Classification of breast cancer using a precise deep learning model architecture

Mohammed Ghazal, Murtadha Al-Ghadhanfari, Fajer Fadhil

Abstract


Breast cancer is an important topic in medical image analysis because it is a high-risk disease and the leading cause of death in women. Early detection of breast cancer improves treatment outcomes, which can be achieved by identifying it using mammography images. Computer-aided diagnostic systems detect and classify medical images of breast lesions, allowing radiologists to make accurate diagnoses. Deep learning algorithms improved the performance of these diagnoses systems. We utilized efficient deep learning approaches to propose a system that can detect breast cancer in mammograms. The proposed approach adopted relies on two main elements: improving image contrast to enhance marginal information and extracting discriminatory features sufficient to improve overall classification quality, these improvements achieved based on a new model from scratch to focus on enhancing the accuracy and reliability of breast cancer detection. The model trained on the digital database for screening mammography (DDSM) dataset and compared with different convolutional neural network (CNN) models, namely EfficientNetB1, EfficientNetB5, ResNet-50, and ResNet101. Moreover, to enhance the feature selection process, we have integrated adam optimizer in our methodology. In evaluation, the proposed method achieved 96.5% accuracy across the dataset. These results show the effectiveness of this method in identifying breast cancer through images.

Keywords


Breast cancer; Deep learning; EfficientNet; ResNet; DDSM

Full Text:

PDF


DOI: http://doi.org/10.11591/ijict.v14i3.pp933-940

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mohammed Talal Ghazal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The International Journal of Informatics and Communication Technology (IJ-ICT)
p-ISSN 2252-8776, e-ISSNĀ 2722-2616
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics View IJICT Stats