: a comparative analysis of semantic parsing models

Gunjan Keswani, Manoj B. Chandak

Abstract


The rapid proliferation of NoSQL databases in various domains necessitates effective parsing models for interpreting NoSQL queries, a fundamental aspect often overlooked in database management research. This paper addresses the critical need for a comprehensive understanding of existing semantic parsing models tailored for NoSQL query interpretation. We identify inherent issues in current models, such as limitations in precision, accuracy, and scalability, alongside challenges in deployment complexity and processing delays. This review is pivotal, shedding light on the intricacies and inefficiencies of existing systems, thereby guiding future advancements in NoSQL database querying. This methodical comparison of these models across key performance metrics-precision, accuracy, recall, delay, deployment complexity, and scalability-reveals significant disparities and areas for improvement. By evaluating these models against both individual and combined parameters, we identify the most effective methods currently available. The impact of this work is far-reaching, providing a foundational framework for developing more robust, efficient, and scalable parsing models. This, in turn, has the potential to revolutionize the way NoSQL databases are queried and managed, offering significant improvements in data retrieval and analysis. Through this paper, we aim to bridge the gap between theoretical model development and practical database management, paving the way for enhanced data processing capabilities in diverse NoSQL database applications.

Keywords


Deployment complexity; NoSQL databases; Query accuracy; Scalability; Semantic parsing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijict.v14i2.pp467-477

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats