Performance analysis of D2D network in heterogeneous multitier interference scenarios
Abstract
The trade-off between boosting network throughput and minimizing interference is a critical issue in fifth generation (5G) networks. Diverting the data traffic around the network access point in device-to-device (D2D) communication is an important step in realizing the vision of 5G. Though the D2D network improves the network performance, they complicate the interference management process. Interference is an invisible physical phenomenon occurring in wireless communication which happens when multiple transmissions happen simultaneously over a general wireless medium. Enormous growth in usage of mobile phone and other wireless gadgets in recent years has paved the way for significant role in Interference analysis over multi-tier network. Interference could affect communication systems performance and it might even prevent systems functioning properly. 3G and 4G wireless devices coexisted with reverse compatibility in a coverage area. Also, after their widespread adoption, 5G devices have become prevalent across the globe and this reaffirms interference coexistence as a significant field of research. Multiple systems operating in a region will cause severe interference and ultimately reduce the quality of received signal. A simulation environment for cellular standards coexistence considering real-time parameters is created and experimented. Various research works earlier addresses the interference mitigation techniques in multi-tier networks but none of them present the analysis of scenarios and interfering signal power levels in the respective contexts. In this paper various scenarios with different network interference coexistence were studied, simulated, and analyzed quantitatively.
Keywords
Coexistence; Device-to-device; Heterogeneous network; Interference; Interference analysis; Interference mitigation
Full Text:
PDFDOI: http://doi.org/10.11591/ijict.v14i3.pp811-821
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 DHILIPKUMAR S, ARUNACHALAPERUMAL C, JENIFER SURIYA L.J, JERLIN A
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).