
International Journal of Informatics and Communication Technology (IJ-ICT)
Vol. 13, No. 3, December 2024, pp. 370∼379
ISSN: 2252-8776, DOI: 10.11591/ijict.v13i3.pp370-379 ❒ 370

Utilizing deep learning algorithms for the resolution of
partial differential equations

Soumaya Nouna1,2, Assia Nouna2, Mohamed Mansouri2, Achchab Boujamaa2
1Department of Mathematics and Informatics, Hassan First University of Settat, ENSA Berrechid, Laboratory LAMSAD,

Berrechid, Morocco
2Hassan First University of Settat, ENSA Berrechid, Laboratory LAMSAD, Berrechid, Morocco

Article Info

Article history:

Received May 29, 2024
Revised Jul 23, 2024
Accepted Aug 27, 2024

Keywords:

Deep learning
Machine learning
Neural network
Partial differential equations

ABSTRACT

Partial differential equations (PDEs) are mathematical equations that are used to
model physical phenomena around us, such as fluid dynamics, electrodynamics,
general relativity, electrostatics, and diffusion. However, solving these equa-
tions can be challenging due to the problem known as the dimensionality curse,
which makes classical numerical methods less effective. To solve this problem,
we propose a deep learning approach called deep Galerkin algorithm (DGA).
This technique involves training a neural network to approximate a solution by
satisfying the difference operator, boundary conditions and an initial condition.
DGA alleviates the curse of dimensionality through deep learning, a meshless
approach, residue-based loss minimisation and efficient use of data. We will test
this approach for the transport equation, the wave equation, the Sine-Gordon
equation and the Klein-Gordon equation.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Soumaya Nouna
Department of Mathematics and Informatics, Hassan First University of Settat
ENSA Berrechid, Laboratory LAMSAD
Berrechid, Morocco
Email: s.nouna@uhp.ac.ma

1. INTRODUCTION
Partial differential equations (PDEs) [1] can help us discover and understand the workings of nature,

but most of these differential equations are impossible to solve due to their complexity and computationally
intensive nature. For this reason, we use deep learning methods and exactly deep neural networks [2], [3] to
solve mathematical problems. On the other hand, classical numerical methods [4] solve just one instance of the
partial differential equation, unlike neural operators which study a complete group of partial differential equa-
tions, and also they immediately study the mapping of each function parameter dependent to the solution. This
is why the field of artificial intelligence (AI) [5]-[7] is more important for a solution to these partial differential
equations. Moreover, deep neural networks (DNNs) are able to provide solutions by solving problems without
a specific amount of data. There are various different types of deep neural network architectures, however
we will use long short-term memory (LSTM) network in our technique. The LSTM network, also known as
LSTM, has been identified as the most successful recurrent neural network (RNN) [8] structure for the deep
learning domain. The LSTM prevents the problem of the leakage gradient through the addition of the three gate
structures: the forget gate, the entry gate, and the exit gate, by means of which the memory for the previous
states may be effectively checked. The LSTM has been used extensively in various fields, primarily in machine
learning (ML) applications domains.

Journal homepage: http://ijict.iaescore.com



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 371

Finite element technique [9], [10] approximates solutions by shape functions and Galerkin methods
[11], [12] approximate solutions by basis functions. In contrast, deep Galerkin algorithm (DGM) use neural
networks rather than basis functions and shape functions where these neural networks are capable of solv-
ing more complex systems. Our deep Galerkin algorithm (DGA) approach represents the natural fusion of
Galerkin’s approaches with ML [13], [14]. Also, DGM method may also be used to deal with first-order differ-
ential equations that are generally found in the field of finance [15]. The principal concept of the approach is
to use deep neural networks to represent unknown functions. Notifying that where we reduce the losses asso-
ciated with several operators and boundary conditions, a neural network can be trained. In addition, the neural
network training data also consists of various possible function inputs generated through a random sample of
the area over which a partial differential equation is being determined. One of the most distinctive properties
of this method is that it is meshless, contrary to other numerical methods regularly used.

In this paper, we will apply a method that uses deep learning (DL) to solve partial differential equa-
tions. Specifically, this technique employs a deep neural network to approximate a solution of a PDE. Further-
more, stochastic gradient descent (SGD) has also been utilized for training the deep neural network at random
sampled spatial points for satisfying the difference operator, the initial conditions, and the boundary conditions.
The manuscript structure is presented in the following way: in this section 2, we present the theoretical part of
LSTM, and the description of the deep neural network approach for solving the equations and their algorithm.
Finally, in section 3 we provide some detailed calculation experiences to solve the PDEs, and in section 4
conclude.

2. METHOD (LSTM AND DGA)
Deep learning [16], [17] is simply a kind of ML, which is an inspiration for the human brain structure.

DL techniques attempt to derive human-like conclusions by continuously examining data with a predefined
logical framework. In order to succeed, DL utilizes a multi-layered architecture involving many algorithms
known as neural networks. Moreover, neural network design focuses specifically on the human brain structure.
Much like the way that we utilize the brain for identifying models or classifying various kinds of information,
it is also possible to train neural networks to execute similar data processing tasks. Human brains behave in a
similar way. Every time we acquire novel data, our brains try to associate the data with familiar items. This is
a similar idea employed in deep learning.

In this section, we detail the architecture of the LSTM network used, the steps involved in formulating
the method, and the training algorithm for solving the PDEs. We will also discuss some relevant theorems
related to these networks. This innovative approach demonstrates how deep learning can be effectively applied
to complex mathematical physics problems.

2.1. The LSTM structure
RNNs [18], [19] are used for persistent memory because it remembers preceding knowledge and is

used to process any present input. However, due to the decreasing gradient, the RNN cannot remember long-
term dependencies. Thus, to avoid the problems of long-term dependencies, we use the LSTM which is a more
sophisticated RNN, a successive neural network that can retain knowledge. The LSTM [20]-[22] is working
as an RNN cell. It contains three parts, which each serves a particular purpose. Part one is called Forget gate
and selects if any information from the preceding timestamp should be memorized or if it is not relevant and
may be discarded. The second part is known as an Input gate, where the cell attempts to obtain some novel
information taken from entry into that cell. Finally, the third part is an output gate where a cell transmits
upgraded information from the present time-stamp into the next time-stamp.

As a basic RNN, the LSTM has a hidden state, while Ht−1 indicates the last time’s hidden state, and
Ht indicates the present time’s hidden state. Furthermore, LSTM has a cell state described by C(t-1) and C(t)
as the current and previous time-stamp correspondingly. Again, the hidden state is called short-term memory
with the cellular state is called long-term memory (see Figure 1). Therefore, there are two sections to the LSTM
equations. The input port It, forget port Ft, and output port Ot are all found in the first section. Cell state Ct,
candidate cell state C̃t, and final output Ht are included in the second section. The equations can be expressed
mathematically as follows:

It = σ(WI ·Xt + VI ·Ht−1 + bI) (1)

Ft = σ(WF ·Xt + VF ·Ht−1 + bF ) (2)

Utilizing deep learning algorithms for the resolution of partial differential equations (Soumaya Nouna)



372 ❒ ISSN: 2252-8776

Ot = σ(WO ·Xt + VO ·Ht−1 + bO) (3)

C̃t = tanh(WC ·Xt + VC ·Ht−1 + bC) (4)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (5)

Ht = Ot ⊙ tanh(Ct) (6)

Figure 1. LSTM cell

Ht−1 is the output of the precedent LSTM phase (at t − 1), Xt is the present timestamp’s input, bX
represents the biases for the various ports, WX represents the weight for the corresponding port neurons and
σ represent an activation function. The most prominent advantages of LSTM neural networks are that the
structure has the potential to successfully prevent leakage gradient phenomena and thus be chosen as an RNN
Structure to identify the system for this document.

2.1.1. A neural network theorems
The following two important theorems for neural networks shall be introduced in this subsection:

the theorem of Stone Weierstrass (Theorem 1) and the theorem of Universal Approximation (Theorem 2).
In addition, with theorem 1, it is possible to show that the non-linear equations with some conditions are
represented using the Wiener series. This leads to the discovery of the theorem of universal approximation.

Theorem 1, consider that X is a compact space of Hausdorff and that B is a sub-algebra at A(X,B)
containing nonzero of constant features. So, B can be dense into A(X,B) if only it can separate the points.

Theorem 2, lets σ be a continuous, non-constant, bounded, and monotonously increasing feature.
Consider ln as an n-dimensional unitary hypercube [0; 1]n. We denote the area of the continued functions onto
ln with A(ln). So, for every function g ∈ A(ln) and ξ > 0, it can exist a number integer M , some actual
constants vj , bj ∈ R, and some reals vectors wj ∈ Rn, with j = 1, ...,M , so that we can determine:

G(x) =

M∑
j=1

vjσ(w
T
j x+ bj) (7)

As the approximated solution for a function g in which g is independent of σ, i.e.,

|G(x)− g(x)| < ξ (8)

with every x ∈ ln. This means that the functions in form G(x) are dense inside A(ln).

2.2. Description of methodology
In general, the type of nonlinear partial differential equations are defined in the following terms: let

u(t,x) denote an unknowable function of time variable t and space variable x with d spatial dimensions. Let
us suppose u has the following partial differential equation:

Int J Inf & Commun Technol, Vol. 13, No. 3, December 2024: 370–379



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 373 ∂tu(t,x) + Lu(t,x) = 0, t ∈ [0, T ],x ∈ Ω ∈ Rd

u(0,x) = u0(x), x ∈ Ω
u(t,x) = h(t,x), t ∈ [0, T ],x ∈ ∂Ω.

(9)

With ∂Ω is the limit of the Ω-field and L denotes a differential operator having the best properties. The
objective of this approach consists in approximating u(t,x) using an approximate feature g(t,x; θ) generated
with a neural network having a collection of parameters θ. This training problem’s loss function is composed
of three components:

i) The measurement for the way that an approximation fulfills the operator of the differential:∥∥∂tg(t,x; θ) + Lg(t,x; θ)
∥∥2
[0,T ]×Ω,ν1

(10)

ii) The measurement for the way that an approximation fulfills the boundary condition:∥∥g(t,x; θ)− h(t,x)
∥∥2
[0,T ]×∂Ω,ν2

(11)

iii) The measurement for the way that an approximation fulfills the initial condition:∥∥g(0,x; θ)− u0(x)
∥∥2
Ω,ν3

(12)

The errors are expressed at items of L2-norm in all three terms, i.e ∥K(z)∥2Z,ν =
∫
Z
|K(z)|2ν(z)dz

with ν(z) is the positive probability density on z ∈ Z. By combining the above three elements, we obtain the
loss function related to the training of the neural network:

J(θ) =
∥∥∂tg(t,x; θ) + Lg(t,x; θ)

∥∥2
[0,T ]×Ω,ν1

+
∥∥g(t,x; θ)− h(t,x)

∥∥2
[0,T ]×∂Ω,ν2

+∥∥g(0,x; θ)− u0(x)
∥∥2
Ω,ν3

(13)

the next step is using stochastic gradient descent (SGD) to optimize a loss function J . More specifically, we
employ the following algorithm.

2.2.1. Algorithm
The deep Galerkin method (DGM) algorithm is described by Algorithm 1. It should be noted that the

presented issue is essentially an optimization issue. To optimize the parameter θ in this problem we can use the
SGD algorithm [23] which takes averaged steps in a descending direction of function J , as in standard deep
neural network training. We can also use the Adam optimizer [24] in our numerical results.

Algorithm 1
1. Initialize the learning rate γn and the parameter set θ0.
2. Generate random samples (tn,xn) based on [0, T ]× Ω depending on ν1 and (τn, yn) based on [0, T ]× ∂Ω
depending on ν2 also wn based on Ω depending on ν3.
3. Determine a loss function at points cn = {(tn,xn), (τn, yn),wn} :

Determine J1(θn; tn,xn) =

(
∂tg(tn,xn; θn) + Lg(tn,xn; θn)

)2

Determine J2(θn; τn, yn) =

(
g(τn, yn)− h(τn, yn)

)2

Determine J3(θn;wn) =

(
g(0,wn)− u0(wn)

)2

Determine J(θn, cn) = J1(θn; tn,xn) + J2(θn; τn, yn) + J3(θn;wn)
4. At point cn, consider a descent step :

θn+1 = θn − γn∇θJ(θn, cn)

5. Replay (2)− (4) until ∥θn+1 − θn∥ is little.

Utilizing deep learning algorithms for the resolution of partial differential equations (Soumaya Nouna)



374 ❒ ISSN: 2252-8776

2.2.2. Implementing regulations
DGA network architecture is similar to that of LSTM. The deep Galerkin layers are composed of 3

layers, including the input, the hidden, and the output layer. Every deep Galerkin layer, on the other hand,
receives as input an original small-batch input X (in our example, a group of randomly generated spatiotem-
poral elements) as well as the output of the preceding deep Galerkin layer. The output result of this process is
a vector-valued Y that involves the neural network’s approximation of the required function V estimated at the
minibatch data points. In the DGA layer, the minibatch input and the preceding layer’s output are converted
via a sequence of actions. In (14) show the architecture.

C1 = σ(W1 ·X + b1)

Dn = σ(Vd,n ·X +Wd,n · Cn + bd,n) n = 1, · · ·, N
Kn = σ(Vk,n ·X +Wk,n · Cn + bk,n) n = 1, · · ·, N
Qn = σ(Vq,n ·X +Wq,n · Cn + bq,n) n = 1, · · ·, N (14)
Hn = σ(Vh,n ·X +Wh,n · (Cn ⊙Qn) + bh,n) n = 1, · · ·, N

Cn+1 = (1−Kn)⊙Hn +Dn ⊙ Cn n = 1, · · ·, N
g(t,x; θ) = W · CN+1 + b

With ⊙ represents Hadamard multiplication (element-by-element). N indicates a whole number of
layers. σ denotes the activation function. b, V, and W represent features, while the different superscripts are
parameters of the model. According to the LSTM concept, every layer generates weights depending on the
previous layer to determine how often information is passed to the next layer.

3. NUMERICAL RESULTS AND DISCUSSION
Throughout this section, we use the deep Galerkin approach to solve several PDEs observed in the

physical environment. Although previous studies have explored the application of neural networks to the nu-
merical solution of PDEs, they have not explicitly addressed the many experimental and practical considerations
necessary for successful implementation. This study examines these considerations in detail, including the de-
sign of the neural network, the balance between execution time and accuracy, the choice of activation functions
and hyper-parameters, optimisation techniques, training intensity, and the programming environment.

We begin by stating a PDE with its exact solution, and then provide an approximate solution using the
DGM. For all subsequent PDEs, we use the same network architecture introduced in Chapter 5 of [15], using
Xavier initialization for the weights. The network has been trained over several iterations, which may vary
between examples.

To generate the training datasets for the model, we used a uniformly distributed sampling method
covering the function domain as well as the initial and terminal conditions. Points within the domain are
generated by uniformly sampling time points t and space points x within the function domain. For boundary
conditions, the time points are fixed at terminal time, and the space points are sampled uniformly over the same
spatial interval.

The model training process follows the following steps:
1. Initialization: the neural network is initialized with the Xavier initialization for the weights, which helps
maintain the gradient scale during back propagation.
2. Sampling: at each iteration, a new set of points is randomly sampled from the function domain for interior
points and terminal conditions.
3. Residual calculation: the model calculates the residuals of the PDE, the boundary conditions and the initial
conditions for the sampled points.
4. Loss minimisation: a loss function based on the residuals is minimised using optimisation techniques such
as Adam. This loss function incorporates errors in the residuals, boundary conditions and initial conditions.
5. Weight update: the neural network weights are updated according to the gradients calculated from the loss
function.
6. Repeat: this process is repeated for a defined number of iterations or until convergence is reached.

Int J Inf & Commun Technol, Vol. 13, No. 3, December 2024: 370–379



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 375

3.1. The transport equation
The transport equation can be known as the convection-diffusion equation, which describes how the

scalar is transmitted in space. Generally, it is used for scalar field transport as material properties, temperature,
or chemical concentration in incompressible flows. Here, the transport equation with the given initial condition
is defined as (15).{

∂tu(t, x) + ∂xu(t, x) = 0, t ∈ [0, T ], x ∈ Ω
u(0, x) = exp(−x2), x ∈ Ω

(15)

The analytical solution of (15) is uex(t, x) = exp(−(x − t)2), where Ω = [0, 1] and T = 1. In this
simulation, we utilize a three-layers neural network with fifty nodes per layer. We also sample uniformly in
the temporal and spatial domains. Figure 2 shows a comparison between the solution by the DGM approach
and the exact solution. The two solutions are almost identical, with a very low error (see Table 1). This high
accuracy without a significant increase in computation time demonstrates the power and efficiency of the DGA
method. Our results suggest that the DGA method is promising for future applications in solving PDEs.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U(
x,
t)

Exact Solution
DGM estimate

Figure 2. The transport equation: the deep Galerkin solution is shown in red, while the analytical solution is
shown in blue. At t = 1, both solutions are confusing

3.2. The wave equation
The below equations are partial differential equations named wave equations, which can be used

to simulate various phenomena, for example, vibrant strings and propagating waves. The dimension of the
constant term v is m/s, which can be explained as wave velocity.

∂2u(t, x)

∂t2
− v

∂2u(t, x)

∂x2
= 0, t > 0, x ∈ [−l, l]

u(0, x) = 1
2 sin(x), x ∈ [−l, l]

u(t,−l) = u(t, l), t > 0.

(16)


∂2u(t, x)

∂t2
− v

∂2u(t, x)

∂x2
= 0, t > 0, x ∈ [−l, l]

u(0, x) = 1
2 cos(x), x ∈ [−l, l]

u(t,−l) = u(t, l), t > 0.

(17)

The exact solutions of (16) and (17) are uex(t, x) =
1
2 (sin(x − vt) + sin(x + vt)) and uex(t, x) =

1
2 (cos(x−vt)+cos(x+vt)) respectively, where l = π and v = 1. Consider that any function with parameters
x − vt or x + vt a combination of both is a solution to the wave equation. This means we can simulate many
different waves. Also, as you might have discovered, the exact solution is a combination of waves propagating
to the left and waves propagating to the right.

We evaluate the DL algorithm on the wave equation. The methodology used to deal with boundary is
to test consistently over the locale of intrigue and acknowledge/reject preparing models for that specific cluster
of focuses, contingent upon whether or not they are inside or outside the limit district inferred by the last cycle
of preparing. This methodology can efficiently retrieve the choice qualifications. As a result, we show that

Utilizing deep learning algorithms for the resolution of partial differential equations (Soumaya Nouna)



376 ❒ ISSN: 2252-8776

the DGM approach precisely addresses the partial differential equations with a very small error (see Table 1).
Figure 3 shows the comparison between the exact solution and the predicted solution for (16) and (17).

−3 −2 −1 0 1 2 3

X

−0.4

−0.2

0.0

0.2

0.4

U
(x
,t
)

Exact Solution

DGM estimate

−3 −2 −1 0 1 2 3

X

−0.4

−0.2

0.0

0.2

0.4

U
(x
,t
)

Exact Solution

DGM estimate

Figure 3. The wave equation: the deep Galerkin solution is shown in red, while the analytical solution is in
blue. The figure on the left shows the simulation of (16), while the figure on the right shows the simulation of

(17)

3.3. The Sine-Gordon equation
The Sine-Gordon equation is associated with the Korteweg de Vries and cubic Schrödinger equations,

as all these equations recognize soliton solutions. This equation represents the nonlinear wave in the elastic
medium. It is also used in many physical applications, such as in relativistic field theory and mechanical
transmission lines. Can be seen in (18):

∂2u(t, x)

∂t2
− ∂2u(t, x)

∂x2
+ sin(u(t, x)) = 0, t ∈ [0, T ], x ∈ [0, L]

u(0, x) = 0, x ∈ [0, L]

ut(0, x) = 2
√
2sech( x√

2
), x ∈ [0, L]

(18)

with L = 2π and the terminal time T = 6π. In (19) is the analytical solution named a breather soliton according
to its oscillatory time evolution.

uex(t, x) = 4 tan−1

(
sin(t/

√
2)

cosh(x/
√
2)

)
(19)

We also tested the DGM algorithm on the Sine-Gordon equation. The deep Galerkin solution is
learned using a loss function to train all parameters of the 3-layer DGM network. Every hidden layer contains
50 hidden neurons. Our DGM should generally provide sufficient approximation capability to satisfy the
complexities of u. Figure 4 shows the predicted and exact solutions of (18). Both solutions are confused
with a small error (see Table 1), which shows that the proposed method has better accuracy.

0 1 2 3 4 5 6

X

0.0

0.5

1.0

1.5

2.0

2.5

U
(x
,t
)

Analytical Solution

DGM estimate

Figure 4. The Sine-Gordon equation: the comparison of predicted and exact solutions. Both solutions are
confusing

Int J Inf & Commun Technol, Vol. 13, No. 3, December 2024: 370–379



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 377

3.4. The Klein-Gordon equation
The Klein-Gordon equation [25], also known as the Klein-Fock-Gordon equation or the Klein-Gordon-

Fock equation, is an equation of relativity wave connected with Schroedinger’s equation. Quanta are spin-less
particles in this field, and the solutions to the Klein-Gordon equations consist of a pseudoscalar or quantum
scalar field. The Klein-Gordon equation’s fundamental theory is strongly linked to the Dirac equation. The
Klein-Gordon standard can be seen in (20):

∂2u(t, x)

∂t2
− ∂2u(t, x)

∂x2
− u(t, x) = 0, t ∈ [0, T ], x ∈ [−L,L]

u(0, x) = 1 + sin(x), x ∈ [−L,L]
ut(0, x) = 0, x ∈ [−L,L]

(20)

with x ∈ [−2, 2] and t ∈ [0, 1]. The exact solution of this equation is defined as (21):

uex(t, x) = sin(x) + cosh(t) (21)

The deep learning algorithm was also put to the test on the Klein-Gordon equation. The DGM is
learned by training all of the parameters of the 3-layer DGM network using the loss function, with each hidden
layer containing 50 hidden neurons. Figure 5 shows that the neural network model’s predictions and exact
solutions are coherent, demonstrating that the deep learning model can successfully solve the Klein-Gordon
equation. Furthermore, the relative error for this example was calculated to be 7, 29.10−4 confirming the
method’s effectiveness. Despite the Klein-Gordon equation’s enormous complexity, the deep learning model
can produce results that are very near to the actual solution from the training data, demonstrating that the
method has significant promise and utility and is worthy of further investigation.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

X

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

U
(x
,t
)

Analytical Solution

DGM estimate

Figure 5. The Klein-Gordon equation: the exact solution and the predicted solution are confused

Table 1. The relative errors are obtained by the deep learning algorithm for each equation
Deep Galerkin method

PDEs Equation (15) Equation (16) Equation (17) Equation (18) Equation (19)
Error 1, 87.10−4 6, 7.10−4 1, 8.10−4 1, 24.10−4 7, 29.10−4

We applied the DGA to solve various PDEs and compared the solutions obtained with the exact
solutions. The results show a strong correlation between the DGA solutions and the exact solutions, with
high accuracy without a significant increase in computation time. Compared with other methods, DGA of-
fers improved accuracy and remarkable efficiency. Although our study demonstrated the viability of DGA,
further research is needed to confirm its robustness for more complex PDEs. Our results suggest that the
DGA is promising for future applications, and optimisation of the hyper-parameters could further improve its
performance.

Utilizing deep learning algorithms for the resolution of partial differential equations (Soumaya Nouna)



378 ❒ ISSN: 2252-8776

4. CONCLUSION
We are confident that deep learning can serve as a beneficial approach to solving partial differential

equations. This study presents a training methodology that leverages the inherent capabilities of neural net-
works for approximating solutions to partial differential equations. The proposed method employs deep neural
networks to represent unknown functions that satisfy a given partial differential equation and form a network
while minimizing the loss function associated with this problem. Moreover, instead of forming a mesh, the
method employs a neural network that has been trained using batches consisting of random temporal and spa-
tial data points. The transport and wave equations are used to demonstrate the effectiveness of the method,
with accurate results obtained. Furthermore, the precision of the approach is evaluated on Sine-Gordon and
Klein-Gordon equations, with computational findings demonstrating the approach’s ability to attain good per-
formance in terms of precision and prediction robustness. These findings provide sufficient evidence to warrant
further research into deep learning methods for solving partial differential equations.

REFERENCES
[1] P. K. Jakobsen, “An introduction to partial differential equations,” arXiv preprint, 2019.
[2] A. L. Caterini and D. E. Chang, Deep neural networks in a mathematical framework. Cham: Springer International Publishing,

2018.
[3] Z. Deng, J. Shi, and J. Zhu, “NeuralEF: deconstructing Kernels by deep neural networks,” Proceedings of Machine Learning

Research, vol. 162, pp. 4976–4992, 2022.
[4] Y. Wang, Y. Yan, and Y. Hu, “Numerical methods for solving space fractional partial differential equations using hadamard

finite-part integral approach,” Communications on Applied Mathematics and Computation, vol. 1, no. 4, pp. 505–523, 2019,
doi: 10.1007/s42967-019-00036-7.

[5] S. Dick, “Artificial intelligence,” Harvard Data Science Review, Jun. 2019, doi: 10.1162/99608f92.92fe150c.
[6] M. Mirbabaie, F. Brünker, N. R. J. M. Frick, and S. Stieglitz, “The rise of artificial intelligence – understanding the AI identity threat

at the workplace,” Electronic Markets, vol. 32, no. 1, pp. 73–99, Mar. 2022, doi: 10.1007/s12525-021-00496-x.
[7] D. Minh, H. X. Wang, Y. F. Li, and T. N. Nguyen, “Explainable artificial intelligence: a comprehensive review,” Artificial Intelli-

gence Review, vol. 55, no. 5, pp. 3503–3568, Jun. 2022, doi: 10.1007/s10462-021-10088-y.
[8] F. M. Talaat, “Explainable enhanced recurrent neural network for lie detection using voice stress analysis,” Multimedia Tools and

Applications, vol. 83, no. 11, pp. 32277–32299, Sep. 2024, doi: 10.1007/s11042-023-16769-w.
[9] P. Gervasio and A. Quarteroni, “The INTERNODES method for non-conforming discretizations of PDEs,” Communications on

Applied Mathematics and Computation, vol. 1, no. 3, pp. 361–401, Sep. 2019, doi: 10.1007/s42967-019-00020-1.
[10] J. J. Connor and C. A. Brebbia, The Finite Element Technique, 1976.
[11] Y. Liu, C. W. Shu, and M. Zhang, “Superconvergence of energy-conserving discontinuous Galerkin methods for lin-

ear hyperbolic equations,” Communications on Applied Mathematics and Computation, vol. 1, no. 1, pp. 101–116, 2019,
doi: 10.1007/s42967-019-0006-y.

[12] J. Badwaik, P. Chandrashekar, and C. Klingenberg, “Single-step arbitrary lagrangian–eulerian discontinuous Galerkin method
for 1-D euler equations,” Communications on Applied Mathematics and Computation, vol. 2, no. 4, pp. 541–579, 2020,
doi: 10.1007/s42967-019-00054-5.

[13] I. El Naqa and M. J. Murphy, “What is machine learning?,” in Springer International Publishing, 2015, pp. 3–11.
[14] P. P. Shinde and S. Shah, “A review of machine learning and deep learning applications,” in Proceedings - 2018 4th International

Conference on Computing, Communication Control and Automation, ICCUBEA 2018, Aug. 2018, pp. 1–6, doi: 10.1109/IC-
CUBEA.2018.8697857.

[15] J. Sirignano and K. Spiliopoulos, “DGM: a deep learning algorithm for solving partial differential equations,” Journal of Computa-
tional Physics, vol. 375, pp. 1339–1364, Dec. 2018, doi: 10.1016/j.jcp.2018.08.029.

[16] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
[17] T. T. Khoei, H. O. Slimane, and N. Kaabouch, “Deep learning: systematic review, models, challenges, and research directions,”

Neural Computing and Applications, vol. 35, no. 31, pp. 23103–23124, Nov. 2023, doi: 10.1007/s00521-023-08957-4.
[18] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,” Physica D:

Nonlinear Phenomena, vol. 404, p. 132306, Mar. 2020, doi: 10.1016/j.physd.2019.132306.
[19] J. Bohn and M. Feischl, “Recurrent neural networks as optimal mesh refinement strategies,” Computers and Mathematics with

Applications, vol. 97, pp. 61–76, Sep. 2021, doi: 10.1016/j.camwa.2021.05.018.
[20] B. Zraibi, M. Mansouri, and C. Okar, “Comparing single and hybrid methods of deep learning for remaining useful life prediction

of lithium-ion batteries,” E3S Web of Conferences, vol. 297, p. 01043, Sep. 2021, doi: 10.1051/e3sconf/202129701043.
[21] R. C. Staudemeyer and E. R. Morris, “Understanding LSTM – a tutorial into long short-term memory recurrent neural networks,”

arXiv preprint, 2019, [Online]. Available: http://arxiv.org/abs/1909.09586.
[22] R. Wang, C. Peng, J. Gao, Z. Gao, and H. Jiang, “A dilated convolution network-based LSTM model for multi-step prediction of

chaotic time series,” Computational and Applied Mathematics, vol. 39, no. 1, p. 30, Mar. 2020, doi: 10.1007/s40314-019-1006-2.
[23] L. Bottou, “Stochastic gradient descent tricks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), pp. 421–436, 2012, doi: 10.1007/978-3-642-35289-8 25.
[24] J. L. Ba and D. P. Kingma, “Adam: a method for stochastic optimization,” 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings, pp. 1–15, 2015.
[25] M. Mirzazadeh, M. Eslami, and A. Biswas, “Soliton solutions of the generalized Klein–Gordon equation by using

(formula presented)-expansion method,” Computational and Applied Mathematics, vol. 33, no. 3, pp. 831–839, 2014,
doi: 10.1007/s40314-013-0098-3.

Int J Inf & Commun Technol, Vol. 13, No. 3, December 2024: 370–379



Int J Inf & Commun Technol ISSN: 2252-8776 ❒ 379

BIOGRAPHIES OF AUTHORS

Soumaya Nouna is a researcher at the systems analysis and modelling and decision support
research laboratory at Hassan First University in Settat. She is an expert in mathematics, ML and DL.
A doctoral researcher in mathematics and computer science, she brings a wealth of experience to her
field. Her skills include the analysis of differential equations, and ML algorithms. Soumaya Nouna
is also the author of numerous research articles and is constantly seeking to advance in her areas of
expertise. She can be contacted at email: s.nouna@uhp.ac.ma.

Assia Nouna is a researcher at the systems analysis and modelling and decision support
research laboratory at Hassan First University in Settat. A doctoral researcher in mathematics and
computer science. She is currently working on deep learning and satellite imagery for agricultural
applications. Her research aims to enhance agricultural practices through precise soil analysis, im-
proving crop management and yield predictions. Additionally, she has contributed to various projects
and publications in the field, demonstrating her expertise in applying advanced computational tech-
niques to solve real-world problems. She can be contacted at email: a.nouna@uhp.ac.ma.

Mohamed Mansouri received the Ph.D. degree in Mechanical Engineering and Engineer-
ing Sciences from the faculty of science and technology, Hassan First University, Settat, Morocco,
and from L’INSA, Rouen, France, in 2013. He is currently a Professor and researcher at the National
School of Applied Sciences in Berrechid, Department of Electrical Engineering and Renewable En-
ergies. His research interests include Mechano-reliability study, industrial engineering, optimization
of shape and reliability optimization of coupled fluid-structure systems, and energy storage systems.
He can be contacted at email: m.mansouri@uhp.ac.ma.

Achchab Boujamaa is a professor and director at ENSA Berrechid, Hassan 1st Univer-
sity, specializing in applied mathematics and computer science. He completed his Ph.D. at Université
Claude Bernard Lyon 1 in 1995. His research focuses on numerical analysis, mathematical model-
ing, and computational finance. Notable works include simulations of the Black-Scholes equation
and studies on stochastic processes. Achchab is proficient in various mathematical and simulation
software, with strong analytical skills and experience in collaborative research projects. He can be
contacted at email: achchab@yahoo.fr.

Utilizing deep learning algorithms for the resolution of partial differential equations (Soumaya Nouna)

https://orcid.org/0000-0002-5733-1631
https://orcid.org/0009-0002-1809-0721
https://orcid.org/0000-0003-3823-7655
https://www.scopus.com/authid/detail.uri?authorId=55658248600
https://orcid.org/0000-0001-6365-0877

	Introduction
	Method (LSTM and DGA)
	The LSTM structure
	A neural network theorems

	Description of methodology
	Algorithm
	Implementing regulations


	Numerical results and Discussion
	The transport equation
	The wave equation
	The Sine-Gordon equation
	The Klein-Gordon equation

	Conclusion

